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Abstract 

In operating rooms, excessive cognitive stress can impede the 

performance of a surgeon, while low engagement can lead to 

unavoidable mistakes due to complacency. As a consequence, there 

is a strong desire in the surgical community to be able to monitor 

and quantify the cognitive stress of a surgeon while performing 

surgical procedures. Quantitative cognitive-load-based feedback 

can also provide valuable insights during surgical training to 

optimize training efficiency and effectiveness. Various 

physiological measures have been evaluated for quantifying 

cognitive stress for different mental challenges. In this paper, we 

present a study using the cognitive stress measured by the task 

evoked pupillary response extracted from the time series eye-

tracking measurements to predict task difficulties in a virtual 

reality based robotic surgery training environment. In particular, 

we proposed a differential-task-difficulty scale, utilized a 

comprehensive feature extraction approach, and implemented a 

multitask learning framework and compared the regression 

accuracy between the conventional single-task-based and three 

multitask approaches across subjects. 

I. Introduction  
Cognitive stress refers to the load on working memory as 

experienced by subjects when conducting cognitive tasks. It is a 

critical aspect that can affect human behavior and performance 

when carrying out complex mission-critical tasks such as aviation 

and military command and control [1]. It is well known that 

excessive cognitive load can substantially impede the performance 

leading to human errors. On the other hand, too little cognitive 

load can make a person feel complacent, which is error prone as 

well. In the past, attention in the evaluation of a surgeon’s 

performance has been focused on the outcomes and skill levels, 

i.e., total task time, instrument pathlength, smoothness and 

completeness. Studying cognitive stress during surgical procedures 

has just started to attract attention in the medical community.  

A great number of techniques for quantifying cognitive load 

have been investigated for various tasks. Chen et al. [2] 

summarized the techniques into four primary methods, i.e., 

subjective surveys, performance-based, physiological-based, and 

behavior-based approaches. Zhou et al. [3] provided an analysis 

and comparisons of those methods. In surgery, wireless sensors 

have made physiological measures, such as heart rate variability 

(HRV), galvanic skin response (GSR), electroencephalogram 

(EEG) based brain activity measures and eye activity measures, 

more feasible in the operating room to provide objective 

measurements of surgeons’ cognitive state with minimum 

inference to the tasks at hand [4]-[6]. In this paper, our study is 

focused on the task evoked pupillary responses (TEPR), i.e., the 

linear increase in pupil dilation, to quantify a subject’s cognitive 

stress while performing certain procedures. Studies have shown 

that eye-tracking metrics have strong associations with the 

perceived memory load [7], [8]. In the medical field [9], the 

change of pupil diameter as an objective measure of cognitive load 

has been used in evaluating novices and trained physicians as they 

answered clinical related questions. Recently, several studies have 

used gaze-related metrics to compare the differences in cognitive 

load to the difficulties in surgical tasks [6], [10]. In [10], various 

statistical tests such as Kruskal–Wallis test, Dunn’s test, and 

Spearman’s test were utilized to compare performance differences 

among different tasks. However, it is unfeasible to rely on those 

statistical tests continuous measurements. Wu et al. [6] used the 

Naïve Bayes algorithm to classify the perceived cognitive loads 

into either high or low load based on the total NASA-Task-Load-

Index scores. They employed nine features including two 

demographic features and seven eye-tracking features (left/right 

pupil diameter mean, left/right pupil diameter standard deviation, 

gaze entropy, fixation duration, and percent-of-eyelid-closure) and 

achieved a reasonably good classification accuracy among the 

tasks. However, it is not clear whether the cognitive factors were 

the most relevant features to the classification results. Their study 

also indicated the weakness in using pupil-diameter mean when 

predicting fine-grained task difficulties such as the three-level 

Suture Sponge task.  

In this paper, instead of extracting a handful hand-crafted 

time-series features, e.g., mean, standard deviation, entropy, we 

employed a multitask approach along with the method that extracts 

a comprehensive set of features [11] for predicting task difficulties 

based on the TEPR of a subject while performing a set of exercises 

on the da Vinci Surgical System (dVSS). The contributions of this 

paper include: 1) utilized a comprehensive feature extraction and 

selection step; 2) proposed a differential-task-difficulty scale to 

convert the subjective ratings to objective metrics; and 3) 

implemented a multitask learning framework to utilize the 

relatedness across subjects to improve the performance. The 

remaining paper is organized as following: Section II briefly 

introduces the methods used in this study; Section III describes the 

experimental set up and data collection; Section IV discusses the 

results; and Section V concludes our work and discusses a few 

future directions. 

II. Method: TSFresh & Multitask Learning 
With the rise of Internet of Things, methods for time-series 

analysis become increasingly important for many applications. 

Traditional approaches relying on extracting a few basic features 

such as min, max, mean, etc. are no longer sufficient. However, 

choosing the right features heavily depends on experts’ knowledge. 

The process often becomes a blind search resulting in a set of 

features that are still not the most relevant representation of the 

task of interest. Exploring additional features or identifying 

relevant features is essential to achieve the desired performance. 

For TEPR-based analysis, even though many features have been 

employed such as the mean, range, number of peaks of TEPR, etc., 
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for evaluating cognitive stress, there is no consensus of their 

accuracy or effectiveness. In our research, instead of preselecting a 

handful features, we utilize the TSFresh, a comprehensive feature 

extraction method [11] followed by a feature selection step [12].  

In [13], Fulcher and Jones built a comprehensive collection of 

time series features including more than 9000 features from 1000 

different feature-generating algorithms used in various fields such 

as medicine, finance, industrial applications and so on. The 

proposed algorithm and the framework to extract the features had 

subsequently been implemented in a Python package called 

TSFresh [11], which we utilized in this study to extract features 

from the continuous eye-tracking of each exercise. Those features 

followed by a feature selection step were then used to predict the 

task difficulty levels through a multitask learning framework.  

Multitask learning seeks to improve the generalizability of a 

learning task by exploiting the relations (structure) among 

different, but related tasks. In multitask learning, the related tasks 

are learnt simultaneously by extracting and utilizing appropriate 

shared information across tasks. Learning multiple related tasks 

simultaneously and effectively increases the sample size for each 

task and improves the prediction performance, especially when the 

training sample size is small for each task. Multitask learning has 

demonstrated its successes in many fields such as the disease 

progression prediction at each time point as shown in [14]. In 

multitask learning, task relatedness is introduced as a 

regularization term that can be written in a general form as:  

min
𝑾

(ℒ(𝑾) + Ω(𝑾)),     (1) 

where W is the parameter to be estimated from the training 

samples, ℒ(𝑾) is the empirical loss on the training set and Ω(W) 

is the regularization term that encodes the task relatedness. Various 

forms of Ω(W) have been explored as summarized in [15]. In this 

study, we evaluated three different forms of the regularization 

term, (i) the trace-norm; (ii) the extension of the Lasso regularized 

method to multitask learning; and (iii) the robust method.  

The trace-norm method tries to capture the multitask 

relatedness by constraining the models from different tasks to 

share a low dimensional subspace, i.e., W is of low rank, and to 

make the problem solvable, the rank function on W can be further 

reduced to a trace norm, and if we take the loss as a least-square 

loss between the inputs and outputs, Equation (1) can be rewritten 

as: 

min
𝑊

∑ ‖𝑾𝑖
𝑇𝑿𝑖 − 𝒀𝑖‖

𝐹

2𝑡
𝑖=1 + 𝜆‖𝑾‖∗ ,   (2) 

where Xi denotes the input matrix of the ith task, Yi denotes the 

corresponding output(s), t is the total number of tasks, Wi is the 

model for task i, and is a regularization parameter controls the 

rank of W [15].  

The extension of the Lasso method in multitask learning is to 

share the parameter controlling the sparsity among all different 

tasks as written in: 

min
𝑊

∑ ‖𝑾𝑖
𝑇𝑿𝑖 − 𝒀𝑖‖

𝐹

2𝑡
𝑖=1 + 𝜌1‖𝑾‖1 + 𝜌𝐿2‖𝑾‖𝐹

2 ,  (3) 

where Xi, Yi, Wi, i, and t follow the same definition in (2), the 
regularization parameter ρ1 controls sparsity, and the optional ρL2 

regularization parameter controls the ℓ1-norm penalty. 

Most multi-task learning formulations, such as (2) and (3), 

assume that all tasks are relevant, which is however not the case in 

many real-world applications. Robust multitask learning (RMTL) 

was proposed aiming at identifying irrelevant (outlier) tasks when 

learning from multiple tasks. One such method proposed by [16] 

formulated the RMTL by decomposing the W in (1) into two 

components as written in: 

min
𝑊

∑ ‖𝑾𝑖
𝑇𝑿𝑖 − 𝒀𝑖‖

𝐹

2𝑡
𝑖=1 + 𝜌1‖𝑳‖∗ + 𝜌2‖𝑺‖2,  (4) 

subject to W = L + S, where Xi, Yi, Wi, i, and t follow the same 

definition in (2), the introduced regularization parameter ρ1 

controls the low rank regularization on the structure L similar to 

(1) and the ρ2 regularization parameter controls the penalty on S. 

The low rank structure L in (4) captures task-relatedness and the 

group-sparse structure S detects outliers, i.e., if a task is not an 

outlier, then it falls into the low rank structure L with its 

corresponding column in S being a zero vector; if not, then the S 

matrix has non-zero entries at the corresponding column. Although 

many other formulism such as the one discussed in [17] have also 

been proposed, in this paper, we evaluated the three approaches 

defined in (2)-(4). It is noted that the choice of the regularization 

parameters can be learned through a small-training dataset during 

model training. 

III. Experiments 
Participants: This study was approved by the university’s 

institutional review board. Our dataset consists of five subjects 

from three different experience levels, i.e., two expert surgeons 

(Expert-1 and Expert-2), two novices with no prior experience 

(Untrained-1 and Untrained-2) and one novice (Trained-1) with 

prior exposure of the instrument/exercise before the study. We had 

to drop one trained subject due to too few exercises he/she was 

able to accomplish. 

Robotic System and Tasks: The da Vinci Skills Simulator 

(dVSS) was used in our experiments. Among the available 

simulated exercises, we selected the Suture Sponge exercise, in 

which the subject is required to thread a curved needle through a 

specific pair of entry and exit holes on a piece of sponge. There are 

multiple steps in the exercise including, Needle Handling, Needle 

Positioning, Needle Entry, Needle Curving, Needle Removal and  

Needle Exit.  As it was pointed out in [6], these steps impose 

different visual, cognitive, and manual demands of the subject by 

involving many skills such as camera control, endowrist 

manipulation, and needle control and driving. Particularly, 

depending on the relative position and distance between the entry 

and exit holes on the sponge, there are 36 different exercises with 

various difficulty levels. Figure 1 shows four examples of the 

Suture Sponge exercises with different entry (yellow dots) and exit 

(black dots) positions relative to the sponge edge and each other.  

For example, comparing A with B, the distance between the entry 

and exit holes are different and the task to suture through shorter 

distance is easier than the one requires longer distance.  Comparing 

A and B with C and D, it is noticed that they require different 

front-and-back hand operation, i.e., entry on top or exit on top. In 

general, the back-hand operation is much harder than the front-

hand operation.  
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Data Collection: A wearable eye-tracking system, Pupil Core 

(Pupil Labs©, Berlin, Germany), was used to binocularly sample 

eye movements at 60 Hz. A camera located in the middle of the 

glass frame (outer side) records the scene while sensors mounted in 

the inner side of the glass frame capture two videos of the eyes. 

Recordings were then annotated using Pupil Player [18] from Pupil 

Labs©. TEPR (i.e., pupil diameter) was calculated from the raw 

data eye-tracking measurements. 

   

A      B 

   

C      D 

Figure 1: Examples of the Suture Sponge exercise 

Exercise Difficulty Labeling: As aforementioned, the 36 

exercises vary from each other in terms of the relative locations of 

the entry-exit holes on the sponge, distance traveled within the 

sponge and front-or-back hand manipulation required. The naming 

scheme of the suture exercises uses four letters, where each letter 

represents one corresponding attribute describing the exercise as 

shown in Fig. 2.  The difficulty level of each exercise was rated by 

a panel of five expert surgeons on a scale of one to five. We then 

used the average of the five ratings as the final rating of each 

exercise as shown in Fig. 3 (labelled using the four-letter-labelling 

scheme in Fig. 2). We noticed that, even though the orders of the 

ratings were mostly consistent among the raters, the exact rating of 

each exercise was not the same across all raters.  It was realized 

that this subjective rating scheme could introduce labelling noise 

into the training and testing and the proposed differential scale 

could reduce this noise by using the relative scales between 

exercises.   

 

Figure 2: Naming scheme based on suture attributes 

For each exercise, one of the suture exercises listed in Fig. 3 

was selected randomly by the simulator (note that not all subjects 

performed the same number or same type of suture exercises). 

Overall, the two experts accomplished 80 exercises each. For the 

novices, the Untrained-1, Untrained-2, and Trained-1 

accomplished 50, 90, and 120 exercises, respectively. 

 

Figure 3: Difficulty ratings of the exercise 

Experiments: Because the differences in the experience and 

skill levels between the experts and novices, it is realized that the 

difficulty levels rated by the experts in Fig. 3 are subjective and 

might not be able to fully reflect what the novices could experience 

in performing the same exercise. Therefore, to use these ratings 

directly for training machine learning models to predict the task 

difficulties experienced by different subjects is not practical. On 

the other hand, we observe that the difference between a hard and 

an easy exercise could be felt similarly by both the experts and 

novices. Based on this observation, we proposed a differential-

difficulty scale, which is a score difference between any two 

exercises performed by the same subject. For example, the 

absolute scales for exercises LSLA and LSSA are 3.6 and 1.6, 

respectively, from Fig. 3. Thus, the differential scale is 2.0 when 

they are performed by the same subject. This differential-difficulty 

scale takes out the subjectivity in the absolute rating given by a 

few experts. It not only allows us to account for the skill and 

mental differences between subjects, but also significantly 

increases the number of training and testing samples through 

randomly pairing of exercises. Furthermore, because each subject 

could experience different cognitive challenges depending on their 

skill level and mental capacity, training a single model to predict 

the exercise difficulties felt by each subject using not only the 

subject’s, but also other’s cognitive response does not seem to 

make logical sense.  

In this paper, we implemented a multitask learning approach 

where each task in the multitask framework is defined as to a 

regression task to predict the differential scale for each subject. 

Although each subject is different in their cognitive response to the 

exercises, nevertheless, they faced the same mental challenges 

from practicing on the same set of exercises. Therefore, we believe 

that the multiple tasks defined in our multitask regression model 

are related to each other and the relatedness could help with the 

prediction by leveraging the information across subjects. When 

subject-specific regression tasks are learnt simultaneously, the 

method not only effectively increases the sample size for each 

individual task (especially when a subject who completed fewer 

exercises), but also potentially improves the prediction 

performance as we will show in the next section. Several 

experiments have been performed using the differential-difficulty 
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scale: 1) comparison of the multitask methods with the Support 

Vector Machine regression model (SVR) method; 2) across 

different number of features; 3) across different number of training 

samples. 

 

IV. Results 
In our experiment, 713 features were initially extracted using 

TSFresh from the time series of the pupil diameter, i.e., TEPR of 

each subject. The number of features were than reduced using [12] 

to different levels. Feature reduction was performed using data 

from all subjects. One challenge when comparing TEPR across 

subjects or subject under different situations is the baseline 

calibration as pupil dilation can change significantly from subject-

to-subject or even the same subject under different illumination 

conditions. Because each suture exercise consists of multiple steps, 

i.e., needle positioning, entering, pulling and exiting, we used the 

mean diameter during needle positioning as our baseline since it is 

a common step across all subjects/exercises under the same 

illumination from the simulator and moreover, the stress level 

could be similar as the subjects are expected to be mentally getting 

ready for the exercise.  

To implement the differential scale, we randomly paired two 

exercises for each subject by concatenating their features and the 

rating difference between the two exercises as the group truth 

differential scale. This pairing also allowed us to increase the 

sample size by a factor of 10. Because of the different experience 

levels across subjects, we avoided creating the differential scales 

across subjects.   

We evaluated the performance based on two training sizes, 

70% and 50%, and the results were averaged across five runs with 

random split of 70-30 and 50-50, respectively. In our study, we 

used the R2 from fitting a linear regression model between the 

actual difficulty levels and the predicted difficulty levels to 

evaluate our model accuracy of the predictions. The R2 results 

using TEPR with different number of features using the 

differential-difficulty scale are summarized in Tables I and II, 

where the columns correspond to different learning models, i.e., 

the single task SVR and the multitask methods, Trace-Norm (2), 

Lasso (3), and Robust (4), respectively. The rows correspond to the 

subjects. Table I shows that, even though the performances using 

the multitask methods are on par with the SVR for four out of the 

five subjects, they outperformed SVR for Subject, Trained-1. 

TABLE I: R2 Results Using 112 TEPR Features 

70% SVR Trace-

Norm 

Lasso Robust 

Expert-1 0.986 1.000 0.982 0.99 

Expert-2 0.988 0.997 0.971 0.986 

Untrain-1 0.992 1.000 0.996 1.000 

Trained-1 0.693 0.836 0.787 0.824 

Untrain-2 0.988 1.000 0.985 0.994 

 

 

 

TABLE II: R2 Results Using 88 TEPR Features 

70% SVR Trace-

Norm 

Lasso Robust 

Expert-1 0.983 0.990 0.93 0.967 

Expert-2 0.964 0.977 0.901 0.955 

Untrain-1 0.99 1.000 0.976 0.998 

Trained-1 0.566 0.673 0.644 0.665 

Untrain-2 0.909 0.950 0.918 0.944 

 

The Lasso method performs worse than others (this might be 

due to the pre-feature selection we performed). From Table II, it is 

noted that the performances of Trained-1 and Untrained-2 dropped 

significantly with less features. This might be an indication that the 

best features for those two subjects might be different from the 

others. However, the multitask methods still outperformed SVR.  

TABLE III: R2 Results Using 112 TEPR Features with 50% 

Training Data 

50% SVR Trace-

Norm 

Lasso Robust 

Expert-1 0.965 0.965 0.955 0.954 

Expert-2 0.982 0.964 0.935 0.969 

Untrain-1 0.981 0.991 0.988 0.960 

Trained-1 0.638 0.735 0.715 0.756 

Untrain-2 0.983 0.989 0.956 0.985 

 

Table III shows the results using only 50% of training data, 

the multitask methods still performed better than SVR for Trained-

1 while the performances of other subjects were on par with SVR. 

Although Subject Trained-1 accomplished the largest number of 

exercises, using his/her TEPR, i.e., cognitive response to predict 

the task difficulties had the worst performance. The cause of this 

difference in prediction performance has not been well understood 

in this study and will need further investigation when we can have 

more subjects. 

V. Discussion and Conclusion 
In this paper, we proposed a multitask learning approach for 

exercise difficulty prediction based on TEPR in a simulated 

surgical setting. We proposed a differential scale that is shown to 

be more effective when evaluating cognitive-load-based 

performances across subjects with different experience and skill 

levels. Our experiments show that multitask learning can achieve 

high regression accuracy for challenging individual. Although the 

conventional wisdom believes that the cognitive stress might be 

experience-skill level dependent, it is noted that the cognitive 

stress can also depend on other hidden factors such as a person’s 

mental capability, health-status, or the specific types of exercises 

practices, etc. Even though our proposed differential difficulty 

scale was based on the same types of exercises in our study, in 

reality, when the same type procedures are not available, the scale 

can also be calculated against a standard set of procedures in 

surgery or surgical trainings. As a next step, we would like to 

extend this single modality multitask learning framework to 
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multimodal multitask learning to include other physiological 

measures such as GSV, HRV, and EEG. Another direction to 

explore is to extend the current multitask learning framework to 

multitask and multi-label in which we would also like to predict 

the skill level such as expert vs. novice. Furthermore, because the 

limitation of our current dataset, we were restricted to the 

traditional approaches. In the future, we would also like to expand 

the model to deep learning approaches.  
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