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Abstract

Identifying the source of a video recording created by a cam-
era or smartphone has been a common and challenging task in
media forensics for many years. We present an approach for
source identification on the very common MP4 file format. In ex-
tension to related works, we propose to consider the suitability of
attribute field values and their respective order in the atom/box
tree in a specific manner. The significance of a field attribute
and its particular value for source identification will be reflected
by means of up and down weighting during the training and the
matching process. Experimental result indicate that our approach
allows distinguishing major brands. Even device identification is
possible for a subset of our training data.

Introduction

Nowadays we can observe an ever increasing number of
digital video data being recorded, edited and eventually being
archived and/or circulating on the Internet. Such video data can
provide valuable digital evidence to forensic experts. One inter-
esting task in video forensic investigations is camera source iden-
tification: reconstructing the life cycle of digital video in terms
of the original device, its brand or model, or the codec software
involved.

Especially for user-created content the video source often is
a smartphone or a consumer digital camera. Here, widely used
storage formats are the family of MP4-like multimedia containers
like *.mp4, *mov and * 3gp. Hence it will be in the focus of our
work.

One effective approach for camera identification from MP4-
like digital data is analyzing its meta data. The general approach is
as follows: Let x be a query video of unknown origin (referred to
as “camera” or “device”) and ¢ the set of origins considered (for
simplicity we assume we know that % in fact contains the origin
of x). The task is to find the correct origin of x by analyzing
its semantical and syntactical metadata and comparing it to the
available data for each origin ¢ € ¥

There are two decisions to make in order to implement an
analyzer following this approach:

* How to compute a score for each origin considered, express-
ing the similarity of the query video x to other videos from
mentioned origin?

* How to interpret these scores classify the most likely origin?

How these aspects have been implemented in the related work and
in our contribution is explained in the following.

Outline of This Work At first, we will recap the basics of the
MP4 file format family. Then we will give an overview about
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the related work and on open research questions in the field of
MP4 camera identification. We will then explain our proposed
approach and provide experimental results. Finally we will con-
clude by discussing and summarizing our results and by proposing
further research directions.

MP4 Basics

A common industry standard for storing encoded video
and/or audio data is the MP4 multimedia container format. It is
specified as an international standard [[1],[8]] as an extension of the
Apple Quicktime (MOV) format [9]. The MP4 format features a
hierarchical tree-like data structure divided into boxes (also de-
noted as atoms). The box type is indicated by a four byte ASCII
identifier. Boxes (and their nested sub-boxes, resp.) contain the
encoded audio/video data (in the mdat box) and its meta data in
the moov box and other box types. The data values inside these
boxes are organized in attribute fields.

| ftyp
\ MmooV

L trak
L tkhd
Owidth=1920
G@height=1080

| mdat
Figure 1. MP4 box tree example: The @width/Cheight fields and their
respective values inside the tkhd sub-box)

For example, the value of the video frames’ pixel size is
stored in the track header box (tkhd) in its @width and @height
fields. Their full path descriptor in the box tree is e.g. moov/
trak/tkhd/@width=1920, see Fig.

The field values can feature syntactical information for de-
coding and rather semantical information about the content useful
to human users.

Apart from the explicit information in the field values, the
box tree provides implicit forensic information by the order in
which boxes are present and also by which optional boxes are
present at all. Hence, some authors in video forensics even con-
sider the order of the sub-boxes [2],[3]. For this, the path descrip-
tors carry a suffix that indicates the absolute index numbe of the
sub box in its respective (parent) box, i.e.in the above example
/moov1/trakl/tkhd0/@width=1920

'As common tradition for computer scientists, we start numbering
at zero.
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Related Work

In MP4-like containers such as MP4, MOV or 3GP files,
there are a lot of traces available for source camera identifica-
tion. The audio and video stream can be analyzed e.g. using
CFA de-mosaicing [17], PRNU-based sensor fingerprinting [[19],
ENF-based audio forensic [18], and by many more approaches in
multimedia forensics.

Alternatively, traces can be derived from meta data en-
tries. Early works were designed for MP3 audio e.g. by Bohme
et al. [10] or for JPEG still images [[11] by Gloe et al. rather than
container formats for multimedia. Similar to the latter for JPEG,
a work by Hall [12][13]] presents an approach focused on the path
structure of the MP4 sub-boxes. By contrast, a work by Giiera,
Delp etal. [14] analyzes “stream descriptors” from selected field
values by means of different classifiers (random forests, SVM).

Works by Iuliani, Piva et al. |2], Yang, Piva et al. [15] or
Lopez et al [3]. analyze both the path and the value of box fields.
In addition, Rudnikovich et al. [16] present a parsing and visual-
ization tool that facilitates manual file inspection. Many of these
works apply or at least discuss their approaches for both source
identification and integrity verification.

Earlier Works by luliani, Yang, Piva et. al

Basis of our work is an approach by luliani etal. [2]. The
authors state that a video x can be completely described by the
set of occurring field-value pairs (also referred to as attributes)
Qy =wy,...,0n and their corresponding paths py (@;).

In order to compute a score denoting the chances x has been
created with camera c, they analyze at each attribute in x and cal-
culate a percentage of occurrences from similar field-value pairs
with equal path in c. The authors use this percentage to compute a
likelihood ratio L. (x) denoting the probability that x was created
from a camera of type ¢ The resulting scores are normalized by
applying log and authors propose to identify an origin for x in ¢
whenever L. (x) > 0.

That work was extended for analyzing video files that un-
dergo video editing or exchanging files in social media plat-
forms [[15]].

Proposed Approach

In this section, we introduce an approach to identify the
source camera for MP4-like containers by analysis of the pres-
ence and ordering of syntactical meta data entries in MP4 boxes.
In light of the related work we introduce three novel features to
further improve the identification task:

* Block list. Some boxes include fields that have distinct val-
ues for virtually every video file. Other boxes contain in-
formation that is unspecific for the source camera. None of
these box types contribute to source camera identification
and thus, they should be canceled from the equation.

* Path interpretation. There are several ways to interpret
the position of a box within the box tree. All existing ap-
proaches that considers the ordering of boxes have difficul-
ties with the insertion of boxes. Therefore, we introduce a

2 Actually, they consider the list of occurring attributes, so there may be
attributes @, ; € Qx such that i # jA @; = ®; A px (@;) = px (®;). How-
ever, while evaluating scores, they reduce the weight of repeated fields,
which results in the same score as considering a set in the first place.
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new index-based path type that is robust against the insertion
of boxes.

» Weighted matching. Not all fields are relevant for source
camera identification. While matching, we consider how
distinctive a field is for a given source camera. That is, fields
that show the same value for all videos of that camera are
considered more distinctive than fields that show multiple
values.

Notation

Let x be a video that is analyzed for source camera identifi-
cation. Let ¢ € ¥ be a source camera from the set of all source
cameras and let C be the set of cameras that are considered for
identifying the source of x. Let X, be a set of videos that are
known to have been recorded with c.

Each video x contains a list of N boxes By := (b, ...,by,—1)
with boxes b; € A from the set of all boxes. As the boxes are
actually structured in a tree, we use a function p to map the box b
to its path within a video x.

Each box b contains a set of M, fields u(b) :=
{fo,---»fmu,—1}. As each field may show a different value for
each video, ¥(f) maps a field f to the value it shows in the
video x. For simplicity, let @ := (f,0:(f)) denote a field-value
if the video x can be derived from context. Furthermore, let
Fy = Upep {(f, %(f))|f € u(b)} denote the set of field-values
in a video x.

In the remainder of this section, we will discuss the princi-
ple steps of our algorithm including an in-depth discussion of the
novel features we introduce. Our algorithm can be split into three
steps:

* Static Analysis. The relevance of each box is classified with
respect to source identification. From this classification a
block list is derived.

Training Stage. MP4 videos with known source camera are

used to train our model. For each source camera, the model

learns which boxes are present in which ordering.

e Identification. For a given test video, the presence and po-
sition of each box is checked against the trained model. If
there is a significant number of matches for a source camera
(ignoring boxes from the block list), chances are high that
the test video has been recorded with that camera.

Static Analysis

The overall goal of our algorithm is to identify the source
camera of a test video. Each test video includes a box tree
where each box consists of one or multiple field-value pairs (field-
values). To identify the source camera of a test video, we observe
each field-value of the test video and search for videos that have
an equal field-value. The three properties of a field-value are (1)
the field-key, (2) the value and (3) the position within the box tree.
Two field-values are equal if and only if they are equal in all three
properties.

However, there are field-values that cannot virtually ever be
equal for two non-identical videos. In order to cancel such field-
values from the equation, we implement a block list.

3Note how after applying the block list, we can assume that we have
already dealt with two cases: (1) fields that show unique values for every
video and (2) fields that show the same value for every video.
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ftyp ftyp
mdat mdat
moov moov
mvhd ipmp
trak mvhd
tkhd trak
ndia t tkhd
udta mdia
meta udta
trak meta
tkhd trak
ndia t tkhd
- mdia

(a) Box tree B1 (b) Box tree B2

Figure 2. Example: Box trees MP4 files from different devices. The second
mdia box at different path positions

Block list

There are various reasons why field-values cannot contribute
to the distinction of the source cameras: On the one hand, there
are fields which values can be expected to be specific for this (and
only this), such as video file, such as timestamps. On the other
hand, there are fields which values seem to have little to no pur-
pose for identification, e.g. geolocations.

Therefore, a block list is derived with boxes that contain
field-values with little or no significance for source camera identi-
fication. Unfortunately, this step requires manual consultation of
the MP4 specifications [1]],[8] to learn the intention of each field.
In the identification stage of our algorithm, the block list will be
queried to remove boxes which seem to have lots of irrelevant
field-values completely from the matching equation.

Training Stage

The MP4 specification describes a lot of boxes for MP4-like
containers, some of which are optional. Furthermore, it does not
specify box ordering for the most part, which leaves camera man-
ufacturers with the freedom to decide which optional boxes are
included and how they are positioned.

We want to take advantage of the fact that each camera man-
ufacturers has to decide how the box tree is structured and what
(optional) boxes are included. Therefore, we need to learn what
boxes each manufacturer includes and how they build the box tree.

One crucial property of field-values is their position within
the box tree. Related work [2],[3] introduces different path types.
In the following, we discuss pitfalls of existing path types and
derive a novel path type that is used in our algorithm.

Path Interpretation Types

Boxes in MP4-like containers are arranged in a tree, which
suggests to define their positions with a path representation. Fig-
ure 2] shows a section of two typical box trees. To illustrate dif-
ferent approaches to the interpretation of paths, we focus on the
highlighted media box on the bottom of the figure.

The basic idea is similar to the file path in a directory struc-
ture. A box path is a list of all boxes that are traversed when going
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from the root to the box. We refer to this type of paths as unsorted
path order index (path type 1). The type 1 path for our example
box is moov/trak/media. While this is a very straightforward
approach to define paths, a closer look reveals that the path is not
unambiguous for the box tree from Figure [2__a] (left) as two boxes
qualify for the same path.

This motivates to consider indices when referring to boxes
on the path. The absolute path order index (path type 2) imple-
ments indices by numbering the children of each (parent) box.
The type 2 path for our example box is /moov2/trakl/mdial.
In contrast to type 1 paths, type 2 paths unambiguously reference
boxes. However, the approach is not robust to the insertion of
boxes.

This can have severe consequences in the identification
stage, as the following example shows: Assume different file’s
box tree as depicted in Figure 2B (right), that is equal the box
tree from |2a) but with an additional ipmp box as the first child
of moov2. As a result, the indices of all boxes subsequent to the
added box will be shifted by one.

Alternatively, we introduce the insert-robust path order in-
dex (path type 3). In contrast to path type 1 where index i means
that the box is the i-th child of its parent box, path type 3 consid-
ers the occurrences of a box type relative to its parent box. In path
type 3, index i means that the box is the i-th child of its parent box
with the same box type.

Hence, the type 3 path representation is denoted as
/moov_0/trak_1/mdia_0 for both examplesﬁ]in Figure

The key advantage of type 3 paths is that they are more robust
against the insertion of boxes. Note how the box tree from Figure
[2b]is the same as [2a] but with an additional box. The type 2 path
for our example box changes, the type 3 path for our example box
is the same in both box trees. As a result, path type 3 solves the
ambiguity problem of path type 1 and the insertion vulnerability
of path type 2.

Identification Stage

We identify the source camera of a test video x by calculat-
ing a score ¢y (c) for every camera c¢. Therefore, we prepare a
score list ® where the score for each camera is stored as a tuple

(¢; ¢x(c))-

Weighted Matching

We evaluate each field-value individually considering how
much that field-value w; contributes to the decision if the test
video x matches camera c. As the weighting factor, we define
the diversity k that has the following properties: Let F. := |J Fk

FeX,

be the list of field-values contained in a camera c.

If there is no field-value in F; that has the same path as @,
then k. (w) :=0.

Otherwise, we consider three factors:

* the number of available source videos from camera ¢ and

* the number of distinct values that occur for the given field in
any video of camera c.

* the number of videos from camera c, in which the given field
exists with equal path and equal value.

4Kindly note the underscore_notation for type 3 paths
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The first factor is the cardinality of the set of videos from
source c: |X,|.

For the second factor, we filter |X;| for videos that contain an
equal ﬁeld—valueﬂ

o/(w):=|{xeX|Foer:0=0} . (1)
The last factor is constructed by

K. (o) := U

(F0:(F)eke

{0:(N)If = fAp(f) = px(f)} ()

where @ = (f, 0x(f))-
Finally, we define the diversity k.(®) as

0 if [Ko(0)] =0
Ke(@) := { %] : (©)

K@) otherwise

In simple words, the proposed diversity property describes how
many different outcomes of a particular field-value are observed
in the training data. A high diversity value indicates that this field-
value is not very specific across files from the same device and is
hence only little suitable for matching.

Finally, the similarity score is calculated by applying the fol-
lowing steps for every camera c:

1. Generate the list F of all fields contained in the video x.
2. With @ = (f, %(f)), calculate

Po(c) := Z &(f) - oc(0) k(@)

weF,
3. Add (c,¢.(c)) to ®.

The camera with the highest score is most likely to be the source
camera of the test video. Therefore, the output of the identifica-
tion stage is the camera ¢ with maximum score

v (6) = X . 4
¢x(¢) (C?&f};;e@q) (c) ©)

Evaluation

For the task of Device Classification, we determine & for
a test-video x. The goal is to evaluate whether the camera with
the highest score ¢ does in fact represent the device x has been
created with (TOP1). Further we kept track of whether the clas-
sification for a video does improve when we also consider if the
correct device was identified within the two highest (TOP2) as
well as the three highest (TOP3) score. Although these additional
scores come at the cost of a high false positive rate, they help un-
derstanding the approaches ability to enclose the origin of x. If
multiple cameras achieve the same score within these TOP’s, we
report on a classification for all of them. We further aggregate the
results from the Device Classification to receive Brand Classifica-
tion. Therefore we acknowledge a correct classification whenever
the cameras brand (e.g. Apple) is identified correctly.

3The equality of field-values (@ = @) means that both field-values are
equal in their field, value and path: f = fA O (f) = O:(f) Apx(f) = pz(f)
where © = (£, 9(f)), ® = 9:(f))
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Datasets

We evaluate our approach on the ACID[3],[6],[20] dataselﬁ
as well as on the VISION[4] dataseﬂ see Table

Table[{l Datasets in our evaluation

Dataset #brands #cams.  #vids. min. #vids.
per cam.
ACID [5],[6] 15 29 10,069 187
VISION [4] 10 32 561 10
Evaluation Approach

Since the ACID dataset already provides a split into train
and evaluation data®} we also use this split during our test. We
evaluate our approach for all videos from the evaluation dataset,
by comparing each of them to 187 randomly selected videos per
camera from the frain dataset. Please note that we imported the
train data beforehand. This means after randomly selecting the
videos once, all further comparisons are calculated on the same
data.

For each test video we determine its ® and collect the TOP1,
TOP2 and TOP3 classification. After testing all videos, the result-
ing data can be used to determine a device classification confusion
matrix.

We carry out the evaluation on the VISION dataset identi-
cally. Since the dataset does not provide a split into train and test
data, we perform our test on a subset of 10 randomly selected
videos for each camera. Out of this subset, each video is com-
pared against the selected data (excluding itself). This means the
video is classified for all 9 videos in the subset of its own camera,
as well as against 9 randomly selected videos of each remaining
device in the subset. This is, because the amount of videos per
device should be equal during the test, and a video cannot be part
of the test data while it is being evaluated.

Different total numbers of training files per device (187 for
ACID, 10 for VISION, resp.) is given by the different volume of
testdata available and (for the test on the VISION data) to have
sufficiently many files left for the comparison stage.

Computational Effort

Due to the static analysis of the available data, the computa-
tional effort for a device classification of a video using our pro-
posed approach, is extremely low. Our implementation classifies
all 725 videos (duration 6.0 seconds per file in average, i.e. ap-
prox. 1.2 hours total) of the ACID evaluation dataset in 5.3 sec-
onds if the data per video has been parsed and imported to the
database previously. Importing the subset of 5423 videos (dura-
tion approx. 9.0 hours) we use from the train dataset with the MP4
Parser[] library takes 32.6 seconds.

OWe had to remove the devices M 14, M21, M25, M26 and M33 since
they are not .mp4 or .mov files. We also had to remove M09 since the
MP4 parser was not able to correctly parse it.

7We removed D07, D22 and D35 due to since the MP4 Parser was not
able to correctly parse them.

89344 train, 725 evaluation
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Table[2k VISION data — Brand Classification — Confusion Table Test 1

- g @ o0 -
2 %5 2 o & & £ ¥ £ E|&g =
g <2 2 = ; § 5 8 B g g E
Apple 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Asus 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Huawei 0.00 0.00 0.88 000 0.00 004 0.00 000 0.00 0.10 1.00 1.00
LG 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Microsoft 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00
OnePlus 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
Samsung 0.00 0.00 0.00 000 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00
Sony 0.00 0.00 0.00 000 0.00 0.00 000 1.00 0.00 0.00 1.00 1.00
Wiko 0.00 0.00 0.00 000 0.00 030 000 0.00 0.80 0.30 090 1.00
Xiaomi 0.00 0.00 0.00 000 0.00 0.00 000 0.00 000 1.00 1.00 1.00
Table[3; Proposed Block List The results are indifferent across the two datasets with re-
mdat  mvhd thbhd mdhd stsc stsz  stz2 gards to the proposed block list and path type. Notice that for
stco co64 hdlr tref stts ctts padb brand classification, we are able to achieve an AUC of 1.0 on both
subs hmhd cmhd  smhd datasets.

Table[@} Evaluation Results Overview - Top 1

Test  Dataset  Blocklist Pathtype Brand AUC Device AUC
1 VISION no 2 1.0000 0.9793
2 VISION no 3 1.0000 0.9635
3 VISION yes 2 0.9656 0.9030
4 VISION yes 3 0.9717 0.9029
5 ACID no 2 0.9995 0.9274
6 ACID no 3 1.0000 0.9291
7 ACID yes 2 0.9643 0.9163
8 ACID yes 3 1.0000 0.9342

Evaluation Results

We evaluate under the usage of absolute path order indices
(type 2) and insertion-robust path order indices (type 3) as well as
with the block list (as proposed in Table[3) enabled and disabled,
resp.

Table[2]shows results of the relative frequency of test devices
that were matched to the training data from different brands (VI-
SION dataset). Large values for correct matches (on the diagonal
mostly 1.0) and small values for wrong matches (mostly 0.0 off
the diagonal) demonstrate the promising matching performance.

Let us assume that we have a set of N test files from which
we know that the were recorded with the same unknown device
(or brand, resp.). Then the above relative frequencies can be eval-
uated for defining reasonable decision thresholds: how many of
those N files should indicated a positive match in order to assign
all files in the set to a device or brand? That is analyzed in terms
of receiver operating characteristic in Fig. [3]and Table ]

Table [4| provides an overview of classification performance
for the used datasets for the TOP1 classification. Overall the eval-
uation shows very good results on brand classification with an
AUC above 0.95 for all tests. Even the more specific device clas-
sification still shows an AUC over 0.90 on all tests.
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Nevertheless, for the more recent camera devices from the
ACID data, using the block list and insertion-invariant path rep-
resentations (type) appears to be beneficial for brand and device
identification in terms of AUC values. Hence we suggest the us-
age of insert-robust paths (type 3) from these results, due to their
benefits on possible changes on the MP4 box structure of certain
devices in the future. However, refining the block list is still pro-
posed to be a challenging task which presumes a deep knowledge
of the MP4/Quicktime Specification [[1]],[8]],[9.

Summary

In this paper we proposed an approach to source identifica-
tion of MP4-like container files. This algorithm bases on exist-
ing work by [2] and introduces three novel features: A block list
that cancels irrelevant field-values from the equation, a novel path
type that is robust against the insertion of boxes while combining
the advantages of existing path types and weighted matching that
considers a field-values diversity among videos of a camera.

Our evaluation shows that we achieve very good classifica-
tion performance for brand identification on the ACID and VI-
SION test datasets. The proposed extensions to the related work
are beneficial when evaluated on the ACID Training set from
2019. In extension to related works we also address the aspect
of identifying the individual devices instead of its brand.

As future work, we propose to refine the block list to con-
sider fields instead of boxes. This can be beneficial for source
camera identification as there are cases where one box combines
both relevant and irrelevant fields.
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