
 

Perceptually Optimized ABR Ladder Generation for Web Streaming 

Yuriy A. Reznik, Karl O. Lillevold, and Rahul Vanam; Brightcove, Inc.; Seattle, WA/USA 

Abstract 
We discuss the problem of the design of encoding profiles for 

web streaming. In this application, the video is normally embedded 

in a web page, and based on user preferences, e.g. browser stretch 

factor, full-screen mode, etc., the area that it occupies on the screen 

may be different. When multiple viewers tune to the same web page, 

this creates a distribution of possible player sizes. The key idea of 

this paper is to consider such distribution as input to the problem of 

the design of encoding profiles for web streaming. The objective is 

to maximize the average quality that can be experienced by a 

population of viewers. We define this problem mathematically, show 

that it belongs to a class of non-linear constrained optimization 

problems, and show how it can be solved practically. Examples of 

optimal profiles generated for different videos, networks, and player 

models are also provided. Provided results demonstrate the 

significance of accounting for player size distributions in the design 

of encoding profiles for web streaming. 

1. Introduction 
In Adaptive Bit-Rate (ABR) streaming systems [1, 2, 3], the 

content is typically encoded at several bitrates, and where each 

encoded stream (or rendition) incorporates random access points 

(e.g. I- or IDR-frames), allowing players to switch between them. 

During the playback, a player (or streaming client) monitors the rate 

at which encoded content is arriving. If such a rate becomes 

insufficient for continuous playback, the client switches to a lower 

bitrate stream. This prevents buffering. On the other hand, if the 

network rate becomes greater than the bitrate of the current stream, 

the client may switch to a higher one. This improves quality. Such 

an adaptation mechanism is now widely adopted, and incorporated 

in most modern streaming protocols, such as HLS [4], MPEG 

DASH [5], etc. 

The composition of characteristics of streams used for ABR 

streaming, such as their bitrates, resolutions, codec constraints, etc. 

is commonly called an encoding profile or a ladder. When first ABR 

streaming systems were deployed, the encoding profiles were very 

simple: they typically included 28k, 56k, and 128k streams, 

corresponding to connection speeds achievable by dial-up and ISDN 

modems [2]. When faster connections become available, the 

encoding profiles were extended to include a few higher-bitrate 

streams. Examples of typical for today’s practice profiles can be 

found in HLS deployment guidelines [6]. 

In recent years, it was also discovered that the performance of 

ABR streaming systems can be significantly improved by using 

dynamic ABR profile generators, producing encoding profiles 

customarily for each video asset, by considering rate-distortion 

characteristics specific to the content and/or properties of networks 

used for delivery. Such approaches have become known as “per-

title”, “content-aware encoding”, and “context-aware encoding” 

techniques [7-12]. 

However, when we consider web streaming, we notice another 

variable and related statistics, which apparently, have not yet been 

accounted for in ABR profile optimizations. This specific variable 

is the size of a video player window used to render the decoded video 

on the user’s screen.  

To explain the significance of this parameter, in Figure 1, we 

present the distribution of video player sizes and related playback 

statistics, collected by using the Brightcove analytics system [13] 

during the streaming of the US Open event, June 10-16, 2019. 

Distribution of video player sizes Encoding ladder used for streaming 

 

 

 # Codec Profile Resolution Framerate Bitrate  

1 H.264 Baseline 480x270 23.976 450 

2 H.264 Baseline 640x360 23.976 800 

3 H.264 Main 768x432 23.976 1000 

4 H.264 Main 1024x576 23.976 1500 

5 H.264 Main 1280x720 23.976 2100 

 

Rendition selection as a function of player size Rendition selection as a function of network bandwidth 

  

Figure 1. Playback statistics for streaming of US Open event, June 13, 2019, www.usopen.com 
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As shown in Figure 1, the distribution of player resolutions 

exhibits several highly distinct peaks, with 480p being the most 

pronounced. We also see that player sizes do have a significant 

impact on stream selection logic. E.g., from the bottom left plot, we 

see that 270p rendition was loaded most frequently when player 

window sizes were ~300 lines or less. Similarly, 720p rendition was 

loaded most frequently when player sizes were ~600 lines and 

beyond. From the bottom right plot, we further see that, as expected, 

clients also switch streams based on the available network 

bandwidth. However, in the high-bitrate regime, we notice that it is 

not the highest bitrate stream (720p, 210Kbps) that becomes used 

exclusively, but rather a particular mix of all renditions, apparently 

shaped by the distribution of player sizes. 

In other words, we see that player sizes affect the choices of 

streams delivered by the system. Additionally, and even more 

importantly, player sizes also affect the perception of the quality of 

videos rendered on the screen. Smaller videos are perceived as 

having lower quality.  This is well known from studies by Westerink 

and Roufs [15], Lund [14], Barten [16,17], and others [18-22]. 

These are significant effects, which ought to be accounted for in the 

analysis and optimization of web streaming systems.  

This paper is dedicated to the study of this topic. In Section 2, 

we offer definitions of all involved variables and models. In Section 

3, we derive an expression for the average quality delivered by the 

streaming system. In Section 4, we pose and study the problem of 

optimal design of encoding profiles. In Section 5, we present and 

analyze examples of optimal profiles generated. In Section 6, we 

draw conclusions. 

2. Definitions and Main Models 

2.1. Parameters of Encoded Videos. Ladders 
Hereafter, by letters 𝑊 and 𝐻 we will denote video width and 

height respectively, by 𝑅 we will denote the bitrate at which video 

is encoded, and by 𝐷 we will denote distortion introduced by the 

encoder in the encoding process. Distortion can be measured in 

PSNR, SSIM [23], or any other codec noise metric.  

When a given video sequence is encoded, this effectively 

produces a point (𝐻, 𝑅, 𝐷), describing a tradeoff between video 

resolution, bitrate, and distortion level achieved. When the same 

video is encoded with several different target resolutions and 

bitrates, this effectively produces a set of points   

 ℒ = {(𝐻𝑖 , 𝑅𝑖 , 𝐷𝑖), 𝑖 = 1, … , 𝑛}. (1)  

We will call such set an encoding ladder. Each encoding/point 

in the ladder we will call a rendition. By letter 𝑛 we will denote the 

number of renditions in the ladder.   

We will say that the encoding ladder ℒ is proper if its rendition 

bitrates are monotonically increasing: 

 0 < 𝑅1 < ⋯ < 𝑅𝑛, (2) 

and if the respective rendition resolutions are also non-decreasing: 

 0 < 𝐻1 ≤ ⋯ ≤ 𝐻𝑛. (3) 

We will also assume that the aspect ratios 𝑊𝑖/𝐻𝑖 of all 

renditions in the proper ladder are the same.  

2.2. Perceptual Quality Model 
We next consider a situation when playback is done by a web 

player, projecting received and decoded video into a certain area on 

a PC screen. By 𝑊𝑝 and 𝐻𝑝 we will denote the width and height of 

the video player respectively and will assume that display pixel 

density 𝜌, as well as viewing distance 𝑑 are also known. For 

example, we may assume that 𝜌=96 [dpi] and that 𝑑=24 [in] as 

typical for PC screens and PC viewing practices.  

Given all these parameters, we will next define a model for 

predicting quality scores reported by human observers. For this 

purpose, we will employ a model of Westerink and Roufs [14] 

quantifying the impact of video resolution and its projection/scaling 

on the perceived quality, and we will also use SSIM metric [23] to 

quantify the impact of codec-introduced noise. The combination of 

resolution- and noise-based factors in this model is multiplicative, 

as suggested in [22]. 

In more exact terms, our proposed model is defined as follows: 

 𝑄(𝐻, 𝐻𝑝, 𝐷) = 𝛼 (𝛽 + 𝑄𝑊𝑅 (𝜙(𝐻𝑝),  𝑢(𝐻, 𝐻𝑝))) 𝑓(𝐷), (4) 

where: 

 𝜙(𝐻𝑝) = 2 arctan (
 𝐻𝑝 𝐷𝐴𝑅

2𝑑𝜌
), (5) 

is the viewing angle to video on the screen, 𝐷𝐴𝑅 = 𝑊𝑝/𝐻𝑝, 

 𝜙𝑐(𝐻, 𝐻𝑝) = 2 arctan (
𝐻𝑝/ min(𝐻,𝐻𝑝)

𝑑𝜌
), (6) 

is the viewing angle capturing 2-pixels interval (length of a smallest 

feasible “cycle”) in the projected video, 

 𝑢(𝐻, 𝐻𝑝) =
1

𝜙𝑐(𝐻,𝐻𝑝)
, (7) 

is the angular resolution [in cycles per degree] of video projected to 

the screen,  

 𝑄𝑊𝑅(𝜙, 𝑢) = 3.6 log10 (𝜙
𝜋

180
) + 2.9 + 4.6 log10(𝑢) 

 +2.7 log10(𝑢)2 − 1.7 log10(𝑢)3, (8) 

is the Westerink and Roufs model [14], establishing the relationship 

between 𝜙, 𝑢 and MOS scores, and 

 𝑓(𝐷) = e𝛾𝐷, (9) 

is a mapping function, translating the distortion 𝐷, measured in 

SSIM units [23], to the MOS domain [24].  

Parameters 𝛼, 𝛽, and 𝛾 are the calibration constants used to fit 

this model to MOS scores in training data sets. For example, by 

fitting this model to data present in the Netflix data set [25,26] we 

arrive at constants 𝛼=0.1075, 𝛽=−4.859, and 𝛾=2.424467. The 

RMSE achieved by this model on this dataset is 0.329 on a 1-5 MOS 

scale, which is reasonable and compares well to other metrics tested 

with the same dataset [25].   

 

Figure 2. The fit of the proposed model to MOS scores in the Netflix dataset. 

Importantly, the proposed model 𝑄(𝐻, 𝐻𝑝, 𝐷) computes 

quality scores based not only on noise and resolution of the encoded 

video but also based on player window size 𝐻𝑝, which is a parameter 

of particular interest in this study.  
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2.3. Distortion-Rate and Quality-Rate Functions 
Consider now a set of points  (𝐻𝑖 , 𝑅𝑖 , 𝐷𝑖), 𝑖 = 1, … , 𝑚, 

corresponding to outcomes of 𝑚 “probe” encodes generated by 

same encoder and same content. Assume also that video resolutions 

and rates of such encodes cover some practically relevant operating 

range: (𝐻𝑖 , 𝑅𝑖) ∈ [𝐻min , 𝐻max ] × [𝑅min , 𝑅max ]. 
We next define a model function 𝐷(𝐻, 𝑅) approximately 

matching distortion values in all these points: 

 𝐷(𝐻𝑖 , 𝑅𝑖) ≈ 𝑆𝑖 ,    𝑖 = 1, … , 𝑚. (10) 

Specifically, when working with H.264 [27] codec and SSIM metric 

[23], we will use the following model: 

𝐷(𝐻, 𝑅 ) = (1 + (
𝑅

𝛼𝐻𝛽
)

−𝛾

 )

−
1
 𝛾

, (11) 

where 𝛼, 𝛽, 𝛾 are the parameters providing fit it to probe points.  

For example, in Figure 3, we show the results of fitting this 

model to experimental data obtained for 3 different video sequences.  

We will call these sequences “Easy”, “Medium”, and “Complex”. 

In all cases, probe encodes have been done by using the x264 

encoder [28], operating using Main profile, level 4, 2sec GOPs, with 

CRF=[16,18,20,22,24,26,30,36] and target resolutions (heights) 

H=[270,288,360,432,540,576,720,864,900,1080]. The resulting 

best-fitting values of 𝛼, 𝛽, 𝛾 model parameters, as well as RMSE 

accuracy numbers, are shown in Table 1. It can be observed that 

model (11) predicts true SSIM values reasonably well. 

Table 1: Parameters of empirical rate-distortion functions 

Sequence  𝜶 𝜷 𝜸 RMSE 

“Easy” 0.7844𝑒-3 1.2281 0.7463 0.3404𝑒-2 

“Medium” 0.8278𝑒-2 1.3217 0.9593 0.2792𝑒-2 

“Complex” 0.07316 1.0957 1.0336 0.1153𝑒-2 

 

By analogy with the concept of distortion-rate function in 

information theory [29], we will call model 𝐷(𝐻, 𝑅) an empirical 

distortion-rate function. Unlike true distortion-rate function, 

𝐷(𝐻, 𝑅) is not derived analytically, but it serves a similar objective. 

It describes the space of achievable distortion-rate tradeoffs when 

encoding a given video sequence by a given video encoder. 

Next, given empirical distortion-rate function (11), and 

reproduction quality model (4), we can define a model describing 

the space of achievable quality-rate tradeoffs when working with a 

particular encoder, content, and a player: 

  𝑄(𝐻, 𝐻𝑝, 𝑅) = 𝑄(𝐻, 𝐻𝑝, 𝐷(𝐻, 𝑅)). (12) 

We will call this function a quality-rate model. We show plots 

of this function for our “Complex” sequence and player sizes 𝐻𝑝 ∈
{270, 540, 1080} in Figure 4.  

 

Figure 4. 3D projections of 𝑄(𝐻, 𝐻𝑝, 𝑅) model for the “Complex” sequence. 

This model will play a key role in our definition of quality-

optimal encoding ladders, and related optimization problems.  

“Easy” “Medium” “Complex” 

   

   

Figure 3. Probe points and distortion-rate functions constructed for 3 video sequences. 
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2.4. Streaming Client Model 
As we have already seen in Figure 1, streaming clients make 

decisions about streams to use based at least on two parameters: 

available network bandwidth, and player window size. We will first 

propose adaptation models for each variable and then will offer a 

combined model.  

To describe client adaptation to network bandwidth, we will 

use the following model: 

 𝑖𝐵(𝐵) = [

1 𝑖𝑓 𝐵 < 𝑇1
𝐵                                              

𝑖 𝑖𝑓 𝑇𝑖
𝐵 ≤ 𝐵 < 𝑇𝑖+1

𝐵 ,  𝑖 = 2, . . , 𝑛 − 2,

𝑛 𝑖𝑓 𝐵 ≥ 𝑇𝑛+1
𝐵                                             

 (13) 

 𝑇𝑖
𝐵 = (1 + 𝛿)𝑅𝑖+1,     𝑖 = 1. . 𝑛 − 1, (14) 

where 𝑖𝐵(𝐵) denotes the index of rendition selected, 𝐵 is the 

available network bandwidth, 𝑅𝑖 are ladder bitrates, 𝑇𝑖
𝐵 are 

bandwidth decision thresholds, and where 𝛿 ≥ 0 is a “bandwidth 

overhead” constant, used to make bandwidth-based decisions more 

conservative. E.g. based on statistics shown in Figure 1, it appears 

that 𝛿 ≈ 0.35. We show the plot of this model function in the left 

subfigure of Figure 5. 

To describe client adaptation to player window, we will use the 

following model: 

 𝑖𝐻(𝐻𝑝) = [

1 𝑖𝑓 𝐻𝑝 < 𝑇1
𝐻                                               

𝑖 𝑖𝑓 𝑇𝑖
𝐻 ≤ 𝐻𝑝 < 𝑇𝑖+1

𝐻 ,  𝑖 = 2, . . , 𝑛 − 2,

𝑛 𝑖𝑓 𝐻𝑝 ≥ 𝑇𝑛−1
𝐻                                              

 (15) 

 𝑇𝑖
𝐻 = 𝛼𝐻𝑖 + (1 − 𝛼)𝐻𝑖+1, 𝑖 = 1. . 𝑛 − 1  (16) 

where  𝑖𝐻(𝐻𝑝) denotes the index of rendition selected, 𝐻𝑝 is the 

player height,  𝐻𝑖 are the heights of renditions in the ladder, 𝑇𝑖
𝐻 are 

the player resolution-based decision thresholds, and where 𝛼 ∈
(0,1)  is a constant describing preference towards downscaling vs. 

upscaling. Based on Figure 1, it appears that 𝛼 ≈ 0.5. We show a 

plot of this model in the middle subfigure of Figure 5.  

Finally, when adapting to both network and player-size 

parameters, we will assume that player logic will be to pick the 

“safer” choice:  

 𝑖(𝐵, 𝐻𝑝) = min  { 𝑖𝑅(𝐵), 𝑖𝐻(𝐻𝑝) }. (17) 

As easily observed, with a proper ladder, this logic results in 

the selection of renditions with rates always below the available 

network bandwidth, and resolutions below decision points based on 

player window size. We plot this model function in the right 

subfigure in Figure 5. 

In passing, we must note that the proposed model is indeed an 

extreme simplification of the logic that may be implemented by 

practical streaming clients. It intentionally ignores all temporal 

effects, client buffer size and state, pre-roll duration, specifics of 

bandwidth estimation algorithm, and other design aspects. But 

despite its simplicity, it provides the logic that is feasible and 

adequate for modeling key effects needed for the average-case 

analysis of streaming systems.  

3. Average Performance of Web-Streaming 
 Given all models defined in the prior section, we will next 

derive the average performance characteristics of the streaming 

system.  

 For this purpose, we will need to consider two input 

distributions: 

- network bandwidth distribution: 𝑝(𝐵), where 𝐵 is assumed to 

be a continuous random variable in [0, ∞), and  

- distribution of player sizes: 𝑞(𝐻𝑝), where player height 𝐻𝑝 is 

assumed to be a discrete random variable, taking values from a 

certain set: 𝐻𝑝 ∈ ℋ𝑝. 

In practice, both distributions are usually known or can be measured 

by streaming analytics systems. Of interest, indeed, are steady-state 

statistics, observed over a considerable time window, and which are 

specific to a particular region, network and CDN operators, event, 

web page, and audience.  

 Given all these ingredients, we now can write an expression for 

the average quality delivered by a streaming system using an n-point 

ladder with rendition bitrates 𝑅1, . . , 𝑅𝑛 and resolutions 𝐻1, … , 𝐻𝑛 

respectively: 

�̅�(𝐻1, … , 𝐻𝑛, 𝑅1, . . , 𝑅𝑛, 𝑝, 𝑞)

= ∫ 𝑝(𝐵)

∞

0

∑ 𝑞(𝐻𝑝)

𝐻𝑝∈ℋ𝑝
 

𝑄 (𝐻𝑖(𝐵,𝐻𝑝), 𝐻𝑝, 𝑅𝑖(𝐵,𝐻𝑝)) 𝑑𝐵. 
(18) 

 In this expression, the averaging across network bandwidth 𝐵 

is done by the first integral, then the averaging across all possible 

player resolutions 𝐻𝑝 is done by the following sum, and where the 

reproduction quality value 𝑄(𝐻𝑖 , 𝐻𝑝, 𝑅𝑖) for each pair of values 

𝐵, 𝐻𝑝 is computed by retrieving the index of the selected rendition 

𝑖 = 𝑖(𝐵, 𝐻𝑝), and its bitrate 𝑅𝑖 and resolution 𝐻𝑖 parameters. 

 Such average quality is achievable for a specific encoder and 

content as described by the quality-rate model 𝑄(𝐻, 𝐻𝑝, 𝑅) 

employed in (18). It is also specific to a network model 𝑝(𝐵) and 

player size distribution 𝑞(𝐻𝑝) used to compute it.  

 Similarly, we can also compute many other average 

performance parameters of the streaming system. For example:  

- the average resolution of the video, as delivered:  

   
Figure 5. Construction of streaming client model. Left: rendition selection based on the available network bandwidth B. Middle: rendition selection based on player 
window size 𝐻𝑝. Right: the combined rendition selection logic. 
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�̅�(𝐻1, … , 𝐻𝑛, 𝑅1, . . , 𝑅𝑛, 𝑝, 𝑞)

= ∫ 𝑝(𝐵)

∞

0

∑ 𝑞(𝐻𝑝)

𝐻𝑝∈ℋ𝑝
 

 𝐻𝑖(𝐵,𝐻𝑝)𝑑𝐵, 
(19) 

- average distortion in the video, as delivered:  

�̅�(𝐻1, … , 𝐻𝑛, 𝑅1, . . , 𝑅𝑛, 𝑝, 𝑞)

= ∫ 𝑝(𝐵)

∞

0

∑ 𝑞(𝐻𝑝)

𝐻𝑝∈ℋ𝑝
 

𝐷𝑖(𝐵,𝐻𝑝)𝑑𝐵, 
(20) 

- average player size:  

�̅�𝑝(𝑞) = ∑ 𝑞(𝐻𝑝)

𝐻𝑝∈ℋ𝑝
 

𝐻𝑝, (21) 

- average network bandwidth used for streaming: 

�̅�(𝐻1, … , 𝐻𝑛, 𝑅1, . . , 𝑅𝑛, 𝑝, 𝑞)

= ∫ 𝑝(𝐵)

∞

0

∑ 𝑞(𝐻𝑝)

𝐻𝑝∈ℋ𝑝
 

 𝑅𝑖(𝐵,𝐻𝑝)𝑑𝐵, 
(22) 

- average available network bandwidth: 

�̅�(𝑝) = ∫ 𝑝(𝐵)

∞

0

𝐵 𝑑𝐵, 
(23) 

and so on. 

4. Design of Quality-Optimal Ladders 

4.1. The Problem 
Given that we already know how to compute average quality 

(18), and we see that it is effectively a function of parameters 

𝐻1, … , 𝐻𝑛 and  𝑅1, … , 𝑅𝑛 of the encoding ladder, we can next pose 

the following problem.  

For a given codec, video content, as well as player and network 

distributions 𝑝 and 𝑞, find parameters �̂�1, … , �̂�𝑛 and �̂�1, … , �̂�𝑛 of an 

encoding ladder, such that the average quality 

𝑄(�̂�1, … , �̂�𝑛,  �̂�1, … , �̂�𝑛, p, 𝑞) delivered by an ABR streaming 

system is maximal: 

𝑄(�̂�1, … , �̂�𝑛,  �̂�1, … , �̂�𝑛, p, 𝑞)

= max
𝑅min≤𝑅1<⋯<𝑅𝑛 ≤𝑅max

𝐻min≤𝐻1≤⋯≤𝐻𝑛≤𝐻max

𝑅1≤𝑅1,max,   𝐻1≤𝐻1,max

𝑄(𝐻1, … , 𝐻𝑛,  𝑅1, … , 𝑅𝑛, 𝑝, 𝑞) . (24) 

The added constraints include the following: 

- the requirement for the ladder to be proper:  𝑅1 < ⋯ < 𝑅𝑛 and 

𝐻1 ≤ ⋯ ≤ 𝐻𝑛 

- restriction of ladder bitrates to a certain operating range: 

𝑅min ≤ 𝑅𝑖 ≤ 𝑅max 

- restriction of ladder resolutions to a certain operating range: 

𝐻min ≤ 𝐻𝑖 ≤ 𝐻max 

- upper limits on bitrate and resolution of the first 

rendition: 𝑅1 ≤ 𝑅1,max and 𝐻1 ≤ 𝐻1,max. 

The last constraints (bounds for rate and resolution of 1st rendition) 

effectively establish the lowest quality operating point that system 

must be able to support. They also influence some other 

characteristics, such as start-up time, buffeting probability, etc.  

In practice, many additional constraints may also be added. For 

example, the video resolutions may be required to be part of a certain 

allowed set 𝐻𝑖 ∈ ℋ, such resolutions may also be required to be 

distinct (i.e. strictly growing across the ladder): 𝐻1 < ⋯ < 𝐻𝑛, the 

granularity of rate and resolution changes from one stream to 

another may also be bounded, and so on.  

 

4.2. Analysis of The Problem 
 We first observe that problem (24) belongs to a class of non-

linear constrained optimization problems. To solve it, we may 

indeed try to use existing numerical optimization techniques, such 

as e.g., sequential quadratic programming [30], but before, we must 

explore if it can be simplified, or at least rewritten in a more 

convenient form. 

With this objective, let us now revisit the client decision model 

(17), and define two inverse mappings: from rendition indices to 

applicable ranges of bitrates or sets of player resolutions: 

 𝐵(𝐻𝑝, 𝑗) = {𝐵 ∶   𝑖(𝐵, 𝐻𝑝) = 𝑗},      𝑗 = 1, … , 𝑛. (25) 

 ℋ𝑝(𝐵, 𝑗) = {𝐻𝑝 ∈ ℋ𝑝 ∶   𝑖(𝐵, 𝐻𝑝) = 𝑗},      𝑗 = 1, … , 𝑛. (26) 

Using these sets, we can write two alternative expressions for 

the average quality (18): 

�̅�(𝐻1, … , 𝐻𝑛, 𝑅1, . . , 𝑅𝑛, 𝑝, 𝑞)

= ∑ ∑ 𝑞(𝐻𝑝)

𝐻𝑝∈ℋ𝑝
 

𝑛

𝑖=1

𝑄(𝐻𝑖 , 𝐻𝑝, 𝑅𝑖) ∫ 𝑝(𝐵)

 

𝐵∈𝐵(𝐻𝑝,𝑖)

𝑑𝐵 (27) 

�̅�(𝐻1, … , 𝐻𝑛, 𝑅1, . . , 𝑅𝑛, 𝑝, 𝑞)

= ∑  ∫ 𝑝(𝐵) ∑ 𝑞(𝐻𝑝)

𝐻𝑝∈ℋ𝑝(𝐵,𝑖)

𝑄(𝐻𝑖 , 𝐻𝑝, 𝑅𝑖) 𝑑𝐵

∞

0

𝑛

𝑖=1

. 
(28) 

 These expressions are somewhat easier to understand than (18). 

Thus, from (27) we can extract direct formulae for probabilities of 

each rendition:  

Pr(𝑖|𝐻𝑝) = ∫ 𝑝(𝐵)

 

𝐵∈𝐵(𝐻𝑝,𝑖)

𝑑𝐵. (29) 

From (28) we also see that in certain regions 𝐻𝑝 ∈ ℋ𝑝(𝐵, 𝑖) our 

quality expression 𝑄(𝐻𝑖 , 𝐻𝑝, 𝑅𝑖) collapses to something simpler:    

 �̅�𝐻𝑝∈ℋ𝑝(𝐵,𝑖)(𝐻𝑖 , 𝑅𝑖) = ∑ 𝑞(𝐻𝑝)𝐻𝑝∈ℋ𝑝(𝐵,𝑖) 𝑄(𝐻𝑖 , 𝐻𝑝, 𝑅𝑖) (30) 

However, this does not yield some average quantity expression 

across all player resolutions: 

�̅�(𝐻𝑖 , 𝑅𝑖) = ∑ 𝑝(𝐻𝑝)

𝐻𝑝∈ℋ𝑝
 

𝑄(𝐻𝑖, 𝐻𝑝, 𝑅𝑖), (31) 

as ranges of the respective sums in (28) are different, and in (27) a 

similar-looking sum also involves integrals depending on 𝐻𝑝. This 

indicates that full quality model 𝑄(𝐻𝑖, 𝐻𝑝, 𝑅𝑖) is needed and that the 

impact of player resolutions 𝐻𝑝 cannot be trivialized or otherwise 

removed from this problem.  

Next, let us check if optimal choices of rendition resolutions 

𝐻1, … , 𝐻𝑛 can be directly derived based on best choices of rates 

𝑅1, … , 𝑅𝑛. Indeed, by looking at shapes of quality-rate functions (see 

Figure 4), we notice, that they exhibit maxima points for 𝐻. Hence, 

one may think that optimal ladder resolutions �̂�𝑖 could be computed 

by simply taking optimal values of 𝐻𝑖 for quality-rate function: 

𝑄(�̂�𝑖 , 𝐻𝑝, 𝑅𝑖) = max
𝐻𝑖

𝑄(𝐻𝑖 , 𝐻𝑝, 𝑅𝑖). (32) 

This was a key argument put forward in Netflix’s “per-title” 

approach [7].  

However, if we look closely at average quality expression (27), 

we notice, that resolutions 𝐻1, … , 𝐻𝑛 affect not only the average 

quality values 𝑄(𝐻𝑖 , 𝐻𝑝, 𝑅𝑖), but also rendition probabilities (29), 

since integral ranges 𝐵 ∈ 𝐵(𝐻𝑝, 𝑖) are also depend on parameters 

𝐻1, … , 𝐻𝑛!  So, the resolutions found by (32) may not be optimal in 

the context of a problem that we are solving.  

In other words, we see that this problem cannot be trivially 

reduced to only n dimensions 𝑅1, … , 𝑅𝑛. Rendition resolutions 
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𝐻1, … , 𝐻𝑛 in this problem act as additional degrees of freedom, and 

must be treated as such by the solution finder. 

4.3. Finding the Solution 
As already observed, problem (24) belongs to a class of non-

linear constrained optimization problems. It can be possibly be 

solved by using existing numerical optimization techniques [30]. 

However, we must also note that the objective function (18) in this 

case is fundamentally not a “smooth” function. It is affected by the 

decision model of a client (17), which introduces discontinuities. 

Hence, we may expect convergence problems.  

To solve this problem practically, and with high certainty that 

the global maximum point is not missed, we can also try to turn it 

into a discrete domain:  

- use fixed set of standard resolutions that can be allowed as 

rendition resolution choices: 𝐻𝑖 ∈ ℋ 

- use fixed lattice of bitrate points, e.g. by employing a 1% 

increase chain: 𝑅𝑖 ∈ 𝑅 = {𝑅min ⋅ 1.01𝑘, 𝑘 = 0,1, … , 𝑘max} 

and then apply combinatorial enumeration of all possible ladder 

points (𝐻1, … , 𝐻𝑛, 𝑅1, … , 𝑅𝑛) and maximum selection. With modern 

computers and limited ladder sizes (e.g. n=1…7), it may be solvable 

in a practically acceptable time.  

This is the method that we have implemented for producing 

experimental results shown in the next section. 

5. Experimental Results 

5.1. Test Conditions 
To test the effectiveness of our modeling and profile 

optimization technique, we will next consider several test 

conditions, exhibiting:  

- differences in the “encoding complexity” of video content, 

- differences in networks, 

- differences in players.   

To test adaptability to video content we will use 3 video 

sequences, already considered in Section 2.3. We will call them 

“Easy”, “Medium”, and “Complex” respectively. Their empirical 

distortion-rate functions are shown in Figure 3, and Table 1 lists 

parameters of models used to describe them.  

To test streaming system behavior under different networks, 

we will consider 2 models shown in Figure 6. 

 

Figure 6. Network models used in the tests. 

Both network distributions are realizations of the following model: 

𝑝(𝐵) = 𝛼 𝑓(𝐵, 𝜎1) + (1 − 𝛼) 𝑓(𝐵, 𝜎2), (33) 

where 

𝑓(𝑥, 𝜎) =
𝑥

𝜎2
𝑒

−
𝑥2

2𝜎2  (34) 

is the Rayleigh distribution, and 𝛼, 𝜎1, 𝜎2 are the model parameters. 

Specific values of these parameters in cases of Networks 1 and 2 are 

shown in Table 2.  

Table 2. Parameters of network models used in the tests. 

Network 𝜶 𝝈𝟏 𝝈𝟐 �̅� 

“Network 1”  0.4287 1802.2 4499.28 4189.87 

“Network 2” 0.4287 4,505.5 11,248.2 10474.7 

Table 2 also lists the effective average bandwidth values �̅� 

achievable by these networks.  

To test system performance under different players we will 

use 2 player models with different possible player sizes 𝐻𝑝 ∈ ℋ𝑝 

and related distributions 𝑞(𝐻𝑝), as listed in Table 3.  

Table 3. Player models. 

Player Player sizes 
𝓗𝒑

  
Player size probabilities 

𝒒(𝑯𝒑) 

“1080p player” {1080} {1.0} 

“Web player” {228, 240,  
380, 430,  
480, 630,  
678, 710,  
774, 810,  
990} 

{0.103188906, 0.017734224, 
0.062664264, 0.026945508, 
0.480776451, 0.038259368, 
0.083865235, 0.018247353, 
0.033203174, 0.051450527, 
0.08366499} 

In the above table, the “1080p player” is a model of a player 

that always stretches video to 1080p window during playback, while 

the “Web player” is a model representing a population of web 

players having 11 possible resolutions and respective probabilities 

of each. This model is based on real-world playback statistics shown 

in Figure 1.  

5.2. Ladders Generated and Parameters Measured 
For all combinations of the above listed (content, network, 

player) models we have subsequently generated optimal encoding 

profiles. The following constraints have been imposed in all cases: 

- 𝑅min = 100 [Kbps]: minimum allowed bitrate 

- 𝑅max = 5050 [Kbps]: maximum allowed bitrate 

- 𝑅1.max = 180 [Kbps]: maximum allowed bitrate for the first 

rendition 

- 𝐻1.max = 480 [pixels]: maximum allowed resolution (height) 

for first rendition 

- ℋ = {216, 270, 288, 360, 432, 480, 540, 576, 720, 900, 1080}: 

allowed list of resolutions 

- 𝑖 < 𝑗 ⇒ 𝑅𝑖 < 𝑅𝑗:  strictly increasing bitrates 

- 𝑖 < 𝑗 ⇒ 𝐻𝑖 < 𝐻𝑗:  strictly increasing resolutions  

- 𝑛 = 1,…,5: numbers of renditions generated. 

For each profile the following average performance parameters 

have been computed and reported: 

- �̅�: the average quality [MOS] achieved by the system (18), 

- �̅�: the average network bandwidth [Kbps] used (22), 

- �̅�: the average encoded resolution [height] of video streams 

delivered to viewers (19), 

- �̅�: the average distortion [SSIM] in encoded video streams 

delivered to viewers (20) 

- �̅�𝑝: the average player size [height] used by a population of 

viewers (21). 

For comparison, all same performance parameters have also 

been computed for a reference encoding profile, shown in Figure 1.  
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5.3. The Results 

5.3.1. Optimal Ladders for 1080p Players 
In tables 4.1 through 4.3 we show optimal ladders constructed 

by assuming that playback is done by using a 1080p player. It is also 

assumed that delivery is done over Network 1. Separate profiles are 

generated for “Easy”, “Medium”, and “Complex” sequences.   

As expected, we notice that optimal profiles generated for 

different content are different. The top rendition in the 5-point 

ladder for “Easy” content uses only 1557Kbps, while the same 

rendition for “Complex” content uses 3155Kbps. 

In all cases, we also notice that at n=5 our optimal profiles 

deliver significantly better quality than the profile used as a 

reference. E.g. for “Easy” content we see an 0.92 increase on a 1-5 

MOS scale. 

We also notice that with the 1080p player model used as a 

target, the choices of resolutions in renditions are heavily biased up. 

For example, in 2-point profiles, all second renditions receive 1080p 

resolution, despite quite low bitrates and SSIM numbers. This is to 

be expected, as with reproduction being done at 1080p output, using 

more pixels and lower SSIM often produces better quality.   

5.3.2. Optimal Ladders for Web-Players 
We now repeat the same experiments as in the previous section, 

but by using a Web player as a receiver. The results are presented in 

tables 5.1 through 5.3. 

As with profiles for 1080p players, here we also see that 

bitrates assigned to different videos are different. The top bitrates 

assigned in 5-point ladders look almost identical to ones we’ve seen 

before.  

However, the choices of resolutions assigned to renditions 

targeting Web players are different. They are all much lower, 

striking a different balance between pixel-count and SSIM. All 

SSIM values are much higher in this case. The top renditions are 

also stopped at 900p and not 1080p as earlier.  

The reason this is happening is indeed the mix of player sizes 

assumed by the web-player model. On average, it boils down to only 

538.1 lines, and with the highest player resolution being used is 

900p. It is also a very different playback model, where renditions 

are played at resolutions closely matching resolutions at which they 

are encoded. In this context, low distortion / high SSIM values 

become more important.  

In all cases, we also notice that at n=5 our optimal profiles 

deliver considerably better quality than reference profile. In fact, for 

“Easy” content we see that even n=2 with an optimal assignment of 

rates and resolutions is sufficient to achieve a better quality than 

with 5 renditions in the reference profile. 

5.3.3. Optimal Ladders for a Different Network 
In this section, we will repeat experiments from section 5.3.2, 

but now by using “Network 2” as a network model. The results are 

presented in tables 6.1 through 6.3. 

Table 4.1: Optimal ladders for “Easy” Content, Network 1, 1080p player 

Optimal ladders: 

n Rendition 1 Rendition 2 Rendition 3 Rendition 4 Rendition 5 �̅� �̅�𝒑 �̅� �̅� �̅� 

1 854x480 180k 
    

480.0 1080 0.9629 3.230 180.0 

2 854x480 180k 1920x1080 899k 
   

1043.1 1080 0.9754 4.843 854.8 

3 854x480 180k 1600x900 427k 1920x1080 1440k 
  

1047.7 1080 0.9805 4.942 1288.9 

4 854x480 180k 1280x720 228k 1600x900 584k 1920x1080 1557k 
 

1044.2 1080 0.9817 4.954 1385.1 

5 854x480 167k 1024x576 173k 1280x720 277k 1600x900 607k 1920x1080 1557k 1043.7 1080 0.9819 4.955 1388.4 

Reference: 

5 480x270 450k 640x360 800k 768x432 1000k 1024x576 1500k 1280x720 2100k 647.8 1080 0.9910 4.075 1846.5 

 

Table 4.2: Optimal ladders for “Medium” Content, Network 1, 1080p player 

Optimal ladders: 

n Rendition 1 Rendition 2 Rendition 3 Rendition 4 Rendition 5 �̅� �̅�𝒑 �̅� �̅� �̅� 

1 854x480 180k 
    

480.0 1080 0.8466 2.436 180.0 

2 854x480 180k 1920x1080 1440k 
   

992.6 1080 0.9227 4.186 1256.4 

3 854x480 180k 1600x900 865k 1920x1080 2305k 
  

1000.3 1080 0.9416 4.431 1819.8 

4 854x480 180k 1280x720 584k 1600x900 1280k 1920x1080 2697k 
 

983.4 1080 0.9501 4.496 2061.6 

5 854x480 180k 1024x576 410k 1280x720 769k 1600x900 1384k 1920x1080 2804k 975.4 1080 0.9534 4.512 2130.5 

Reference: 

5 480x270 450k 640x360 800k 768x432 1000k 1024x576 1500k 1280x720 2100k 647.8 1080 0.9718 3.891 1846.5 

 

Table 4.3: Optimal ladders for “Complex” Content, Network 1, 1080p player 

Optimal ladders: 

n Rendition 1 Rendition 2 Rendition 3 Rendition 4 Rendition 5 �̅� �̅�𝒑 �̅� �̅� �̅� 

1 854x480 180k 
    

480.0 1080 0.7533  1.943 180.0 

2 854x480 180k 1920x1080 1557k 
   

980.0 1080 0.8911 3.911 1327.4 

3 854x480 180k 1600x900 973k 1920x1080 2493k 
  

987.9 1080 0.9199 4.217 1911.5 

4 854x480 180k 1280x720 657k 1600x900 1440k 1920x1080 2917k 
 

969.9 1080 0.9327 4.310 2164.6 

5 854x480 180k 1024x576 480k 1280x720 899k 1600x900 1619k 1920x1080 3155k 954.4 1080 0.9392 4.337 2288.0 

Reference: 

5 480x270 450k 640x360 800k 768x432 1000k 1024x576 1500k 1280x720 2100k 647.8 1080 0.9585 3.774 1846.5 
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As easily observed, the use of Network 2 has caused all bitrates 

to increase. This network has 2.5x more bandwidth, and so more bits 

can be used to achieve better quality. What we see is reasonable and 

consistent with earlier results on ABR ladder designs, reported in 

[9,11,12]. 

5.3.4. Effects of Mistargeting the Player 
Finally, in this section, we will compare the performance of 

ladders constructed for 1080p and Web-players, when the actual 

playback is done by Web players. Naturally, we would expect 

profiles designed for Web players to perform better. But the 

question is: by how much? Tables 7.1 through 7.3 provide the 

results. 

As we can see from these tables, the difference in the average 

performance delivered by these profiles is quite dramatic! For 

instance, for complex content, we see a difference of over 0.8 MOS. 

We also notice a significant drop in network bandwidth usage: over 

a factor of 2, from 1407Kbps to 532Kbps. This happens when 

renditions in both profiles are covering about the same range of 

bitrates and in similar increments. 

The obvious cause of this effect is a misallocation of bits and 

resolutions. In profiles generated for 1080p players, resolutions of 

all renditions are pushed up. They start at 480p, encoded very 

aggressively, and only at the final 1080p rendition they reach bitrate 

and SSIM level providing high-fidelity reproduction. When the 

1080p players are used for playing them this all seems reasonable. 

Such players will always try to pull such highest bitrate renditions. 

However, when Web players are directed to play such content, their 

windows in the majority of cases are much smaller, centered around 

400-500 pixels in height. With such player sizes, the highest quality 

renditions in this profile may never be selected! The decision logic 

will stop at rendition with the closest resolution. As a result, what 

will be selected with high probabilities are those few starting 

renditions that were encoded very aggressively. This way the 

delivered quality will stay poor, regardless of network capacity.  

In other words, we see that using the right player models for 

the design of encoding profiles is extremely important. Failure to 

account for player’s adaptation to their window sizes may lead to 

the creation of profiles where players may simply fail to deliver 

satisfactory quality even when network resources are no longer a 

constraining factor. 

6. Conclusions 
We have studied the problem of the design of encoding profiles 

for streaming systems with adaptation not only to network 

bandwidth but also to player sizes.  

We have defined this problem mathematically, by introducing 

several models, accounting for the distribution of player resolutions, 

distribution of network bandwidth, and other factors influencing 

Table 5.1: Optimal ladders for “Easy” Content, Network 1, Web player 

Optimal ladders: 

n Rendition 1 Rendition 2 Rendition 3 Rendition 4 Rendition 5 �̅� �̅�𝒑 �̅� �̅� �̅� 

1 854x480 180k 
    

480.0 538.1 0.9629 3.310 180.0 

2 854x480 180k 1280x720 935k 
   

549.2 538.1 0.9690 3.567 397.6 

3 768x432 180k 854x480 899k 1280x720 1052k 
  

535.5 538.1 0.9818 3.666 756.1 

4 768x432 180k 854x480 865k 1280x720 899k 1600x900 1557k 
 

557.5 538.1  0.9816 3.705 773.8 

5 512x288 180k 768x432 365k 854x480 935k 1280x720 973k 1600x900 1557k 537.7 538.1 0.9850 3.719 1094.5 

Reference: 

5 480x270 450k 640x360 800k 768x432 1000k 1024x576 1500k 1280x720 2100k 465.2 538.1 0.9903 3.563 1151.8 

 

Table 5.2: Optimal ladders for: “Medium” Content, Network 1, Web player 

Optimal ladders: 

n Rendition 1 Rendition 2 Rendition 3 Rendition 4 Rendition 5 �̅� �̅�𝒑 �̅� �̅� �̅� 

1 854x480 180k 
    

480.0 538.1 0.8466 2.496 180.0 

2 640x360 180k 1024x576 1280k 
   

510.4 538.1 0.9427 3.229 945.7 

3 480x270 180k 854x480 973k  1280x720 1752k 
  

500.5 538.1 0.9574 3.388 1019.0 

4 480x270 180k 768x432 632k   854x480 1497k 1280x720 1895k 
 

497.0 538.1  0.9625 3.444 1236.0 

5 480x270 180k 768x432 632k 854x480 1497k 1280x720 1619k 1600x900 2697k 515.9 538.1 0.9617 3.473 1262.3 

Reference: 

5 480x270 450k 640x360 800k 768x432 1000k 1024x576 1500k 1280x720 2100k 465.2 538.1 0.9701 3.395 1151.8 

 

Table 5.3: Optimal ladders for “Complex” Content, Network 1, Web player 

Optimal ladders: 

n Rendition 1 Rendition 2 Rendition 3 Rendition 4 Rendition 5 �̅� �̅�𝒑 �̅� �̅� �̅� 

1 768x432 180k 
    

432.0 538.1 0.7748 2.008 180.0 

2 384x216 180k 960x540 1183k 
   

471.6 538.1 0.9351 3.049 971.3 

3 480x270 180k 854x480 1094k 1280x720 2049k  
  

493.0 538.1 0.9340 3.210 1130.2 

4 480x270 180k 768x432 739k 854x480 1684k 1280x720 2216k 
 

489.5 538.1  0.9426 3.289 1370.9 

5 480x270 180k 768x432 739k 854x480 1684k 1280x720 1970k 1600x900 3155k 506.1 538.1 0.9420 3.316 1407.7 

Reference: 

5 480x270 450k 640x360 800k 768x432 1000k 1024x576 1500k 1280x720 2100k 465.2 538.1 0.9522 3.258 1151.8 
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average quality delivered by the streaming system. We have shown, 

that the resulting problem belongs to a class of non-linear 

constrained optimization problems, and offered a practical approach 

towards solving it.  

The optimal profiles and performance numbers computed by 

using our approach, have also allowed us to observe several 

interesting phenomena. Thus, we’ve observed that encoding profiles 

generated for web-players exhibit very different tradeoffs between 

pixel count and codec-introduced distortion values as compared to 

profiles generated for players always stretching videos to full-

screen. We have also shown, that mistargeting player models in the 

design of encoding profiles may have very significant consequences 

for the performance of streaming systems. 

Overall, this work confirms that optimal design of encoding 

profiles for web streaming must be done by utilizing distributions of 

player sizes, and brings forward a set of mathematical tools enabling 

such implementations. 
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Table 6.1: Optimal ladders for “Easy” Content, Network 2, Web player 

Optimal ladders: 

N Rendition 1 Rendition 2 Rendition 3 Rendition 4 Rendition 5 �̅� �̅�𝒑 �̅� �̅� �̅� 

1 854x480 180k 
    

480.0 538.1 0.9629 3.310 180.0 

2 640x360 180k 1024x576 1684k 
   

524.5 538.1 0.9867 3.598 1325.5 

3 480x270 180k 854x480 1138k 1280x720 1970k 
  

522.1 538.1 0.9888 3.725 1252.9 

4 480x270 180k 854x480 1138k 1280x720 1822k 1920x1080 2697k 
 

550.1 538.1  0.9886 3.766 1277.7 

5 480x270 180k 768x432 657k 854x480 1895k 1280x720 1970k 1920x1080 2697k 545.9 538.1 0.9898 3.781 1608.6 

Reference: 

5 480x270 450k 640x360 800k 768x432 1000k 1024x576 1500k 1280x720 2100k 486.5 538.1 0.9904 3.653 1232.6 

 

Table 6.2: Optimal ladders for “Medium” Content, Network 2, Web player 

Optimal ladders: 

n Rendition 1 Rendition 2 Rendition 3 Rendition 4 Rendition 5 �̅� �̅�𝒑 �̅� �̅� �̅� 
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508.6 538.1  0.9748 3.595 2399.2 

5 480x270 180k 768x432 1052k 854x480 2804k 1280x720 2917k 1600x900 4856k 530.0 538.1 0.9741 3.630 2421.0 

Reference: 

5 480x270 450k 640x360 800k 768x432 1000k 1024x576 1500k 1280x720 2100k 486.5 538.1 0.9704 3.482 1232.6 

 

Table 6.3: Optimal ladders for “Complex” Content, Network 2, Web player 

Optimal ladders: 

n Rendition 1 Rendition 2 Rendition 3 Rendition 4 Rendition 5 �̅� �̅�𝒑 �̅� �̅� �̅� 

1 768x432 180k 
    

432.0 538.1 0.7748 2.008 180.0 
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485.0 538.1 0.9565 3.287 1799.8 
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5 384x216 180k 768x432 1183k 854x480 3155k 1280x720 3281k 1600x900 5050k 519.1 538.1 0.9638 3.531 2635.8 

Reference: 

5 480x270 450k 640x360 800k 768x432 1000k 1024x576 1500k 1280x720 2100k 486.5 538.1 0.9532 3.347 1232.6 
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