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Abstract 
 
The present-day substantial growth in the demand and 

utilization of plastics provokes severe economic and environmental 

consequences. Around 4 – 6 % of global oil and gas production is 

used directly or indirectly as feedstock in the production of 

plastics. A further 2 – 3 % is employed as energy during the 

manufacturing process.  

This study highlights recycling (chemical) against other 

sustainable waste management approaches, like mitigation of 

waste generation through the concept of reusing and energy 

recovery from plastics. As an example, the African context 

regarding the quality of the disposed waste and the waste 

characteristics in the Kumasi region, Ghana is taken into 

consideration.  

To process valuable and economically viable recycling 

products, pure polymers are required. Certain technologies, such 

as infrared (IR) spectroscopy, have limitations for accurately 

identifying different polymer types, particularly when the sample 

mix is contaminated with organic waste or is physically wet. There 

are promising technologies that are under development, like 

Raman spectroscopy and laser-aided spectroscopy combined with 

tracers (fluorescent markers). Nonetheless, these are essentially 

more expensive technologies and are currently in the development 

phase.  

Multiplexed near-infrared (NIR) spectroscopy is a fitting 

technology for polymer identification. It is a fast and non-

destructive technique that does not influence the physical state nor 

chemical property of the sample polymers. Hence, it can be 

integrated in a continuous sorting system. Here, a prototype 

sorting system equipped with a multiplexed NIR spectrometer was 

utilized and used to test the sorting efficiency of the system as well 

as the purity of identified and sorted samples. Samples of PE (with 

subgroups of HDPE, LDPE and LLDPE), PS, PET, PP and PVC 

and unknown polymers were employed in several conditions. The 

measurements were carried out in real time, based on the speed of 

the conveyor belt. In this study, a novel setup is introduced and 

investigated, and its data analyzed to determine the reliability of 

the sorting method for plastics to be used for pyrolysis. 

Introduction 
 
Plastics have become one of the most popular materials and it 

directly influences our daily lives. It is relevant in several sectors 
like packaging, transportation, construction, electronic 
manufacturing, and in recent years, energy. This has induced a 
steady growth in plastics with annual global production reaching 
407 million tons [1]. With the current growth trend in plastics 
production, it is projected that by 2050,  global annual production 
will reach 1.6 billion metric tons per annum [2]. As plastics 
production increases, there is a corresponding increase in plastics 
waste generated.  

In Africa for instance, the estimated plastics waste generation 
for the continent in 2015 was 19.5 million tons [3]. From this 
estimated figure, only 12% is recycled while more than 80%  is 
inadequately disposed of and pose an active risk of polluting water 
bodies [4]. This is evident in the global distribution of plastics 
waste that is mismanaged and input to the oceans. Recent studies 
shows that 1/8 of waste plastics entering the ocean per year is from 
African countries [5]. Research has indicated that it takes 100 
years for plastics to degrade. Within this time frame, plastics 
break-down into potential hazardous macro plastics (> 5 mm), 
micro plastics (< 5 mm) and nano plastics (< .001 mm) [6], which 
can be consumed by marine organisms. Subsequently, the aquatic 
eco-system could be threatened and could consequently have a 
direct impact on human health [7]. 

Contrastingly, the potential of post-consumer plastics is 
enormous, taking into context the energetic and economic value. 
According to Business Informatics Research (BIR), a ton of 
recycled plastics is equivalent to 2604 liters of crude-oil and can 
mitigate energy consumption of plastics production by 80% – 90%, 
compared to plastics production from its raw-material [1]. A ton of 
recycled plastics is equivalent to 22 cubic meters of waste plastics 
that could potentially end up in a landfill [1]. Plastics recycling 
offers huge potentials. The current global recycling rate lies 
between 14% and 19%, 24% of plastics waste is either incinerated 
or disposed of in landfills, while 58% - 62% are disposed of in the 
natural environment. However, in 2018, the United Nations 
estimated the global recycling rate for plastics at just 9% [1]. 
Plastics recycling rate in Ghana, West-Africa has hovered between 
1% and 6% in recent years [8]. This has remained low due to two 
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factors: the heterogenous nature of waste disposal (all waste 
fractions dumped together), and the high fraction of organic 
wastes. With the fraction of organic waste ranging from 48% - 
69% depending on the region [9], plastics separation that enables 
recycling already  faces huge challenges. Consequently, in 2015, 
the country was ranked the 7th dirtiest in the world [10]. 
Additionally, a huge fraction of the waste plastics is deposited in 
landfills. However, there is scarcely any energy recovery from 
waste plastics, largely due to inefficient separation arising from the 
condition of waste plastics recovered from landfills.  

Plastics wastes globally consists of a wide variety of 
polymers. However, the largest quantities are represented by 
polyethylene subgroups (HDPE, LDPE and LLDPE, 30%), 
polypropylene (PP, 19%), polyethylene terephthalate (PET, 7%) 
and about 10% of polyvinyl chloride (PVC) [11]. Potential high 
value products can be obtained from the wide variety of polymers 
found in plastics wastes, if properly managed. Polyolefins1, for 
instance, can produce high value products after pyrolysis. Some of 
the potential products obtained from plastics polymers after 
pyrolysis are listed in table 1 below. 
 
Table 1: Obtained products from different plastics resins 
(source: ([12],[13]) 

 
Resin Low-temperature 

products 
High-
temperature 
products 

PE waxes, paraffin, 
oils, α-olefins 

gases, light oils 

PP Vaseline, olefins gases, light oils 
PVC HCl, benzene toluene 
PS styrene styrene 
PET benzoic acid, vinyl 

terephthalate 
TFE 

 
 
Based on these facts, there is an urgent need to improve the current 
waste management strategy, particularly in waste plastics 
management focused on separation and recovery. 

The vast potential of waste plastics invokes the question of 
the best method required to exploit these potentials. Separation is 
instrumental to the process of harnessing the potential of post-
consumer plastics. It involves the segregation of plastics into the 
different polymer types. The major success of recycling or 
recovering materials (with regards to environmental and economic 
efficiency) at the end of their life cycle depends greatly on the 
reliability of the separation process utilized. The sorting process 
must be effective in differentiating between types, grades and 
possibly quality of plastics in a cost-effective and rapid manner 
such that the incurred cost is less than the value of the recycled 
product [14]. To improve the rate and reliability of the plastics 
sorting process based on economic performance, automated sorting 
processes are utilized, in which end-of-life polymer products are 
sorted based on size (macro/micro-sorting) [15], density, molecular 
structure and other identification characteristics. Automated 
sorting systems which is ideal and poses the least risk (health) 
mostly rely on intrinsic and extrinsic property of the polymers such 
as physical, chemical, optical, molecular structure or the 
electrostatic capability of the materials [16].  

 
1 Polyolefins are a family of polyethylene and polypropylene 
plastics that are produced mainly from oil and natural gas. [34] 

The most common automatic sorting method is density 
separator which relies on the density of a medium and sorts out 
samples into two categories namely, float products and sink 
products. The float products have density less than the medium 
while the sink products have a higher density than the medium. 
This method is not useful to separate plastics based on their 
polymer type. Optical sorting offers a more promising method of 
separating plastics based on their polymer types. It involves the use 
of sensors to detect the color, shape, size molecular and chemical 
structure of an object. The sensors can detect these attributes using 
software-propelled intelligence [17]. The software operates by 
comparing the sample’s (polymer’s) attribute to user-defined 
accept or reject criteria. If the attribute matches with the accept 
criteria, the polymer is identified. Intelligent software’s will group 
several matching attributes into learning sets to improve 
identification. The optical sorter requires the combination of lights 
and sensors. The lights, illuminates and radiates photon on the 
sample at a certain frequency, while the sensors detect the reaction 
of the polymer to the light. The sensors can capture the refection, 
absorption, and even molecular vibrations of the polymers to the 
light (energy source). There are several optical technologies that 
are used in the classification of polymers, some examples are: 
Raman spectroscopy [18], laser spectroscopy [19], x-ray 
fluorescence [20], infrared spectroscopy [21]. These methods, such 
as laser spectroscopy and x-ray fluorescence are only applicable 
with newly manufactured plastics, as they rely on trace elements 
present in the polymer for successful identification. Infrared 
spectroscopy has a slow response during measurement due to the 
weak radiation in this spectral range, different materials could fully 
absorb this weak radiation which would consequently present 
unreliable results. Raman spectroscopy offers a huge potential in 
waste plastics identification and separation; however, it is still in 
its pilot phase of development and still requires a lot of research to 
improve calibration results and building of chemometric library. 
Additionally, the Raman effect is weak, therefore, it requires a 
highly sensitive and expensive detection mechanism [22]. With the 
growing concern of plastics pollution and the vast potential of 
waste plastics, Raman spectroscopy is not a readily available 
solution. 

A reliable identification and sorting system that would rapidly 
identify waste plastics irrespective of the surface condition is 
highly desirable. Such system would be useful in developing 
nations were municipal solid wastes (MSW) are not separated at 
source, rather dumped to form an heterogenous mix. The system 
would enable an accurate separation of valuable waste products 
like polyolefin plastics (for pyrolysis), recyclable plastics, etc.  

This paper aims to present a reliable waste plastics sorting 
method. First, a versatile NIR spectroscopy system that consists of 
inexpensive hardware and an adaptable calibration software is 
presented. The system can identify at least seven different 
polymers including multilayered waste plastics. Furthermore, a 
statistical analysis of the measurement result to determine the 
reliability of the system to separate polyolefins in different plastics 
conditions is also presented. The precision of the identification 
system was calculated using R-program’s proportion testing2 (prop 
test) [23]. This further establishes the influence of statistics on 
imaging science and its different application areas. 

There are several systems that rely on near-infrared radiation 
sensors for waste plastics classification, most are available on the 

 
2 A proportion test is used to test for the probability of success/ 
failure within a given proportion. 
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market. However, due to propriety knowledge protections, 
technical details are often unknown. The main contribution of this 
study is to investigate the potential of NIR spectroscopy in the 
identification of post-consumer plastics in different surface 
conditions. This is carried out while underlining the versatility of 
the proposed system. 

This paper is structured as follows: Section 2 describes the 
types of materials and conditions investigated. Section 3 presents 
the classification calibration results showing the spectral 
information acquired from the image of the samples. Additionally, 
the statistical result is also presented in this section. The paper is 
concluded with a summary of the result, potential limitations that 
need further investigation and some remarks. 

 
 

Materials and Methods 

 Post-consumer samples utilized 
 
In this study, post-consumer plastics samples of HDPE, 

LLDPE, LDPE, PP, PET, PVC, and PS were collected from 
different sources. The plastics were identified by the recycling 
code at the bottom of the plastics. The plastics samples consisted 
of cut-out pieces of different sizes (indicated in table 2 as acronym 

‘P’), colors and composition (see table 2). This was to investigate 
the influence of these attributes to the sorting efficiency and the 
versatility of the sorting system. Additionally, some end-of-life 
plastics in their manufacturing form were also utilized. A total of 
210 plastics samples were selected and used for this study. Some 
of the samples were re-used in each condition to make up the 
number of required sample size for measurements in a condition. 
The samples were grouped and characterized based on their origin, 
color, and density (see table 2). The variations in density values for 
each polymer is shown in table 2. Each value represents the 
arithmetic average of 2 independent measurements. The narrow 
values between the densities of some polymers like PS from 
HDPE, demonstrates the viability of the multispectral optical 
sorting system over systems that separates based on density. 

 
Table 2: List of samples investigated in this study (source: 
compiled by author). 

Name Description Sample 
origin 

Color Density 
(g/cm3
) 

No. 
of 
piec
es 

PET Cooking-oil 
bottle 

Waste 
plastics 

Clear 1.39 6 

PET-
P 

Coca-Cola 
bottle 
pieces 

Waste 
plastics 
pieces 

Clear 1.38 19 

PVC End-of-life 
plastics 
infusion 
bottle 

Used 
plastics 
waste 

White 1.35 3 

PVC-
P 

Cut-outs 
from waste 
PVC 
plastics 

Pieces 
from 
used 
plastics 

White 1.40 17 

PP End-of-life 
yoghurt 
cups 

Waste 
plastics 

Off-
white 

0.92 7 

PP-P Pieces from 
waste PP 
plastics 

Waste 
plastics 
pieces 

Off-
white 

0.92 18 

PS Used take-
away food 
packaging 

Waste 
in 
plastics 

White 1.05 4 

PS-P Cut-outs 
from waste 
plastics 

Waste 
plastics 
pieces 

White 1.05 16 

HDPE Bottle 
packaging 

Waste 
plastics 

Mixed 0.95 3 

HDPE
-P 

Cut-outs 
from waste 
HDPE 
plastics 

Waste 
plastics 
pieces 

Mixed 0.96 22 

LDPE End-of-life 
detergent 
packaging 

Waste 
plastics 

Mixed 0.91 8 

LDPE
-P 

Pieces from 
waste 
plastics 

Waste 
plastics 
pieces 

Mixed 0.92 17 

LLDP
E 

Plastics 
waste 
shopping 
bags 

Waste 
plastics 

Mixed 0.87 8 

LLDP
E-P 

Pieces from 
waste 
plastics 

Waste 
plastics 
pieces 

Mixed 0.88 22 

Unkno
wn 

Not 
classified 

Waste 
plastics 
pieces 

Mixed Varyin
g 

40 

 
 
The surface conditions of the plastic were simulated to 

represent waste collection or landfills condition in urban-cities in 
West-Africa (specifically Kumasi, Ghana). 6 conditions were 
simulated namely: DRY – The samples were washed and dried and 
utilized in their cleanest form (see figure 1 (a)); WET – The 
samples were sprinkled -with or dipped-in water (see figure 1 (b)); 
LABELS – The samples were covered or partially covered with 
their manufacturing labels (see figure 1 (c)); Three levels of 
contamination were analyzed namely: contamination with a 
mixture of ketchup3 (70%) and soil4 (30%) – The contaminant was 
rubbed on the surface of samples (see figure 1 (e)); contamination 
with a mixture of mayonnaise5 (70%) and soil (30 %) – The 
contaminant was rubbed on the surface of the plastics samples (see 

figure 1 (d)); contamination with a mixture of mayonnaise (40 %), 
ketchup (40 %) and soil (20 %) – The plastics samples were either 
partially or fully-immersed in the contaminant solution (see figure 

1 (f)).  
 
 
 
 
 

 
3 Ketchup is a ‘soft solid’ made from a suspension of pulverized 
tomato solids in liquid [35]. 
4 Soil is a solid mixture composed of minerals, organic matter, 
living organisms, gases and water [36]. 
5 Mayonnaise is a semi-solid oil in water emulsion made of 
vegetable oil, vinegar, egg yolk (emulsifier), salt, and sugar [37] 
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Figure 1: (a) dry samples; (b) wet samples; (c) samples with labels; 

(d)samples contaminated with a solution of mayonnaise and soil; (e) samples 

contaminated with a solution of ketchup and soil; (f) samples contaminated 
with a solution of ketchup, mayonnaise, and soil. 

 

The sorting system 
The multiplexed NIR spectrometer system used in this study 

was developed and manufactured by LLA Instruments. It is based 
on a system that first acquires a multispectral image of the material 
on the belt, and further evaluates the image to real-time 
classification data visualized in the software. The system allowed 
sampling within the spectral range of 1360nm - 1940nm. The 
system was employed to detect the behavior of chemical bonds in a 
polymer to photons from a lighting source. Each behavior is useful 
to identify the functional group of chemical bonds present in 
polymers. Also, each polymer type has unique functional groups  
that are used to identify the polymer [24]. 

The complete system was made up of both hardware and 
software. The hardware consisted of the transport unit, illumination 
unit, detection and spectral acquisition unit, and ejection unit as 
described below, while the software processed the image, and its 
operation is described in the calibration results section of this 
paper. 

The transport unit incorporated a black-colored conveyor belt 
with a width and length of 1.45m x 3.0m, respectively (see figure 2 

(a)). It is fitted with a single phase 1HP AC induction motor to 
deliver a speed of 3m/s. However, the measuring width in this 
study was 0.725m. 

The illumination unit consisted of double-sided reflectors 
equipped with 120W/230V halogen lamps with a 50cm vertical 
clearance from the conveyor-belt (see figure 2 (d)). 

The detection unit utilized several fibre-optic probes. The 
probes were arranged in a line at a pitch of 20mm (see figure 2 (c)) 
The probes were connected via optical fibre cables to a 64 track 
optical multiplexer imaging the fibre channels at a scan rate of 
50Hz onto the entrance slit of the NIR Spectrometer (KUSTA 
1.9MPL-24V) (see figure 4). The spectrometer consisted of a 
spectrograph with high spectral resolution of 4nm/pixel, and a 
linear sensor InGaAs camera. The camera had an integrated 16bit 
RGB sensor which was used for color detection and object 
positioning which was relevant for sample identification and 
ejection. The images presented in this study were acquired with a 
scan rate of 50Hz, spectral resolution of just below 8nm and a 
dispersion per pixel of 4nm. Additionally, 32 probe scanners were 
used to detect images in this study, hence, the conveyor-belt 
measuring width utilized was 725mm (see figure 2 (a)). 

The ejection unit consisted of a pneumatic device that was 
attached to the end of the conveyor belt (see figure 2 (b)). It was 
positioned to blow identified samples (ejected samples) upwards 
into an ejected box, while the rejected samples naturally rolled into 
the rejected box.  
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Figure 2: (a) transport unit; (b) ejection unit; (c) Complete diagram of the 
sorting system (front elevation); (d) cropped diagram showing the illumination 
unit and probe scanners. 

 
The schematic of the information flow for the sorting system 

is illustrated in figure 3 (a) while the information flow for the 
spectrometer is represented in figure 3 (b) [25]. 

 

 
 

Figure 3: Schematic diagram of the NIR spectrometer used for identification 
(source: [26]). 

 

Methodology 
Near-infrared imaging is based on the principle that a material 

has a unique spectral signature, also known as a spectral 
fingerprint. The differences in the reflection, scatter, and 
absorption of the electromagnetic waves can be classified in 
characteristic patterns at distinct wavelengths due to the measured 
object's chemical composition and physical structure [27]. An 
image can be analyzed using an individual or a combination of 
different wavelengths. Since a single spectrum does not contain 
sufficient information to represent the material and perform its 
classification thoroughly, the system combines multiple bands in 
one data set. The process of the imagery acquisition, system 
calibration, and image classification are explained in this section.  

 
Imagery acquisition 

The multiplexed NIR system combines two types of sensors, 
InGaAs and CMOS, to detect visible and near-infrared light. This 
configuration enables the detection unit to provide the target’s 
physical, geometrical characteristics (i.e., shape, size, position, and 
color), and the chemical composition through spectral analysis 
[27]. The schematic of the signal flow for the spectrometer is 
represented in figure 4. 

 
Figure 4: Schematic layout of KUSTAMPL system with integrated RGB sensor 
(source: [25]) 

 
The detection unit with 32 probe-scanners is placed above the 

conveyor belt covering its entire width. A double-sided halogen 
lamp is a primary source providing light on the plastic sample. 
This concept minimizes shadowing and increases detection 
accuracy [28]. The intensity of the radiation reflected by the 
surface of the measured object depends on the type of plastic. The 
reflected light is transmitted to the spectrometer using NIR fibre 
optics that can be included in a probe line or installed separately, 
many meters apart [28]. The spectrometer possesses only a single 
input slit and can handle only one measurement point at same time. 
Since the processing for material detection needs more 
information, an optical multiplex unit is required. A multiplexer is 
a hardware component on the transmitter side for switching the 
measured probes to the spectrometer’s entrance slit [28]. The task 
of the dichromatic mirror is to separate near-infrared light from the 
visible one. The spectrometer itself is integrated with a specially 
designed holographic concave grating and the infrared linear 
detector array [26]. The grating effect is to narrow down the 
spectrum, thus allowing a more precise determination of peak 
positions [29]. 

In this design, a one-dimensional linear NIR sensor is used to 
detect the reflected light spectrum. The row of pixels of the sensor 
represents the spectrum of one spatial point (optical track). Since 
the tracks are scanned at a rate of 50Hz (each) by the optical 
multiplexer, and the fibre optics probes are oriented in a line 
perpendicular to the conveyor belt’s moving direction, the material 
is scanned by the line [25]. This process is comparable to the push-
broom method, also known as line scanning imaging, this is also 
used in hyperspectral systems, where the camera records a whole 
row at once. Multiple lines are combined to reconstruct a three-
dimensional scene, called a hyperspectral cube. Two dimensions 
(X and Y) represent the spatial information, and the third 
dimension the spectral data. The multiplexed system instead scans 
the conveyor belt channel by channel using fibre-optics as 
transmitters. A minimal time delay between the measured points, 
especially the first and last one, is present due to the spectrometer's 
input signal limitation, making the combining process of the 
scanned data even more challenging. However, this time delays are 
rarely apparent in use for the identification of plastics from 
household waste. 

For the analyzing part, the analog-digital-unit (ADU) frame 
grabber converts the analog into a 16bit digital signal. Herewith, 
the physical information about the reflection’s intensity is 
represented by an integer number with a maximal possible value of 
162 transferred to the computer for further analyzing processes. 
The higher the ADU resolution, the more precise the measurement 
and, consequently, the detection is. Similar spectral signatures are 
associated with the same class. This allows defining a spectral 
library or set of reference spectra. Through the analysis of the 
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spectra, it is possible to recognize, and then classify, the different 
materials. Finally, due to characteristics in NIR-absorption bands 
the plastic type is recognized and given as an electronic code (EC). 
The EC, containing information of the sample’s position on the 
belt, is fed into the process control, which is linked to pneumatic 
ejectors [30]. 

This system, in contrast to many hyperspectral imaging 
systems on the market, offers a very short measuring time, a high 
sensitivity, and a high spectral resolution. Thus, the configuration 
is very well suited to conveyor belt systems, where the object is 
moving in respect to the imaging unit [30][26].  

 
 

Calibration 
The acquisition system does not register the material 

reflectance but rather the intensity of the reflected radiation that 
reaches the camera sensor with an energy amount sufficient to be 
detected [27]. Furthermore, these measured values are affected by 
many factors that can produce significant errors in the 
interpretation of the extracted information [31]. Therefore, 
accurate calibration is a fundamental part of the analyzing process 
to guarantee the correctness of the image classification.  

In practice, there are two standard methods of calibration 
[31]. In the first case, the calibration is based on the comparison of 
two additional images: a very bright image and a dark image 
representing the upper and lower limit of the intensity. The second 
method, which was implemented in this study, is related to the 
reference object visible in the analyzed sample. According to the 
spectra of high reflectance standard materials (~100% reflectance), 
the raw data will be transformed into the reflectance units. It is 
essential to isolate external conditions like ambiance dust, 
ambiance lighting, the conveyor belt color, and other factors [29]. 
This operation establishes the portion of the sensor that is useful in 
building the required spectral graph. The system was calibrated 
using a high-density fluoropolymer panel (Spectralon), assumed as 
Lambertian surface [11]. It is used as a white reference to retrieve 
spectral signatures on reflectance values. The Spectralon was 
placed on the conveyor belt at the measuring line and illuminated 
using the halogen lamps. The reference limits were then set [29]. 

According to the manufacturer LLA Instruments GmbH [28], 
automatic calibration is possible. The additional calibration unit 
comprises support arms, the calibration line, a motor, and the 
electronic control unit. The motor controls the position of the 
support arm and moves the calibration line into the calibration 
plane. After the process is finished, the arm is moved back into the 
initial position out of the image. The whole procedure takes only a 
few seconds.  

Dependent on the brightness of the sample material, three 
different calibration materials are available [30]:  

 
• bright - suitable for standard applications in paper and 

plastic recycling and bright (white) materials in general 
• medium – suitable for darker materials such as gray rock 
• dark – suitable for dark to black materials  
 

Classification calibration results 
In the overall classification results presented here, only 

coherent information points are explained while redundant 
information are set-aside. All the spectral diagrams are mean-
centered and normalized mathematically, therefore the intensity 
scale are interpreted as arbitrary. As a first step, a single point 

classification algorithm has been applied, which utilized a partial 
least squares discriminant analysis routine (PLS-DA) [32]. Two 
filters were involved in improving the classification points, 
namely: 
Object evaluation (image filter) which is a statistical deep-learning 
algorithm that utilizes K-Nearest Neighbor to predict the attribute 
(pixel-points represented by colored square boxes) of a point based 
on the attribute of the neighboring points. Further details of the 
concept is explained by [33]. 
Object-flip uses statistical methods to detect the attribute that 
possesses statistical majority point within an object. It then flips 
other points within the object to that attribute. 
 
 

Results and Discussions 
 
In this section, the calibration results and the measurements 

results are both presented. Additionally, statistical analysis of the 
measurement results is carried out and presented. A sample size of 
60 measurements per condition were carried out for the DRY, 
WET and LABELS conditions, whilst 30 measurements per 
condition were performed for the 3 levels of plastics surface 
contamination. (described in the Materials and Methods section 
above). All subgroups of PE (HDPE, LDPE and LLDPE) are 
classified as PE. 

The unique absorption peaks for each polymer type were 
found to be:  
PET spectral indices (nm) – 1420, 1660, 1910. 
PVC spectral indices (nm) – 1418, 1715, 1740. 
PE spectral indices (nm) – 1415, 1720, 1760. 
PP spectral indices (nm) – 1630, 1710, 1725. 
PS spectral indices (nm) – 1640, 1680, 1760. 
 

The results from this investigation are presented in two parts. 
The first part shows some classification calibration results for the 
different conditions simulated. Here, the representative spectral 
characteristics of selected polymers showing the effects of the 
contaminants are illustrated. Furthermore, the second part shows 
the statistical analysis of the classification results. Here, the 
accuracy and precision of the technique is computed based on the 
measurement results. 

 
Results for Dry samples 

Figure 5 (a) shows the visualization result of dry (clean) 
HDPE polymers. It illustrates the pixel-points formed from the 
unique absorption features of PE. The pixel-points (attribute) for 
all the objects were correctly classified as PE. This is demonstrated 
by the spectral graph of figure 5 (b). It compares the spectral 
features extracted from the points within the area of the black 
ellipse in figure 5 (a) with a reference spectrum of clean PE. 
                   

 

a PE 

belt 

PP 
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Figure 5: (a) Visualization result for HDPE samples; (b) Spectral graph 
showing points within the ellipse in figure 5 (a). 

 
It is already evident here that all the absorption features of the 

HDPE samples match with the reference spectrum from the 
training set. Hence, there was no need to apply a filter to improve 
identification. Most of the samples in the DRY condition showed 
similar matching features when compared with their training sets. 
However, multi-layered, and composite materials in this condition 
required filter to improve their classification, this is illustrated in 
figures 6 (a – c).  

 

 
 

 
 

 
 
 
 

Figure 6: (a) Single point classification results of mixed dry samples; (b) 
classification results after applying object evaluation filter; (c) comparison 
spectra of points within ellipse in figure 6 (a) with reference spectra of dry PE 
and PET samples. 

 
The red curves in figure (6 (c)) showing points within the area in 
the ellipse of figure (6 (a)), completely matches neither of the 
reference spectrum of PET nor PE. However, it shares features of 
PET at 1420 nm and 1660 nm, it also has corresponding features of 
PE at 1660 nm, 1720 nm, and 1760 nm. Consequently, the object is 
classified as a composite material made of PET and PE. The 
multilayered samples showed strong interference effects which 
disturbed the classification. It was therefore represented by multi-
attributes shown by the differently colored pixel points in figure (6 
(a)). An object evaluation filter was utilized to improve the pixel 
points for the objects and the results are displayed in figure (6 (b)).  
 
Results for wet samples 

Figure (7 (a)) shows some HDPE samples that wetted with 
water, some of the samples was partially filled with water. The 
classification results are shown in figure (7 (b)). It indicates that 
the although the influence of water molecules is strong, (evident in 
the missing pixel-points in some of the objects as shown by the 
arrow labeled ‘Y’ in figure 7 (b)), it does not affect the 
classification of the polymers. This is demonstrated by the spectral 
graph in figure 7 (d). The spectra of some points in the one of the 
WET HDPE sample are also illustrated. The points represented, 
are highlighted by the red ellipse in figure (7 (a)).  
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Figure 7: (a) Picture of wet HDPE samples on conveyor belt; (b) single point 
classification results of samples in figure 7 (a); (c) classification results after 
applying object evaluation; (d) comparison of reference PE spectra with 
spectra of points within red ellipse in figure 7 (b). 

 
The red curves show the absorption bands of water, 1430 nm 

is the medium absorption band while 1920 nm is the strong 
absorption band. This influence of water does not affect the 
identification of the polymer as the water mostly absorbs the 
radiation in the 1st overtone. The fundamental mode ROIs of PE 
clearly matches with the reference spectra as indicated at 1720 nm, 
and 1760 nm. After applying an object classification filter, the 
missing pixel-points were all filled as shown in fig. 7 (c) and the 
objects were all correctly classified.  

 
Results for samples with labels 

Figure 8 (a) displays some of the samples with labels. Most 
samples with labels are multilayered (the labels are made from 
different polymer types). The effect of this is evident in the 
classification result shown in fig. 8 (b), which illustrates mixed 
pixel-point attributes (colors). This indicates the heterogeneity in 
the spectral features. However, the filters perform a major role in 
the identification of polymers in this condition. Figure 8 (c) shows 
improvements in the pixel-points after applying object-flip filter. 
All other objects were correctly classified after using the filter 
except one object which was wrongly classified as paper. 
However, this could be corrected if the ‘PAPER’ classification 
type is removed from the types of polymers to be analyzed in the 
classification tree.  

 

                                   
 

  
 
Figure 8: (a) Pictures of PP samples with production-labels on conveyor belt; 
(b) single point classification results of samples in figure 8 (a); (c) classification 
results after applying object-flip filter. 

 
Figures 9 (a - d) shows the results of analyzing PP in this 

condition. Here there was no misclassification as the labels on the 
polymer had no influence on the identification. This is illustrated 
in the comparison spectral graph of fig. 9 (d). Which shows that all 
the absorption peaks from the objects matched those from the 
reference PP spectrum. 

 

 
 

  
 

 
 
 
Figure 9: (a)Picture of PP samples with labels; (b) single point classification 
results of samples in figure 9 (a); (c) classification results after applying image 

filter; (d) comparison spectra of points within red ellipses in figure 9 (b) with 
reference PP spectrum. 
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Results for contaminated samples 
Samples contaminated with a mixture of mayonnaise and soil: 

The results as presented, are some LLDPE samples that were 
contaminated with a mixture of mayonnaise and soil as illustrated 
in figures 10 (a -c). The initial classification results of LLDPE 
samples in this condition (as shown in fig. 10 (b)), signifies that 
most of the pixel-points were displayed as TETRA (green-colored 
pixel points). TETRA is a classification type, and it is a composite 
material made of PET and PE. Due to insufficient training sets of 
LLDPE in the chemometric library. Most of the features of the 
contaminated samples did not completely match with the spectra of 
PE (lemon-colored pixel points). Some points in the sample spectra 
were blurred out by the effect of the contaminant. However, it 
shared some unique features with TETRA. Consequently, some 
pixel-points were represented as TETRA as shown in fig. 10 (b). 

After applying the two filters, some objects classification 
results were flipped to TETRA as shown in fig. 10 (c). Subsequent 
classification results of LLDPE improved significantly after adding 
more training sets to the library. This is evident in the total 
classification result in fig. 12(f). 

 

 

  
Figure 10: (a) pictures of some LLDPE samples contaminated with 
mayonnaise and soil; (b) single point classification results of samples in figure 
10 (a); classification results after applying object filter. 

 
Results for samples contaminated with a mixture of 

mayonnaise, ketchup, and soil: 
Analysis of samples in this condition is illustrated in figures 

11 (a – d). Few of the polymers had thick layers of contaminant on 
them as illustrated by the arrows labeled ‘Z’ in fig. 11 (a). This 
was to make more visible the effect of the contaminant on the 
classification (as this would be a prevalent condition if plastics 
wastes are mixed with organic wastes). The influence of the 
contaminant is obvious in the classification result shown in fig. 11 
(b). It shows that some of the pixel points were represented as PVC 
(yellow-colored). The comparison spectral graph showing these 
effects is presented in fig. 11 (d). The points presented are 
highlighted by the blue ellipses in fig. 11 (b) and compared with 
the red ellipse in the same figure. It shows that the unique feature 
of PP at 1710 nm and 1725 nm (which is the 1st overtone of the C-
H bond) has been completely blurred-out by the fat absorption in 
the mayonnaise. Thus, the feature now shares similarities with that 
of PVC (represented by the green curves). Hence, some pixel 
points of objects in the classification result are the attributes of 
PVC (yellow-colored pixel points) (shown in figure 11 b)). 

Classification results for most of the PP samples were 
improved after applying object-flip filter as shown in figure 11 (c). 
However, there were few misclassifications of some objects. 
Overall, the results were promising. 

 
 

  

 
 
 
 
 
 
Figure 11: (a)Picture of contaminated PP samples; (b) single point 
classification results of samples in figure 11 (a); (c) classification results after 
applying object-flip filter; (d) comparison spectra of points within red and blue 
ellipses in figure 11 (b) with reference PVC spectra. 

 

Statistics analysis of classification results. 
The results for all the measurements carried out in the 

different conditions are presented in figures 12(a - f). The lowest 
misclassifications were obtained in the dry condition (see fig. 12 

(a)) while the highest misclassifications were obtained when the 
samples were contaminated with a mixture of ketchup, 
mayonnaise, and soil (see fig. 12 (f)). 
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Figures 12 (a - f): Classification results of different polymers in six separate 
conditions. 
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Table 3: Precision boundary values (%) for polymers in different conditions with a 95% confidence level. 

 

Condition Polymer type   
PET PS PVC HDPE LDPE LLDPE PP 

Dry 0 0 0 0 0 0 0 
Wet 83.0 

-  
97.8 

89.9 
-  

99.9 

89.9 
-        

99.9 

0 87.5 
- 

99.4 

87.5 
- 

99.4 

87.5 
-  

99.4 
Sleeve-label 85.2 

-  
98.7 

0 89.9 
-  

99.9 

0 89.9 
-  

99.9 

83.0 
-  

97.8 

0 

Contaminated with 
ketchup + soil 

0 76.5 
-  

98.8 

80.9 
-  

99.8 

0 80.9 
-  

99.8 

72.3 
-  

97.4 

80.9 
-  

99.8 
Contaminated with 
mayonnaise + soil 

80.9 
-  

99.8 

76.5 
-  

98.8 

80.9 
-  

99.8 

80.9 
-  

99.8 

80.9 
-  

99.8 

72.3 
-  

97.4 

80.9 
- 

99.8 
Contaminated with 
ketchup + mayonnaise + 
soil 

0 76.5 
-  

98.8 

80.9 
-  

99.8 

0 76.5 
- 

98.8 

68.4 
-  

95.6 

72.3 
-  

97.4 

e 

d 

c f 
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a 

143-10
IS&T International Symposium on Electronic Imaging 2021

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2021



 

 

The statistical analysis of results computed using 
R-program.  

The statistical analysis of the calibration results was computed 
using proportion testing (prop.test). It was carried out with the R-
program. Prop.test is used to determine the error margin of the 
classification results. It has several potentials and can compute 
several arguments. Table 3 displays the precision boundaries (%) 
computed for the classification results with a 95% confidence 
interval. 

The error margin was further calculated using equation 1 
below.  

Error margin =  
highest boundary of CI - lowest boundary of CI 

𝟐
 (1) 

Where CI is the confidence interval, the higher value in each 
measurement in the table represents the highest boundary while the 
lower value represents the lowest boundary. Table 3 shows that the 
widest error margin was recorded by LLDPE in the condition 
(contaminated with a mixture of ketchup, mayonnaise, and soil). 
This is presumably due to the sample size and the number of 
misclassifications recorded by LLDPE in the stated condition.  
Furthermore, the error margins were calculated, and the results 
were used to compute the precision of the technique in the 
classification of polymers in different conditions. The results are 
reported in table 4. Acronyms used in the table are: K-ketchup, M-
mayonnaise, S-soil. 
 
Table 4: Precision results (%) of NIR spectroscopy on polymer 
identification based on data analyzed in this study (with a 95% 
confidence level). 

Condition Polymer type  
PET PS PVC HDP

E 
LDP
E 

LLDP
E 

PP 

Dry 100.
0 

100.
0 

100.
0 

100.
0 

100.
0 

100.
0 

100.
0 

Wet 90.4 
± 
7.4 

94.9 
± 
5.0 

94.9 
± 
5.0 

100.
0 

93.4 
± 
6.0 

93.4 
±  
6.0 

93.4 
± 
6.0 

Sleeve-
label 

91.9 
± 
6.8  

100.
0 

94.9 
± 
5.0 

100.
0 

94.9 
± 
5.0 

90.4 
±  
7.4 

100.
0 

Contaminat
ed with 
K+S 

100.
0 

87.7 
± 
11.2 

90.4 
± 
9.4 

100.
0 

90.4 
± 
9.4 

84.9 
± 
12.5 

90.4 
± 
9.4 

Contaminat
ed with 
M+S 

90.4 
± 
9.4 

87.7 
± 
11.2 

90.4 
± 
9.4 

90.4 
± 
9.4 

90.4 
± 
9.4 

84.9 
± 
12.5 

90.4 
± 
9.4 

Contaminat
ed with 
K+M+S 

100.
0 

87.7 
± 
11.2 

90.4 
± 
9.4 

100.
0 

87.7 
± 
11.2 

82% 
± 
13.6 

84.9 
± 
12.5 

 
The accuracy values are the numbers preceding the ± sign while 
the error margins are the subsequent values (where the accuracy is 
the percentage of correct classification of polymers into their 
proper category). The highest precision as expected is recorded in 
the dry condition. Correspondingly, the lowest precision is 
recorded when the surfaces of the samples are contaminated in a 
mixture of ketchup, mayonnaise, and soil. Additionally, HDPE 
samples have the highest probability to be correctly identified in all 
conditions against other polymer types considered in this study. 
Conversely, the lowest average precision is recorded by LLDPE 
samples.  

Accuracy assessment of NIR spectroscopy in the 
identification of polyolefins have also been computed. Polyolefins 
consists of all HDPE, LDPE, LLDPE and PP samples. The 
accuracy results are presented in figure 13 while the precision 
results showing the error margins (%) are illustrated in table 5. It 
shows that the highest accuracy was recorded when polyolefins are 
separated in the dry condition, while samples contaminated with a 
mixture of ketchup + mayonnaise + soil, conversely, have the 
lowest precision. 

 

 
Figure 13: Accuracy of separation of polyolefins with a confidence level of 
95%. 

 
Table 5: Precision assessment of NIR spectroscopy in the 
separation of polyolefins (with a 95% confidence level). 

Conditions  Precision 

Dry 100.0% 
Wet 97.5% ± 2.0% 
Sleeve-labels 97.5% ± 2.0% 
Contaminated with ketchup + soil 94.3% ± 4.2% 
Contaminated with mayonnaise + soil 94.3% ± 4.2% 
Contaminated with ketchup + mayonnaise 

+ soil 

91.9% ± 5.0% 

 
 

Conclusion 
 
The results in this study demonstrates that NIR spectroscopy 

is a suitable technique that could reliably identify, and 
subsequently, enable the separation of post-consumer PET, PS, 
PVC, HDPE, LDPE, LLDPE and PP polymers in different 
conditions. However, accurate classification depends on general 
factors such as the effectivity of classification filter, the spatial 
resolution of the spectrometer, lighting conditions, and even the 
competence of the operator. This study, additionally, shows that 
plastics can be separated with a high precision without sample 
preparation (such as washing and cleaning of waste plastics). The 
spectral range considered is 1369 nm - 1930 nm.  

This investigation reveals that the highest precision is 
recorded when the samples are in the DRY condition, while 
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samples contaminated with a mixture of ketchup, mayonnaise and 
soil have the least precision. Unique absorption peaks for different 
polymers were found to be: PET – 1420 nm, 1660 nm, and 1910 
nm; PVC – 1418 nm, 1715 nm, and 1740 nm; PE – 1415 nm, 1720 
nm, and 1760nm; PP – 1630 nm, 1710 nm, and 1725 nm; PS – 
1640 nm, 1680 nm, and 1760nm. Furthermore, it is observed that 
samples of the same polymer (irrespective of their sizes and colors 
(except black)), exhibits similar responses as disclosed by their 
spectral signatures.  

Furthermore, this study shows that polyolefins can be 
separated with high precision. Polyolefins in the dry condition are 
identified with 100% precision while polyolefin samples in the wet 
and sleeve conditions are identified with high precision values of 
97.5% ± 2.0%. Lastly, contaminated polyolefins are identified with 
precision values ranging from 94.3% ± 4.2% to 91.9% ± 5.0%. The 
results here indicate that NIR spectroscopy is effective in the 
identification of waste plastics polyolefins in different surface 
conditions. This investigation also seeks to stimulate the 
development of waste plastics separation systems in developing 
regions. Furthermore, it would facilitate each region to plan and 
develop a waste plastics management system based on their waste 
composition and energy requirement. 

It is necessary to clarify that the sample size considered in this 
study may not be statistically sufficient. However, this is based on 
the scope and scale of implementation. Based on the calibration 
assessment conducted in this study, it indicates that the accuracy of 
identification would improve as more training sets from diverse 
sources (of post-consumer plastics) are introduced. 
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