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Abstract

Attackers may manipulate audio with the intent of presenting
falsified reports, changing an opinion of a public figure, and win-
ning influence and power. The prevalence of inauthentic multime-
dia continues to rise, so it is imperative to develop a set of tools
that determines the legitimacy of media. We present a method that
analyzes audio signals to determine whether they contain real hu-
man voices or fake human voices (i.e., voices generated by neural
acoustic and waveform models). Instead of analyzing the audio
signals directly, the proposed approach converts the audio signals
into spectrogram images displaying frequency, intensity, and tem-
poral content and evaluates them with a Convolutional Neural
Network (CNN). Trained on both genuine human voice signals
and synthesized voice signals, we show our approach achieves
high accuracy on this classification task.

l. Introduction

Synthesized media can be generated for multiple different
modalities, including text, images, videos, and audio. Techno-
logical advancements enable people to generate manipulated or
false multimedia content relatively easily. Because generating
false content is so accessible, the quantity of synthesized media
increases exponentially daily [1]. Fabricated content has been
used for years for entertainment purposes, such as in movies or
comedic segments. However, it also has the potential to be intro-
duced for nefarious purposes.

Society has experienced only the tip of the iceberg in terms
of consequences of synthesized media. The true harm of Deep-
Fakes and other falsified content has not yet been realized. This
ticking time bomb could wreck havoc throughout the world with
impact on a personal, societal, and global level [2].

Audio authentication is necessary for speaker verification.
If audio is synthesized to impersonate someone successfully, an
adversary may access personal devices with confidential informa-
tion, such as banking details and medical records. Furthermore,
fabricated audio could be used in the audio tracks of DeepFake
videos.

In this paper, we consider an audio authentication task. The
reason for this is twofold. First, there are cases in which the only
medium available is audio, such as in a speaker verification task.
Second, there are cases in which multiple types of data are avail-
able for analysis, such as a DeepFake detection task, which would
benefit from a multi-modal analysis that includes fake audio de-
tection. Our method examines audio signals in the frequency do-
main in the form of spectrograms, as shown in Figure 1.

A spectrogram is a visualization technique for audio signals.
It shows the relationship between time, frequency, and intensity
(or “loudness”) of an audio signal — all in the same graph. Time
increases from left to right along the horizontal axis, while fre-
quency increases from bottom to top along the vertical axis. Col-
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Figure 1: Left column: Audio signals in the time domain, where
green indicates a genuine audio signal spoken by a human and red
indicates a synthesized audio signal. Right column: Spectrograms
generated from the time domain audio signals, which are used by
the CNN to determine audio authenticity.

ors densely fill the middle of the graph and indicate the strength
of a signal over time at different frequencies. Much like a heat
map, brighter colors depict greater strength. We treat these spec-
trograms as images and analyze them using Deep Learning tech-
niques to determine whether an audio track is genuine or synthe-
sized, as shown in Figure 2.

Il. Related Work

Developing methods to verify multimedia is an ongoing re-
search effort. Previous work includes analysis of audio content
[3], visual content [4] [5] [6] [7], metadata [8], and combinations
of these modalities [9].

A. Spoofing Attacks

For the audio modality specifically, spoofing attacks fall into
three main categories: voice conversion (VC), speech synthesis
(SS), and replay attacks. Voice conversion refers to the process
of transforming an already existing speech signal into the style of
another speaker, so that it sounds as if a new speaker is saying
exactly what the original speaker said. Speech synthesis refers to
methods in which new audio signals are generated from scratch.
For example, converting written text into spoken speech is one
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Figure 2: Proposed Method. The proposed approach transforms audio signals in the time domain into spectrogram “images”, which are
used as inputs to the CNN. Then, the CNN produces a classification label indicating whether the signal under analysis is authentic or

synthesized.

method to achieve speech synthesis. Finally, replay attacks re-
fer to spoofing methods in which the original speaker and desired
speech signal are recorded. Then, this speech signal is played
back to an audio-capturing device, which is fooled into believ-
ing the replayed audio signal is the desired speaker in real-time.
Some research efforts, such as [3], focus on replay attacks specifi-
cally. On the other hand, we focus solely on voice conversion and
speech synthesis attacks, which consist of synthetically generated
audio signals.

B. Audio Features

Digital signal processing offers many different methods to
extract features to analyze audio signals. Arguably the most fa-
mous method for signal analysis is the Fourier Transform (FT)
and its subsidiaries (e.g., Discrete Fourier Transform (DFT)),
which deconstruct a function of time into its constituent frequen-
cies.

Many techniques build upon the foundation of the Fourier
Transform. Constant Q Cepstral Coefficients (CQCCs) are de-
rived by converting a signal from time domain to frequency do-
main with the Fourier Transform, spacing the spectral amplitudes
logarithmically, and then converting the amplitudes to the que-
frency domain with a time scale [10].

Mel Frequency Cepstral Coefficients (MFCCs) are also
based on the Fourier Transform. In order to compute MFCCs,
the Fourier Transform is applied to time domain audio signals,
and the powers of the resulting spectrum are mapped onto the mel
scale [11]. The mel scale describes how humans perceive tones
and pitches. It reflects humans’ sensitivity to different frequen-
cies [12]. Next, the logarithmic scale is applied to the powers at
each of the mel frequencies in preparation to compute the Discrete
Cosine Transform (DCT) [13] of the mel log powers. Finally, the
amplitudes of the result of the DCT constitute the MFCCs [14].

Besides enabling the computation of feature coefficients, the
Fourier Transform may be used to construct visual representations
of signals. Nowadays, spectrogram generation is a digital process
which involves sampling a signal in the time domain, dividing
the signal into smaller segments, and applying the Fourier Trans-
form to each segment to calculate the magnitude of the frequency
spectrum for each segment. Through this process, a segment cor-
responding to a specific moment in time is transformed into a se-
quence of spectrum magnitude values. To construct a graph of
these values, the sequence is oriented as a vertical line and color
coded according to magnitude, creating a vertical line of “pix-
els.” These pixel lines are concatenated side-by-side in order of
increasing time index to construct a spectrogram “image.”
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C. Audio Authentication Approaches

Current audio authentication methods utilize the aforemen-
tioned features to determine whether an audio signal is real or
fake. They first estimate the desired audio features from the time
domain signal and then use them as inputs to a Deep Learning sys-
tem. For example, [15] uses CQCCs and MFCCs as inputs to a
standard feedforward Multilayer Perceptron Network (MLP) and
ResNet-based Convolutional Neural Network (CNN). [3] inves-
tigates CQCCs and MFCCs as inputs to Long Short-Term Mem-
ory networks (LSTMs), Gated Recurrent Unit networks (GRUs),
and Recurrent Neural Networks (RNNs). For these methods, the
audio signals are represented as sequences of coefficients, which
are then fed into a neural network. Conversely, some work ana-
lyzes audio signals directly. In such cases, the method relies on
the learning-based system to identify relevant audio features. [9]
uses raw audio signals as inputs to a CNN-LSTM model, where
the first few layers of the network consist of convolution layers
and a later layer consists of a LSTM layer. The authors also ex-
plore working with log-melspectrograms, which are spectrograms
in which the frequency domain content is mapped to the mel scale.
The log-melspectrograms are analyzed with a CNN to detect au-
thentic and spoofed audio.

Independent from audio authentication tasks, many signal
processing research efforts use spectrograms for a variety of other
human speech-related tasks. [16] explores a style transfer method
for audio signals which transforms a reference signal into the style
of a specific target signal. This work utilizes both raw audio sig-
nals and spectrograms as inputs to a CNN architecture. [17]
strives to classify sound events based on spectrograms with a
Support Vector Machine (SVM). [18] investigates audio signal
reconstruction based on spectrograms. Works such as [19] en-
deavor to improve upon the traditional spectrogram and focus on
underlying, stable structures grounded in the lower frequencies of
an audio signal. More recently, there have been efforts to ana-
lyze spectrograms with respect to emotions. [20] uses a CNN
to analyze spectrograms and differentiate between seven different
emotions captured in speakers’ voices. [21] analyzes spectro-
grams with a CNN and then feeds the extracted CNN features
into a Random Forest (RF) to identify speakers’ emotions. [22]
and [23] use a feedforward MLP to analyze spectrograms for the
purpose of detecting emotion of audio signals. [24] and [25]
explore an emotion recognition task and fake audio detection task
in tandem. [26] uses a Gaussian Mixture Model (GMM) and
a k-Nearest Neighbors (kNN) classifier to detect stress in speech
signals. Inspired by these works conducted for more general tasks
in the signal processing community, we also leverage a CNN that
analyzes spectrograms.
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ASVspoof2019 Dataset
Genuine Synthesized Total
Subset Audio Audio Audio SFemlfle S Malie
Tracks Tracks Tracks peakers peakers

Training 2,580 22,800 25,380 12 8
Validation 2,548 22,296 24,844 6 4
Testing 7,355 63,882 71,237 27 21
Total 12,483 108,978 121,461 45 33

Table 1: Dataset. Details about the dataset used for our experiments.

Our approach takes advantage of the translation invariant
properties of images to find critical, local indicators revealing the
authenticity of an audio signal. Furthermore, our approach bene-
fits from shared weights which collectively learn from all patches
of a spectrogram. By leveraging signal processing techniques,
image processing techniques, and Deep Learning techniques, we
detect authentic and inauthentic audio clips with high reliability
and accuracy.

lll. Problem Formulation

We investigate an audio discrimination task in this paper.
Given an audio signal of a few seconds in length, we seek to rec-
ognize whether it is genuine human speech or synthesized speech.
Our overall approach is shown in Figure 2.

A. Dataset

To validate our methods, we utilize the ASVspoof2019
dataset [27]. This dataset was introduced in the ASVspoof2019:
Automatic Speaker Verification Spoofing and Countermeasures
Challenge [28]. It contains both genuine human speech samples
and fabricated speech samples. The inauthentic speech samples
fall into the three categories outlined in Section II-A: voice con-
version (VC), speech synthesis (SS), and replay attacks. For this
paper, we only consider generated audio. Thus, we only utilize the
VC and SS subsets of the dataset. The synthesized audio was gen-
erated with neural acoustic models and Deep Learning methods,
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including LSTMs and Generative Adversarial Networks (GANS).
Our final version of the dataset based on only VC and SS attacks
contains 121,461 audio tracks. The details of the dataset are in-
cluded in Table 1. We utilize the official dataset split according
to the challenge, which results in 25,380 training tracks, 24,844
validation tracks, and 71,237 testing tracks.

B. Spectrogram Generation

The first step in our analysis is to consider the digital audio
signal in the time domain. Let f(¢) be the continuous time do-
main audio signal where ¢ is the time index. f(¢) is the original
signal provided in the ASVspoof2019 dataset. The average length
of all of the audio signals in the entire dataset (including training,
validation, and testing samples) is 3.35 seconds. Figure 1 and Fig-
ure 3 show examples of time domain audio signals. By a visual
inspection, it is unclear which signals could be genuine and which
could be synthesized. In order to leverage computer vision tech-
niques for forensic analysis, we convert these time domain signals
into frequency domain spectrogram “images”, as shown Figure 3.

The conversion process involves taking the Discrete Fourier
Transform (DFT) of a sampled signal f[n] to obtain Fourier coef-
ficients F (m), where m is the frequency index in hertz (Hz). The
magnitudes of the coefficients |F| are then color coded to indi-
cate the strength of the signal. f[n] refers to a sampled, discrete
version of f(z) with a total of N samples. The N samples can be
denoted as f[0], f[1], ..., f[N — 1], where each sample f[n] is an
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Figure 3: Audio Waveforms and Spectrograms. Genuine and synthesized audio signals analyzed by the CNN.
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Figure 4: CNN Diagram. The CNN developed for our approach.

Output Shape

Layer (N, H, W) Parameters
convy (32,48, 32) 320
convy (30, 46, 64) 18,496
max pooling (15, 23, 64) 0
dropout; (15,23, 64) 0
flatten; (22080) 0
dense; (128) 2,826,368
dropout, (128) 0
dense, 2) 258

Table 2: CNN Architecture. This table indicates the parameters
of the proposed CNN. Each row in the table specifies (from left
to right) the details of the layer, its output shape, and the number
of parameters it contains. Output shape is in the form (N, H, W),
where N refers to the number of feature maps produced, H refers
to the height of the feature maps produced, and W refers to the
width of the feature maps produced.

impulse with area f[n]. The Discrete Fourier Transform is:

Nl i2n

F(m)=Y flnJe- v (1

n=0

A Fast Fourier Transform (FFT) is a method that efficiently
computes the DFT of a sequence. Therefore, we utilize the FFT
to rapidly obtain Fourier coefficients F(m) of the signals in our
dataset. For our experiments, we run the FFT on blocks of the
signal consisting of 512 sampled points with 511 points of overlap
between consecutive blocks. The signals in our dataset have a
sample rate of 16 kHz, so the audio signals are sliced into equally-
sized temporal segments of 32 milliseconds in length.

Once the Fourier coefficients have been computed, the audio
signal f[n] is converted to decibels for magnitude scaling: f;p =
101log(|f]). The spectrogram “image” of size 50x34 pixels is then
constructed to show the audio signal’s magnitude (i.e., intensity
in dB) over time versus frequency, as shown in Figure 3.

Each spectrogram encompasses information from an entire
audio track. We can determine frequencies and intensities of an
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audio signal as it propagates in time by analyzing the colors in the
spectrogram from left to right in the image. The warmer and more
yellow a color is, the louder the audio signal is at that point in
time and at that frequency. Darker colors indicate quieter sounds.
Once the spectrogram images are created, they are converted to
grayscale images and normalized in preparation for analysis by
the CNN.

C. Convolutional Neural Network (CNN)

We employ a Convolutional Neural Network (CNN) to an-
alyze the normalized, grayscale spectrogram images and detect
whether they represent genuine or synthesized audio. Table 2 out-
lines the specifics of the network architecture depicted in Figure 4.
It consists mainly of two convolutional layers in the initial stages
of the CNN. Then, it employs max pooling and dropout for regu-
larization purposes and to prevent overfitting. The final output of
the neural network applies a softmax function to a fully-connected
dense layer of two nodes, producing two final detection scores.
The scores indicate the probability that the audio segment under
analysis is considered to be genuine or synthesized. Finally, the
argmax function is used to convert these probabilities into a final
class prediction. We train for 10 epochs using the ADAM opti-
mizer [29] and cross entropy loss function.

IV. Experimental Results

Table 3 summarizes the results of our method. For compar-
ison purposes, we evaluate how our approach performs relative
to a baseline approach in which the classifier randomly guesses
whether an audio signal is genuine or synthesized according to
a uniform random distribution. Our spectrogram-CNN achieves
85.99% accuracy on the testing dataset, outperforming the base-
line random method by 35.95%. This indicates that our method
is considerably better than random chance. The precision, recall,
and F1-scores of our method are 67.23%, 75.94%, and 70.08%,
respectively. These values further indicate that even on an unbal-
anced dataset, our method performs well.

Figure 5 shows the Receiver Operating Characteristic (ROC)
and Precision-Recall (PR) curves of our method in comparison to
the baseline random method. For both of these plots, the ideal,
completely accurate classifier would yield curves resembling a
45-degree angle that include the top-left corners of the plots. The
closer a curve to that corner, the better a classifier performs. A
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Figure 5: ROC and PR. Our method is in

way to measure the quality of a curve is by calculating the area un-
der the curve (AUC). A higher AUC value indicates a better classi-
fier, with an AUC of 1.0 indicating a “perfect” classifier. Because
the ROC and PR metrics do not depend on the class distribution
of the dataset, AUC is a useful metric for evaluating classifiers
on unbalanced datasets such as ours. Our method yields a high
ROC-AUC of 0.9012 and a PR-AUC of 0.4566. In comparison to
the baseline method which achieves a ROC-AUC of 0.5081 and a
PR-AUC of 0.1057, our method performs better by both metrics.

Considering that the testing dataset contains new audio at-
tacks which were never seen before in training and validation,
these results are very promising. They demonstrate that our
method generalizes well to some unseen audio attacks. However,
there are still some other unseen attacks on which our method
fails, and more investigation into its failure cases is needed. In
general, though, analysis of audio signals formatted as spectro-
grams is effective for an audio verification task.

Method Accuracy Precision  Recall F-1
Baseline (Random) 50.06% 49.93% 49.80%  40.63%
Proposed Method 85.99 % 67.23%  75.93% 70.08%

Table 3: Results. This table indicates the performances of the
baseline random method and our proposed method.

V. Conclusion

In this paper, we propose a CNN approach to analyze audio
signal spectrograms for the purpose of validating the audio sig-
nal authenticity. The experimental results show that the method
accomplishes this discrimination task with high accuracy on the
test dataset with a relatively shallow network. Our method gen-
eralizes to new audio attacks never seen during training. Thus,
our results indicate that a signals-informed and signals-based ap-
proach assists a neural network in learning information to extend
to new attacks. However, our method fails to classify other new
audio signals correctly. Future work should focus on understand-
ing the failure cases and improving our method to correctly iden-
tify whether they are fake or real audio signals. A future approach
could include analyzing the signals with a Natural Language Pro-
cessing (NLP) approach to evaluate the coherence of the spoken
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phrases. Then, two analyses could be conducted in parallel to
analyze the frequency content and structure of the signal as well
as the coherence of the spoken words. Another future direction
could include an environmental analysis of the captured audio sig-
nal. If, for example, an audio signal is identified to be recorded
outside but the speaker says phrases as if he or she is indoors, this
mismatch between recording environment and spoken cues could
indicate that the audio is synthesized. These experiments con-
ducted in tandem with our proposed approach would strengthen
our audio authentication method.
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