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Abstract 
The core part of the operating system is the kernel, and it 

plays an important role in managing critical data structure 

resources for correct operations. The kernel-level rootkits are the 

most elusive type of malware that can modify the running OS 

kernel in order to hide its presence and perform many malicious 

activities such as process hiding, module hiding, network 

communication hiding, and many more. In the past years, many 

approaches have been proposed to detect kernel-level rootkit. Still, 

it is challenging to detect new attacks and properly categorize the 

kernel-level rootkits. Memory forensic approaches showed efficient 

results with the limitation against transient attacks. Cross-view-

based and integrity monitoring-based approaches have their own 

weaknesses. A learning-based detection approach is an excellent 

way to solve these problems. In this paper, we give an insight into 

the kernel-level rootkit characteristic features and how the features 

can be represented to train learning-based models in order to 

detect known and unknown attacks. Our feature set combined the 

memory forensic, cross-view, and integrity features to train 

learning-based detection models. We also suggest useful tools that 

can be used to collect the characteristics features of the kernel-

level rootkit. 

Keywords: Cyber-security, Digital forensic, Kernel-level 

rootkit, Machine Learning. 

Introduction 
A Kernel-level rootkit is one of the most elusive types of 

malware in recent years. It can exploit the vulnerabilities existing 

in the operating system (OS) kernel to hide its presence and 

malicious activities. It is difficult for user-level applications to 

detect kernel-level rootkit as it operates in the kernel with the 

highest privileges. The stealthy nature of the kernel-level rootkit 

makes it the most lethal and sophisticated attacking tool for cyber 

offenders. ZeroAccess malware used rootkit techniques to hide in 

an infected machine and was used to download other malware 

from a  botnet [1]. It infected millions of Microsoft Windows OS 

machines. Zacinlo malware leverages rootkit technique to 

propagate adware in Windows 10 OS [2]. Most of the traditional 

security systems are focused on user-level threats and failed to 

detect the kernel-level rootkit. 

 According to Hoglund and Butler, a rootkit is a set of 

programs that remain undetected on a computer and have a 

permanent effect [3]. Rootkits can be categorized into five 

different classes: user-level, kernel-level, hypervisor-level, boot-

kits, and firmware rootkits. In this paper, we only focus on the 

kernel-level rootkit. Many approaches have been proposed to 

detect the kernel-level rootkit. Signature-based approaches may 

check the kernel module static signatures [4] or data access 

signatures of the kernel dynamic objects [5]. Behavior-based 

detection approaches may check the kernel memory access 

behavior [6], analyze the execution path [7], abnormal behavior 

within a herd [8], or data structure invariants behavior [9]. Another 

approach for detecting the kernel-level rootkit is cross-view-based 

detection. The basic idea of cross-view-based detection is to 

compare two different views of the system [10, 11]. Volatile 

memory traces are a great source to construct an unmodified view 

for the kernel-level rootkit detection [12]. The kernel-level rootkits 

can tamper with the integrity of both the static region and the 

dynamic region of the OS. While some research focuses on only 

static region integrity, recent research focuses on dynamic region 

integrity as modern kernel-level rootkits mostly alter the dynamic 

data structures. The integrity-based detection approaches focusing 

on static regions either check the write attempt to read-only 

memory section [13, 14] or periodically check the hash of the 

known memory region [15, 16]. By verifying the function pointers 

or kernel data-layout partitioning [17] dynamic region integrity can 

be checked. External hardware can also be used to detect the 

kernel-level rootkit [18, 19, 20, 21].  

With the increase of cybercrime in recent years, the automatic 

detection of known and unknown attacks now become important in 

modern security systems. A learning-based detection is an 

excellent approach to automatically detect known and unknown 

attacks with high accuracy. The purpose of this paper is to have an 

insight into the kernel-level rootkit characteristic features and how 

the features can be represented to train learning-based models in 

order to detect known and unknown kernel-level rootkit attacks. 

Also, to get familiar with the tools that can be used to collect the 

features.  

The rest of the paper is composed as follows: prior research 

on learning-based kernel-level rootkit detection is introduced in 

Section II. A brief discussion about the kernel-level rootkit is 

discussed in Section III. The characteristic features of the kernel-

level rootkit are elaborately described in Section IV, followed by 

the useful tools to collect the features in Section V. Finally, we 

conclude this paper with future research direction in Section VI. 

II. Related Works 
There has been a race between kernel-level rootkit evolution 

and detection approaches. The researchers are now focusing on 

learning-based detection techniques to detect kernel-level rootkit 

because machine learning and deep learning technology have 

proved high accuracy to automatically detect known and unknown 

malware. Researchers have trained learning models with a variety 

of features to detect kernel-level rootkit such as hardware events 

counts using hardware performance counter (HPC) [22], virtual 

memory access pattern of an application [23], or system call 

execution times [24]. These features have some limitations in 

detecting the DKOM attack. A learning algorithm is applied to a 

set of kernel driver run-time features derived from the execution 

behavior using an emulator [25]. The additional delay in driver 

loading time is a weakness of this approach to detect kernel-level 
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rootkit. The obfuscation technique employed in kernel-level rootkit 

binaries makes the static analysis difficult. Still, the kernel-level 

rootkit can be detected through static analysis by disassembling the 

kernel driver and extract features like general behavior, 

communications, suspicious behaviors, etc. [26]. As the detector 

work inside the host in this detection system, the detector is 

vulnerable to the advanced kernel-level rootkit. Tian et al. [27] 

experimented with behavior features of the kernel module to train 

multiple machine learning algorithms. The features included 

important kernel API invocation, executing code in the kernel data 

region, write operation to a kernel memory area, write operation to 

important hardware registers, etc. The authors isolate the kernel 

module memory which may introduce significant overhead. 

Hardware events like data dependencies between registers, OS 

privilege transition, and branches in program execution flow can 

be involved to interpret the program data/control transfer flow 

features. Zhou and Makris [28] introduced a hardware-assisted 

machine learning-based rootkit detection mechanism that first 

identifies the process class using machine learning algorithms and 

then employs Kernel Density Estimation (KDE) to indicate a 

compromise in process behavior caused by a kernel-level rootkit.  

Wang et al. [29] proposed a machine learning-based trusted 

kernel rootkit detection method. They combine the memory 

forensic analysis with bio-inspired machine learning technology. 

The training features are extracted from volatile memory dumps 

using the Volatility framework [30]. The extracted features include 

hidden kernel modules, device tree, the SSDT function, callbacks, 

timers, orphan threads, and driver objects. Seven different machine 

learning classifiers are used to train the model and detect kernel 

rootkits. Lee and Nadim suggested some key features of the 

kernel-level rootkit and showed some possible attack scenarios in 

the container-based cloud computing system [31]. 

Our kernel-level rootkit features are closely related to the 

features used by Wang et al. [29]. The advantage of using volatile 

memory traces is that the detection system can be implemented 

separately. The drawback of this approach is that the attack can 

happen between snapping two volatile memory traces (transient 

attack). We explain the characteristic features more elaborately. 

We also represent all possible states of the features and how they 

can be labeled as normal or malicious to train learning-based 

models. Importantly, we tried to cover some features that will not 

be affected by the transient attack. Some cross-view features and 

integrity features are also included in our feature set. In the feature 

set ‘1’ indicates the presence of a feature and ‘0’ indicates the 

absence.  

III. Kernel-level Rootkit 
The rootkits of the first generation are mainly user-level 

rootkits that conceal themselves as disk-resident system programs 

by mimicking the system process files. Those rootkits are easy to 

detect and remove by using file integrity tools. So, the modern 

rootkits have moved to memory-residency to evade the detection 

by file integrity tools. The rootkits of the second generation modify 

the control flow to execute malicious code by using the hooking 

technique. By executing the malicious code, the return value or 

functionality requested from the OS can be altered. User-mode 

hooking is easy to detect compared to kernel-mode hooking, as it is 

implemented in the user-space. Kernel-mode hooking injects 

malicious code into the kernel-space via device driver which 

makes it difficult to detect by a user-mode intrusion detection 

system (IDS). System Service Descriptor Table (SSDT), Interrupt 

Descriptor Table (IDT) and I/O Request Packet (IRP) function 

tables are the most common target for implementing kernel hooks. 

The execution of malicious code by the second-generation rootkit 

leaves a memory footprint in both user-space and kernel-space that 

can be detected and analyzed. The rootkits of the third generation 

are mostly kernel-level rootkits. Though they have limited 

applications, they are difficult to detect as they modify the 

dynamic kernel data structures. Direct Kernel Object Manipulation 

(DKOM) attack, implemented by the third-generation rootkits, 

targets the dynamic data structures in kernel whose values change 

during runtime. We can summarize the action of the kernel-level 

rootkit into the following categories: System Service Hijacking 

(system call table hooking, replacing system call table), Dynamic 

Kernel Object Hooking (virtual file system hooking), and Direct 

Kernel Object Manipulation (DKOM). 

System Service Hijacking 
A system call is implemented in such way that it works as an 

interface between user-level processes and an OS. Through this 

interface, user-level programs access the system resources. All the 

actual system call routine memory addresses are stored in a table 

named System Service Descriptor Table (SSDT) or System Call 

Table. The kernel-level rootkits can attack the system call table in 

different ways. For example, attackers can modify the system call 

routine address in the system call table to replace the legitimate 

system call with their own malicious system call. By modifying the 

code in the target address, attackers can also change the control 

flow of a system call. The control flow is passed to the malicious 

code usually by injecting jump instructions. Additionally, attackers 

can overwrite the memory that stores the system call table address 

to replace the whole system call table with their own version of the 

system call table [32].  Another important hooking target is the 

Interrupt Descriptor Table (IDT). The processor uses the IDT to 

determine the correct response to interrupts and exceptions. As 

interrupts have no return values, interrupt requests can only be 

denied by hooking the IDT. In a multiprocessing system, an 

attacker needs to hook all IDTs as each CPU has its own IDT. 

Dynamic Kernel Object Hooking 
The OS kernel uses Virtual File System (VFS) to handle the 

file system operations across different types of file systems such as 

EXT2, EXT3, and NTFS. Thus, VFS is a layer between the actual 

file systems and the user-level programs that make the file 

handling system calls to access the files. Different data structures 

are used by VFS to achieve a common file model such as the file 

object, inode object, and dentry object. The kernel-level rootkit can 

modify the file object data structure field that contains a pointer to 

the file_operation structure (f_op) to hide without modifying the 

system call table. Function pointers to inode operation functions 

such as lookup function are stored in the inode data structure. The 

kernel-level rootkit can hide a process by modifying the function 

pointer of the lookup function for the process directory’s (/proc) 

inode data structure [33]. 

Direct Kernel Object Manipulation 
By using the DKOM technique, the kernel-level rootkits can 

also modify the kernel data structures. As the DKOM technique 

aims to modify dynamic kernel data structures, it is harder to detect 

than kernel hooking because the dynamic object changes during 

normal runtime operations. Malicious process hiding is a perfect 

example of the DKOM technique. EPROCESS data structure is the 

OS kernel’s representation of a process object. To hide a malicious 

process, kernel-level rootkits unlink the malicious process’s 

EPROCESS data structure that is maintained in a doubly linked 
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list. Unlinking an element from the process list implemented in a 

doubly linked list makes the process invisible to both user and 

kernel-mode programs. Other than process, Kernel device drivers, 

active ports can also be hidden by using this technique. 

Implementation of DKOM is extremely difficult because an 

incorrect change in OS kernel data structure may result in system 

crashes.  

IV. Characteristic Features of the Kernel-level 
Rootkit 

In this section, we will describe the important characteristic 

features of the Kernel-level rootkit and show how the features can 

be represented to train learning-based models. 

Modules 
Kernel-level rootkits are often loaded into the kernel as an 

LKM. When a kernel module is loaded into the kernel, 

LDR_DATA_TABLE_ENTRY, a metadata structure is generated 

to create a doubly linked list pointed to by PsLoadedModuleList. 

In Windows OS, Get-Module -ListAvailable command looks into 

C:\Program Files\WindowsPowerShell\Modules and 

C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules 

directories to list all modules loaded on the system [34]. In the 

Linux OS, the ‘lsmod’ command searches the /proc/modules 

directory for listing all loaded modules. If kernel-level rootkit 

hides the module from those directories using the file hiding 

technique, then user-level applications and utility tools will not 

find the malicious module. In that case, we can check the memory 

for the doubly linked list associated with the modules to find the 

hidden module. Unfortunately, the kernel-level rootkit can also 

modify the module’s doubly linked list by unlinking the 

corresponding entry using the DKOM technique to hide its 

presence (figure 1). In that case, we need to scan the memory to 

find out the unlinked module. 

 

Figure 1. Hiding module from the doubly linked list. 

The data structure entry for the malicious module will still be 

in the memory though it is unlinked from the doubly linked list. 

All unlinked and unloaded modules can be detected from volatile 

memory by using a pool tag scanning approach that looks for the 

pool tag (MmLd) associated with the kernel module in the physical 

address space [35]. If the module is not in the list of unloaded 

modules, that indicates an unlinked malicious module hidden by 

the kernel-level rootkit. In Windows OS, the Windows Debugger 

can be used to extract the list of unloaded modules. If the pool tag 

‘MmLd’ of the metadata structure LDR_DATA_TABLE_ENTRY 

is corrupted or destroyed by the kernel-level rootkit, a pool tag 

scanning in the physical memory address for DRIVER_OBJECT 

data structure reveals the list of kernel modules. 

Processes 
In Windows OS, an EPROCESS data structure is associated 

with each process and all active processes’ EPROCESS data 

structure creates a doubly linked list pointed to by 

PsActiveProcessHead (Figure 2). A kernel-level rootkit can hide 

processes from system utilities by hooking 

NtQuerySystemInformation. However, by checking the doubly 

linked list in the memory, a hidden process from the system utility 

can be detected when hooking is conducted. A kernel-level rootkit 

can also use the DKOM to unlink the process’s EPROCESS data 

structure from the doubly linked list for hiding the process 

information. The ActiveProcessLinks field in the EPROCESS data 

structure contains two members: Flink (forward link) points to the 

next EPROCESS data structure and Blink (backward link) points 

to the previous EPROCESS data structure. A kernel-level rootkit 

can modify this ActiveProcessLinks to unlink the malicious 

process from the doubly linked list. Each EPROCESS data 

structure contains a pool tag ‘Proc’ that is searchable in a pool tag 

scanning approach resulting in the detection of the unlinked 

process [35]. Inactive or terminated processes can also be detected 

if they reside in memory. When distinguishing the unlinked and 

terminated processes, the exit time of processes is useful. 

 

Figure 2. The doubly linked list of EPROCESS data structure. 

Threads 
A Thread is a flow of instruction execution within a process 

with an ETHREAD data structure. A thread that does not belong to 

any active module can be named as an orphan thread. The starting 

address of a thread (thread.StartAddress) points to the owning 

driver of that thread. If the start address of a thread does not match 

with any kernel module in the PsLoadedModuleList, this may 

indicate an orphan thread left by the kernel-level rootkit. A process 

can own multiple threads to perform parallel execution of 

instructions. Through the list-traversal in volatile memory, all the 

threads hidden from a utility debugger can be identified [36]. A 

pool tag ‘Thre’ scanning in physical memory can also detect all the 

hidden threads. As the ETHREAD data structure contains 

information about its parent process, it is possible to identify any 

hidden processes by carefully examining the thread information. 

Table 1 shows possible states for modules, processes, and threads 

information for the feature set.  

Kernel Hooks 
The SSDT is a critical target for kernel-level rootkit as it 

contains the system service routines pointers in kernel space. A 

kernel-level rootkit can overwrite the SSDT function pointers for 

pointing to malicious modules.   
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Table 1. Possible states for Modules, Processes, and Threads as a feature set. 

Feature 
Diff_1 Diff_2 Diff_3 Diff_4 Diff_5 Diff_6 Orphan Thread 

Label 

Normal 0 0 0 0 0 0 0 

Malicious 0 0 0 0 0 0 1 

Malicious 0 0 0 0 0 1 1/0 

Malicious 0 0 0 0 1 1/0 1/0 

Malicious 0 0 0 1 1/0 1/0 1/0 

Malicious 0 0 1 1/0 1/0 1/0 1/0 

Malicious 0 1 1/0 1/0 1/0 1/0 1/0 

Malicious 1 1/0 1/0 1/0 1/0 1/0 1/0 
Diff_1 = difference between system utility output and memory scanning of the doubly linked list for loaded modules. 
Diff_2 = difference between memory scanning of the doubly linked list and ‘MmLd’ pool tag scanning for loaded modules. 
Diff_3 = difference between memory scanning of the doubly linked list and pool tag scanning of DRIVER_OBJECT data structure for loaded modules.  
Diff_4 = difference between system utility output and memory scanning of the doubly linked list for active processes. 
Diff_5 = difference between memory scanning of the doubly linked list and ‘Proc’ pool tag scanning for active processes. 
Diff_6 = difference between utility debugger output and memory scanning for active threads

In Windows OS, the SSDT table stores the pointers to core 

kernel API functions of NT modules, and the SSDT shadow table 

stores the pointer to GUI related functions of win32k.sys module. 

Scanning all the ETHREAD objects in the memory and checking 

ETHREAD.Tcb.ServiceTable pointers make it easy to detect any 

modification of SSDT. The Interrupt Descriptor Table (IDT) that 

stores the function pointer of interrupt service routines or interrupt 

handlers is another critical target and the kernel-level rootkits can 

modify IDT entries to redirect the control flow to the malicious 

code for execution. By checking the memory of IDT, we can find 

the hooked IDT entry that resides outside the known clean memory 

region. It is possible to find the hooked address containing 

malicious code by checking the volatile memory. The kernel-level 

rootkit is not only limited to system table hooking. It can also 

target a function in the kernel and forcing it to jump to a memory 

address containing malicious code.  

Callbacks and Timers 
To monitor the occurrence of a particular event in the 

Windows OS, drivers need to be registered for a callback routine. 

The callback function allows the kernel-level rootkit driver to 

monitor system activities and take different malicious actions 

accordingly [37]. For example, a kernel-level rootkit can install a 

callback routine for monitoring process execution and termination 

on the system. Similar to callbacks, a kernel-level rootkit can 

create a timer to get notification of a specific time elapsed. A 

kernel-level rootkit can schedule periodic operations by using this 

functionality. We can check the volatile memory for callback 

objects and timer objects to find any malicious or unknown 

modules indicating a kernel-level rootkit. 

Special Machine Registers 
This feature section is similar to the features suggested by Lee 

and Nadim [31]. The kernel-level rootkits can tamper with the 

machine register values to alter the kernel control flow and that 

makes the machine registers an important feature to detect the 

kernel-level rootkit. Machine registers were focused on prior 

research to monitor the integrity of the kernel and any violation of 

integrity indicates a kernel-level rootkit detection [9, 38, 39]. Since 

some machine registers hold the memory location of important 

kernel tables, by altering the value of the register, kernel-level 

rootkits can redirect the control flow to the memory address where 

malicious executables reside. After system boot, the value stored in 

some machine registers become fixed. That means any alteration to 

those machine registers will indicate suspicious activity.  

Interrupt Descriptor Table register 
The IDT is a data structure that stores the list of interrupt 

descriptors to determine the correct response of interrupts and 

exceptions. Interrupt descriptor table register (IDTR) stores both 

the physical base address and length of the IDT. Using the Load 

instruction of IDT (LIDT) the kernel-level rootkit can change the 

base address of the IDT and redirect all interrupt requests to the 

malicious address. The process of changing the value stored in the 

IDTR register using the load instruction (LIDT) is well described 

by Kad [40]. A traditional security scanner may check the integrity 

of the old IDT and the kernel-level rootkit will remain undetected. 

So, the write operation to the IDTR can be incorporated into the 

feature set of the learning model. 

Global and Local Descriptor Table registers 
The characteristics of various memory areas used during the 

program execution are defined in the global descriptor table (GDT) 

and the local descriptor table (LDT) data structures. GDT contains 

the global segment (memory area), while LDT contains a program-

specific private memory segment. Global descriptor table register 

(GDTR), and local descriptor table register (LDTR) stores the 

value that points to GDT and LDT, respectively. Kernel-level 

rootkits can modify these register values to point to the memory 

address where a malicious executable exists [27]. 

Cr0 Control register 
The general behavior of the CPU and other devices can be 

controlled or changed by the control registers [41]. cr0 is a 32-bit 

control register with various flags that can modify the basic 

operation of the processor. For the write protection, the 16th bit of 

the cr0 register is used. If it is set, then the CPU will not be able to 

write to the read-only memory section. 16th bit of cr0 register can 

be modified to bypass the write protection and the kernel-level 

rootkit can then write malicious executable in the read-only 

memory or hook SSDT [27]. The technique of SSDT hooking by 

modifying the cr0 register has been described by Dejan [42]. Some 

legitimate kernel drivers like Anti-virus or firewall products may 

need to modify cr0 register. It is still an important feature to 

incorporate into the learning model.  

Table 2 shows possible states for the kernel hooks, callbacks 

and timers, and special machine  registers as feature set. 
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Table 2. Possible states for Kernel hooks, Callbacks and Timers, and Special Machine Registers as feature set. 

Feature SSDT 
hook 

IDT 
hook 

Inline 
hook 

Abnormal 
callbacks 

Abnormal 
timers 

IDTR value 
changed 

GDTR 
value 
changed 

cr0 value 
changed 

Label 

Normal 0 0 0 0 0 0 0 1/0 

Malicious 0 0 0 0 0 0 1 1/0 

Malicious 0 0 0 0 0 1 1/0 1/0 

Malicious 0 0 0 0 1 1/0 1/0 1/0 

Malicious 0 0 0 1 1/0 1/0 1/0 1/0 

Malicious 0 0 1 1/0 1/0 1/0 1/0 1/0 

Malicious 0 1 1/0 1/0 1/0 1/0 1/0 1/0 

Malicious 1 1/0 1/0 1/0 1/0 1/0 1/0 1/0 

 

The write protection bit of the cr0 register in Linux can be 

disabled as follows: 

write_cr0(read_cr0( ) & (~ 0x10000)) 

After the malicious write operation, the write protection bit of 

the cr0 register needs to be reset, otherwise, the system will crash. 

It can be reset as follows: 

write_cr0(read_cr0( ) | 0x10000) 

V. Useful Tools for Feature Collection 
Memory forensic is widely used in prior research to detect the 

malicious behavior of the computer system. Kernel-level rootkit 

behaviors such as malicious code injection, hooking, process 

hiding, module hiding, etc. can be easily detected by memory 

forensic techniques. Prior works have used volatile memory to 

detect the kernel-level rootkit [29, 43 - 46]. The most commonly 

used memory forensic framework is Volatility [30]. It can extract 

digital artifacts from volatile memory without interrupting the 

system being investigated. This open-source tool supports all three 

major OS (Windows, Linux, and macOS). Other memory forensic 

tools such as BlackLight[47], SANS SIFT[48] can also be used to 

analyze the volatile memory. The volatility framework does not 

provide memory acquisition capability, but it is flexible to support 

the different file formats of volatile memory.  

The detection system can be isolated from the target OS by 

running the target OS in a virtualized environment. VirtualBox 

[49] is one of the most popular open-source hypervisors to create 

virtual environments. Command-line tools can be used to read the 

machine register value of a target OS running inside a virtual 

machine. For example, the ‘VBoxManage debugvm vm_name 

getregisters idtr’ command will return the value stored in the IDTR 

register (base address and length of IDT). ‘VBoxManage debugvm 

vm_name getregisters gdtr’ command, ‘VBoxManage debugvm 

vm_name getregisters cr0’ command will return the value stored in 

the GDTR register and cr0 register, respectively. Here, vm_name 

in the command will be the name of the virtual machine. These 

values can be stored for a clean system and checked later for 

detecting any modification. Different system utility tools can be 

used to construct lists of modules and processes inside the host. 

Windows (tasklist, driverquery), Linux (lsmod, ps aux) have their 

own implementation of system utility tools. Then socket 

connection can be used to send the lists to the detection system 

outside the host for a view comparison. 

 

VI. Conclusion and Future Work 
In this paper, we elaborately describe and suggest some 

characteristic features of the kernel-level rootkit and how they can 

be represented to train learning-based models. We also suggest 

some useful tools that can be used to collect the features. Volatile 

memory traces used in prior research have flaws to detect the 

transient attacks. We include some characteristic features of the 

kernel-level rootkit that will come from continuous monitoring so 

that the transient attacks can be detected. Our future work includes 

creating an open-source dataset and then train learning-based 

models to detect the kernel-level rootkit.  
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