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Abstract
For forensic analysis of digital images or videos, the PRNU

or camera fingerprint is the most important characteristics, for
source attribution and manipulation localization. Typically, a
good estimate of the PRNU is obtained by computing its Maximum
Likelihood estimate from noise residuals of a large number of flat-
field images captured by the camera. In this paper, we propose
a novel approach of estimating the fingerprint of a camera, with
a Generative Adversarial Network (GAN). The idea is to let the
Generator network learn a distribution, from which PRNU samples
will be drawn after training of the two adversarial networks. Ex-
perimental results indicate that the GAN-generated PRNU yields
state-of-the-art camera identification and manipulation localiza-
tion results.

Introduction
Digital camera sensor noise has been widely accepted by

researchers from the forensics community as the most valuable
characteristics for the forensic analysis of digital images [1, 2, 15].
Minute imperfections in silicon wafers and manufacturing incon-
sistencies give rise to a unique noise pattern, which is present in
every image captured by a camera. This noise pattern, which is
spatially varying, is termed as Photo-Response Non-Uniformity
(PRNU) and can be estimated and tested for in forensic applica-
tions. It is also known as the ”Fingerprint” of a camera, due to
its uniqueness and due to the fact that it is left as a trace in every
sensor output. For forensic analysis of digital images, the PRNU
has been proven to be the most effective attribute, especially for
the tasks of source attribution and manipulation localization.

The problem of source attribution is deeply investigated in
the forensic research community, which entails tracing back the
source of a digital image or video, i.e. to be able to identify the
device that was used to capture a given image or video [5–15].
This is of particular importance in forensic scenarios, because it
enables us to trace back the owner of a digital content, which helps
us to fight cases such copyright infringement or distribution of
illicit materials (such as under-age clips, terrorist threats etc.). The
fundamental technique for source attribution is to inspect the query
image for presence or absence of traces of the fingerprint of the ref-
erence camera. Typically, the detection statistic is the normalized
correlation computed between the sensor noise extracted from the
query image (also known as the noise residual) and the reference
noise pattern (PRNU) of the digital camera device [15]. A differ-
ent test statistic is the Peak-to-Correlation-Energy (PCE), which is
often a more reliable statistic for camera identification [7, 11].

Another important forensic application is localizing manipu-
lations in digital images. When the content of a part in a source
image is replaced by content copied from a different image (splic-
ing), or from another portion of the same image (copy-move), it

replaces the sensor noise that was originally present in that region.
A fundamental correlation-based detector inspects the query image
in small overlapping analysis windows and compares the local
noise with the corresponding part in the reference pattern, in terms
of a correlation score. A correlation below some suitable threshold
indicates a potential manipulation [15]. More advanced detectors
exploit neighborhood dependency with random fields to improve
localization performance [4, 19, 20].

For both the tasks of camera identification, as well as manip-
ulation localization, the algorithms rely on an adequate estimate
of the reference noise pattern. Often a reliable estimate of the
sensor noise from the query image is a challenging task, especially
if the query image has textured content [23], although advanced
denoising algorithms have shown to mitigate this issue to some
extent [4, 27, 28]. Also, the quality of the reference noise pat-
tern might be questionable when we have a limited number of
images available from the camera (for example, downloaded from
social media), to compute the reference noise pattern. Hence, it
is needless to mention that both the camera identification as well
as manipulation localization algorithms would benefit from a high
quality estimate of the sensor noise pattern, both from the query
image, as well as for the reference pattern of the camera.

In this work, we focus on the second problem, that is of
improving the estimate of the reference noise pattern of the camera.
Typically, the PRNU of a camera is estimated from a set of genuine
images captured by a given device, by extracting the noise residual
from each image and then computing a weighted average. In this
work, we propose a novel approach for obtaining the reference
noise pattern of a camera, based on generative modeling. The idea
here is to train a Generative Adversarial Network (GAN), so that
the generator network learns a distribution from which new PRNU
samples will be drawn, which can then be used for the tasks of
camera identification and manipulation localization. Before we
elaborate on the proposed approach, we provide a brief review
of PRNU-based image forensics in the next section, along with a
literature review on the relevant prior work that has been done to
improve the sensor noise pattern in a forensic scenario. Next, we
describe our proposed approach which includes the architecture
of the two adversarial networks, tuning the hyperparameters and
training the networks. Subsequently, we describe our experimental
setup, results and conclusion.

Camera sensor-based Image Forensics
Let, x ∈ RN denotes a genuine sensor output from a camera,

and xi denotes the intensity at the i-th pixel in the image in column-
major order. Typically, a simplified model is assumed of the form:

x = (1 + k).x(0)+θ (1)
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Figure 1: The distribution of ε(m,n) = RP(m)−RP(n) for various values of m and n. From left to right: m = 100,n = 50; m = 50,n = 20;
m = 107,n = 20; m = 107,n = 100.

where x(0) represents the ideal sensor output, k denotes the camera
fingerprint (PRNU) and θ represents the noise term that includes
all various types of disturbances [3], which is typically modeled as
i.i.d Gaussian. The PRNU factor k can be estimated from a set of
genuine sensor outputs from the device, each of which is assumed
to have a trace of the fingerprint factor k, specific to that device
of interest. If x1,x2, . . . ,xL denote L genuine images captured by
the camera, then the Maximum Likelihood Estimate (MLE) of the
PRNU factor k can be computed [3] as:

k̂ =

(
L

∑
l=1

wlxl

)
·

(
L

∑
l=1

x2
l

)−1

, (2)

where, wl is the noise residual obtained by feeding the input image
xl to a suitable denoising filter F(.): wl = xl −F(xl). The weight-
ing term xl makes sure that the dark areas, in which PRNU is at-
tenuated, contribute less to the overall estimate. A post-processing
step is often applied to remove non-unique artifacts [3, 16] from
the estimate.

The task of camera identification can be viewed as a hypothe-
sis testing problem, where a query image is tested for the presence
or absence of the fingerprint of the camera of interest:

{
H0 : w = x−F(x) does not contain the PRNU k
H1 : w contains the PRNU factor k

where, H0 is the null hypothesis which represents that the query
image doesn’t come from the camera under test. The hypothesis
H1 represents the alternative hypothesis, i.e., the query image in-
deed comes from the camera of interest. The hypothesis test can
be decided in favor of H0 or H1 based on a computed correlation
statistic and comparing the same to a predetermined threshold τ:

ρ = corr
(
w,(xk̂)

)
. (3)

where, the standard algorithm decides for H1 if ρ > τ and for H0
otherwise. A more stable and reliable detection statistic, however,
is the Peak to Correlation Energy measure (PCE) as reported in [7].

A manipulation of type copy-move or splicing, where a por-
tion of the image is replaced by a different content, causes the
original underlying fingerprint to be distorted or removed. Thus,
such manipulations can be localized in an image by inspecting
a query image in small overlapping analysis windows centering
every pixel and computing a similarity score of the local noise
estimate with the corresponding region in the reference fingerprint
estimate k̂. Localization of small manipulations requires selection
of a small analysis window. Typically, the literature recommends

64×64 analysis window as a reasonable trade-off between reso-
lution and accuracy of localization [4, 19, 20]. Another problem
that is reported in the literature is that the local correlation score
is content-dependent and likely to be considerably low even in
absence of manipulation, if the content under inspection is tex-
tured, dark or has saturated pixels. Chen proposes a remedy to this
problem in terms of a correlation predictor ρ̂(x) [15], which pre-
dicts the expected correlation (assuming the content to be genuine)
as a linear function of features representing the texture, intensity,
saturation and flatness of the content:

ρ̂ = ∑c βc ·φc
(
x
)
, (4)

where, the linear regression coefficients βc can be obtained from a
set of genuine image patches with a least square fit [15]. Korus and
Huang [19] used a feed forward neural network that was trained
with the same features computed for a training set consisting of
known images. In another recent work [21], a convolutional neural
network (CNN) was adapted to automatically learn features, in-
stead of using the hand-crafted features for predicting correlation.

Both the forensic tasks of camera identification as well as ma-
nipulation localization are benefitted from a high quality estimate
of the reference fingerprint, as well as that of the residual noise
from a query image. The recent success of data driven approach
has motivated researchers to come up with deep neural network
architectures, in particular, employing the Convolutional Neural
Network (CNN) as a non-linear optimization tool, for the purpose
of extracting noise from an image. Zhang et. al. [22] proposed
a de-noising convolutional neural network (DnCNN), which sup-
presses the image and generates the noise at the output. Kirchner
and Johnson propose the SPN-CNN [23], which learns to extract
the sensor noise from a probe image under analysis. The SPN-
CNN uses a pre-computed fingerprint k̂, and the network learns to
generate the noise residual from the probe image by minimizing
its distance from the target estimate k̂.

In this work, however, we focus on improving the reference
noise pattern of the camera, or the estimate k̂. The idea here is to
follow a generative modeling approach where a target distribution
would be learnt by a deep neural network, and then will generate
new samples from the learnt distribution. This deviates from the
conventional weighted averaging of the noise residuals, which
yields a stand-alone estimation of the PRNU, given a fixed set of
flat-field images. In the next section, we describe our proposed
approach in detail.

Estimating PRNU with GAN
The Generative Adversarial Network (GAN) is a recent ex-

citing and promising generative modeling framework in Machine
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Figure 2: The architecture of the proposed Generator and the Discriminator networks.

Learning [24]. In a GAN, two deep neural networks compete with
each other in an adversarial setup. One is the ”Generator”, which
aims to learn a target distribution and generates samples from the
distribution as it learns. The other is the ”Discriminator”, which
aims to classify the samples generated by the generator as ”fake”.
As the training of the two adversarial networks progresses, each
network gets better and better in its own task. The generator gets
better in generating samples that resembles the target distribution,
whereas the discriminator gets better in classifying the generated
samples as fake. After sufficient number of epochs, the genera-
tor becomes adequately trained and generates samples which the
discriminator can no longer classify as fake, when the training is
complete. Then the ”Generator” network can be used to generate
new samples from the target distribution.

For the fingerprint estimation, we propose a PRNU-GAN,
with a goal to learn a target distribution Ptarget . After the generator
is sufficiently well trained, it learns to ”generate” PRNU samples
from the distribution Ptarget , which can be used for camera identi-
fication, or manipulation localization. For the purpose of PRNU
estimation, the distribution Ptarget is the distribution of PRNU
samples, where each sample corresponds to the PRNU estimate
obtained from a given number of genuine sensor outputs.

Let RP(n) denotes the Maximum Likelihood estimate of
the PRNU that we obtain from n images. Also, let ε(m,n) =
RP(m)−RP(n), which is the difference of the two PRNU samples,
which are obtained respectively from m and n genuine images
from the camera. We look at the distribution of ε(m,n) for dif-
ferent values of m and n. Fig. 1 shows the distribution of ε(m,n)
respectively for 4 different pairs of (m,n). We observe that the
error term ε(m,n) follows a distribution, which can be very well
approximated with a Gaussian distribution. We observe that the
variance of the distribution of ε is larger when |m− n| is larger.
To generate the training data for the two adversarial networks, we
started with an initial pre-computed estimate of the PRNU factor k.
We generate the training samples by adding to the pre-computed

PRNU estimate a Gaussian random noise component which has a
random variance for every generated sample:

kt = kI +σ .N, (5)

where, kI is the initial estimate of the PRNU factor k, N is a Gaus-
sian random noise component drawn from the standard normal
distribution, i.e., N ∼N (0, 1) and σ is a random variable drawn
from a uniform distribution, which controls the variance of the
added Gaussian noise component. Fig. 2 shows the architecture
of the proposed generator and the discriminator networks. We
considered to work with input sample size of 64× 64 for faster
training of the GAN. The input to the generator network is an array
of random noise of size [1× 1× 100]. This is upscaled by four
stages of transposed convolution, batch normalization and RELU
non-linearity, followed by a final transposed convolution layer. The
output of the final transposed convolution layer is of dimension
64×64×3, where we generate the PRNU samples for all three
color channels. The output layer uses a tanh activation function.
In the generator network, for each transposed convolution layer,
we used filters of size 4× 4 and a stride of 2, which upsamples
the input by a factor of 2. In the first 4 transposed convolution
layers, we respectively use 512, 256, 128 and 64 filters. The final
transposed convolution layer has 3 filters, which correspond to
the three color channels. Xavier initialization has been used to
initialize the weights in the transposed convolution layers. The
discriminator takes the generated PRNU samples and compares it
to the training set of samples. The input to the discriminator are
64×64×3 arrays, which then pass through a series of convolu-
tion layers combined with batch normalization and leaky RELU
non-linearity. The output of the discriminator is a scalar prediction
score, which is the confidence score or probability with which
the network classifies that generated sample as ”fake”. For each
convolution layer in the discriminator network, we used filters of
size 4×4. The number of filters in the first 4 convolution layers
are respectively 64, 128, 256 and 512 respectively. We use again
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Figure 3: Training of the Generator and the Discriminator networks. Top: Canon 60D (Realistic Tampering dataset) and Bottom: Olympus
Mju 1050SW (Dresden dataset)

the Xavier initialization to initialize weights in the convolution
layers.

Experiments
We worked with a total of 22 cameras from two different

datasets for our experiments, the Dresden dataset [17] and the
Realistic Tempering dataset [19], to illustrate the efficacy of the
GAN-generated PRNU samples for camera identification and ma-
nipulation localization.

Training
As mentioned earlier, we found that the network takes a very

long time for training, when the input patch size is large. Even with
a patch size of 256×256, we could only reach close to 100 epochs
after 5 days of training. The training time is dependent on the
hardware as well, but as a general rule of thumb, the training time
increases rapidly, as we increase the dimension of the input sample
size. This forced us to restrict our input sample size to 64× 64.
We divided the PRNU of a camera into multiple parts, each of
dimension 64× 64 and trained for each part individually. This
reduced the training time considerably. To generate the training
data, following equation (5), we generated 1000 training samples

corresponding to each part of size 64×64 of the PRNU, for each
camera that we worked with. The initial estimate of the finger-
print kI was computed with a set of genuine images from each
camera. We used a learning rate of 0.0001 with a gradient decay
factor of 0.5 for both the generator and the discriminator networks.
We found the GAN to be extremely sensitive to the choice of
hyperparameters, which often leads to convergence issues.

Fig. 3 shows the training of two different cameras: a Canon
60D from the Realistic Tampering dataset [19] and an Olympus
Mju 1050SW, from the Dresden dataset [17]. We trained both the
networks for 1000 epochs. For all cases, we use a batch size of
8. We observe that after 1000 epochs, the generator is so well
trained that it generates samples which the discriminator fails to
classify as fake any more. The output score from the discriminator
is 0.5, which corresponds to random guessing. However, one point
that is important to mention here is that, it is not the case that
every time we attain an equilibrium after 1000 epochs. It can be
the case (which actually is the case for most of the times) that
even after 1000 epochs, the discriminator is able to classify the
generated samples as ”fake”, but even then, we found that the gen-
erator is sufficiently well trained after 1000 epochs that it generates
PRNU samples of adequate quality, for camera identification and
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Figure 4: Correlation of noise residuals with GAN-generated fingerprint and fingerprint of a non-matching camera. Left: Canon IXUS 70
and Right: Olympus Mju 1050SW.

Figure 5: Comparison of PCE peak for a sample noise residual (64×64) from a Nikon D7000 camera, obtained with Left: GAN-generated
PRNU and Right: Initial PRNU estimate

manipulation localization.

Results
To demonstrate the efficacy of the GAN-generated finger-

prints, we show here baseline results for the accuracy of camera
identification. Fig. 4 shows results for two different camera de-
vices, but similar results can be obtained for other devices as well.
To the left, we show the distribution of correlations computed
for noise residuals of 50 images from a Canon IXUS 70 camera
(Dresden dataset), with a PRNU sample generated by the proposed
Generative Adversarial Network for the same camera, along with
the correlations computed with a non-matching PRNU (that of a
Canon 60D, Realistic Tampering dataset). To the right, we show
the correlations of noise residuals of images from an Olympus
MJU 1050 SW, with a GAN generated PRNU sample and cor-
relations computed with a non-matching camera PRNU (Pentax
Optio A40). Both cameras are from the Dresden dataset in this
case. The patch size is 64×64, which corresponds to one specific
part of the PRNU and the residuals. We observe that the two dis-
tributions are very distinctly separable and camera identification
works perfectly for both the cases. Fig. 5 shows the PCE peak
comparison for a patch of a noise residual with a GAN-generated
PRNU sample (left) and a stand-alone PRNU sample computed

by weighted averaging, for a sample query image from a Nikon
D7000 camera. The patch size in this case is again 64×64. It is
evident that the GAN-PRNU yields a much higher peak in this
case, which is primarily due to the reason of a better estimate of
the reference noise pattern.

In Fig. 6, we show the comparison of the PCE values for 19
sample images from an Olympus MJU 1050 SW camera from the
Dresden dataset, as well as the comparison of PCE peak height
for 50 images from a Praktica DCZ5.9 camera. For each plot,
we show the comparison of the computed statistic for the GAN-
generated PRNU pattern and the pattern computed with weighted
averaging over a fixed set of noise residuals. We observe that the
GAN-generated PRNU samples could yield higher PCE values
as well as higher PCE peak heights for both the devices. Similar
results can be obtained with other devices from the two datasets.

Fig. 7 shows the PCE values obtained with 50 images each
from a FujiFilm FinePixJ50 and an Olympus mju 1050SW camera
respectively, for a patch of size 64× 64. We show PCE values
obtained with the matching and 4 other non-matching PRNU-s,
where all PRNU samples are GAN-generated. We observe that the
GAN-generated PRNU-s yield clearly separable distributions for
matching and non-matching cases. We obtain similar results for
other cameras in our test database.
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Figure 6: Comparison of PCE attributes for GAN-based PRNU and an initial PRNU estimate obtained by weighted averageing . Left: PCE
values (Olympus MJU 1050 SW) and Right: PCE peak height (Praktica DCZ5.9)
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Figure 7: PCE values for patch size of 64× 64 for two different cameras for matching and non-matching cases. Left: Olympus mju
1050SW and Right: FujiFilm FinePixJ50. Cameras: Matching camera, Ricoh GX100, Nikon D200, Panasonic DMC FZ50, Pentax
OptioA40

In Fig. 8, we show the PCE values of matching and non-
matching PRNU-s for patch size of 512×512, for a Canon 60D
(left) and a Nikon Coolpix S710 camera (right). The PRNU of
both the cameras were obtained by combining a GAN-generated
sample for each part of the PRNU. For the Canon 60D, we show
the PCE values with the noise residuals from the three other de-
vices (Nikon D90, Nikon D7000 and Sony A57), all from the
Realistic Tampering dataset. For the Nikon Coolpix S710, the
non-matching cameras are Olympus mju 1050SW, Pentax Optio
A40 and Samsung L74 Wide, all 4 cameras are from the Dresden
dataset. We observe that the PCE values are distinctly separable,
for matching and non-matching cases and camera identification
works perfectly. Also, for the matching cases, the PCE values for
512×512 patches are much higher than the PCE values for a patch
size of 64×64, as expected.

Fig. 9 shows the baseline ROC for manipulation localization
for some images from a Canon 60D camera, where the correlation
has been computed with the GAN-generated PRNU sample, for a
512×512 patch size. We also used correlations computed with a
stand-alone PRNU sample, obtained with weighted averaging over
noise residuals, for comparison. The results indicate that GAN-
based fingerprints yield state-of-the-art baseline results, which
could be further enhanced with recent sophisticated random field

based detectors [4, 19, 20].

Conclusion

We demonstrate that it is possible to improve the estimate of
the reference noise pattern by letting a generative adversarial net-
work learn a distribution of the PRNU samples. We demonstrate
the efficacy of the proposed approach with large scale experiments
conducted on 22 cameras from the two popular datasets used for
forensic research: the Dresden dataset and the Realistic Tempering
dataset. We observe that GAN-generated fingerprints improved
upon the initial estimate with which we started. However, further
research is needed to address the challenges we faced during train-
ing. One issue with GAN is the training time which is considerably
large for larger patch size, which forced us to divide the PRNU in
multiple non-overlapping parts and train for each part individually.
Future research will target to mitigate this challenge. We also
found that the GAN is extremely sensitive to even slightest varia-
tion in hyperparameters, for instance, we found convergence issues
even with a learning rate as low as 2×10−4, which motivates us
to further investigate the effect of fine tuning the hyperparameters
on the network performance.
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Figure 8: PCE values for patch size of 512×512 for two different cameras for matching and non-matching cases. Left: Canon 60D and
Right: Nikon Coolpix S710. Cameras: Matching camera, Nikon D90, Nikon D7000, Sony A57, Olympus mju 1050SW, Pentax
OptioA40, Samsung L74 wide
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Figure 9: Image manipulation localization ROC curves for some images from a Canon 60D camera: GAN-based , Initial MLE-based
.
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