

Characteristic Features of the Kernel-level Rootkit for Learning-

based Detection Model Training

Mohammad Nadim; Department of Electrical & Computer Engineering, University of Texas at San Antonio; San Antonio, Texas, USA

Wonjun Lee; The Katz School of Science and Health, Yeshiva University; New York City, New York, USA

David Akopian; Department of Electrical & Computer Engineering, University of Texas at San Antonio; San Antonio, Texas, USA

Abstract
The core part of the operating system is the kernel, and it

plays an important role in managing critical data structure

resources for correct operations. The kernel-level rootkits are the

most elusive type of malware that can modify the running OS

kernel in order to hide its presence and perform many malicious

activities such as process hiding, module hiding, network

communication hiding, and many more. In the past years, many

approaches have been proposed to detect kernel-level rootkit. Still,

it is challenging to detect new attacks and properly categorize the

kernel-level rootkits. Memory forensic approaches showed efficient

results with the limitation against transient attacks. Cross-view-

based and integrity monitoring-based approaches have their own

weaknesses. A learning-based detection approach is an excellent

way to solve these problems. In this paper, we give an insight into

the kernel-level rootkit characteristic features and how the features

can be represented to train learning-based models in order to

detect known and unknown attacks. Our feature set combined the

memory forensic, cross-view, and integrity features to train

learning-based detection models. We also suggest useful tools that

can be used to collect the characteristics features of the kernel-

level rootkit.

Keywords: Cyber-security, Digital forensic, Kernel-level

rootkit, Machine Learning.

Introduction
A Kernel-level rootkit is one of the most elusive types of

malware in recent years. It can exploit the vulnerabilities existing

in the operating system (OS) kernel to hide its presence and

malicious activities. It is difficult for user-level applications to

detect kernel-level rootkit as it operates in the kernel with the

highest privileges. The stealthy nature of the kernel-level rootkit

makes it the most lethal and sophisticated attacking tool for cyber

offenders. ZeroAccess malware used rootkit techniques to hide in

an infected machine and was used to download other malware

from a botnet [1]. It infected millions of Microsoft Windows OS

machines. Zacinlo malware leverages rootkit technique to

propagate adware in Windows 10 OS [2]. Most of the traditional

security systems are focused on user-level threats and failed to

detect the kernel-level rootkit.

 According to Hoglund and Butler, a rootkit is a set of

programs that remain undetected on a computer and have a

permanent effect [3]. Rootkits can be categorized into five

different classes: user-level, kernel-level, hypervisor-level, boot-

kits, and firmware rootkits. In this paper, we only focus on the

kernel-level rootkit. Many approaches have been proposed to

detect the kernel-level rootkit. Signature-based approaches may

check the kernel module static signatures [4] or data access

signatures of the kernel dynamic objects [5]. Behavior-based

detection approaches may check the kernel memory access

behavior [6], analyze the execution path [7], abnormal behavior

within a herd [8], or data structure invariants behavior [9]. Another

approach for detecting the kernel-level rootkit is cross-view-based

detection. The basic idea of cross-view-based detection is to

compare two different views of the system [10, 11]. Volatile

memory traces are a great source to construct an unmodified view

for the kernel-level rootkit detection [12]. The kernel-level rootkits

can tamper with the integrity of both the static region and the

dynamic region of the OS. While some research focuses on only

static region integrity, recent research focuses on dynamic region

integrity as modern kernel-level rootkits mostly alter the dynamic

data structures. The integrity-based detection approaches focusing

on static regions either check the write attempt to read-only

memory section [13, 14] or periodically check the hash of the

known memory region [15, 16]. By verifying the function pointers

or kernel data-layout partitioning [17] dynamic region integrity can

be checked. External hardware can also be used to detect the

kernel-level rootkit [18, 19, 20, 21].

With the increase of cybercrime in recent years, the automatic

detection of known and unknown attacks now become important in

modern security systems. A learning-based detection is an

excellent approach to automatically detect known and unknown

attacks with high accuracy. The purpose of this paper is to have an

insight into the kernel-level rootkit characteristic features and how

the features can be represented to train learning-based models in

order to detect known and unknown kernel-level rootkit attacks.

Also, to get familiar with the tools that can be used to collect the

features.

The rest of the paper is composed as follows: prior research

on learning-based kernel-level rootkit detection is introduced in

Section II. A brief discussion about the kernel-level rootkit is

discussed in Section III. The characteristic features of the kernel-

level rootkit are elaborately described in Section IV, followed by

the useful tools to collect the features in Section V. Finally, we

conclude this paper with future research direction in Section VI.

II. Related Works
There has been a race between kernel-level rootkit evolution

and detection approaches. The researchers are now focusing on

learning-based detection techniques to detect kernel-level rootkit

because machine learning and deep learning technology have

proved high accuracy to automatically detect known and unknown

malware. Researchers have trained learning models with a variety

of features to detect kernel-level rootkit such as hardware events

counts using hardware performance counter (HPC) [22], virtual

memory access pattern of an application [23], or system call

execution times [24]. These features have some limitations in

detecting the DKOM attack. A learning algorithm is applied to a

set of kernel driver run-time features derived from the execution

behavior using an emulator [25]. The additional delay in driver

loading time is a weakness of this approach to detect kernel-level

IS&T International Symposium on Electronic Imaging 2021
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2021 034-1

https://doi.org/10.2352/ISSN.2470-1173.2021.3.MOBMU-034
© 2021, Society for Imaging Science and Technology

rootkit. The obfuscation technique employed in kernel-level rootkit

binaries makes the static analysis difficult. Still, the kernel-level

rootkit can be detected through static analysis by disassembling the

kernel driver and extract features like general behavior,

communications, suspicious behaviors, etc. [26]. As the detector

work inside the host in this detection system, the detector is

vulnerable to the advanced kernel-level rootkit. Tian et al. [27]

experimented with behavior features of the kernel module to train

multiple machine learning algorithms. The features included

important kernel API invocation, executing code in the kernel data

region, write operation to a kernel memory area, write operation to

important hardware registers, etc. The authors isolate the kernel

module memory which may introduce significant overhead.

Hardware events like data dependencies between registers, OS

privilege transition, and branches in program execution flow can

be involved to interpret the program data/control transfer flow

features. Zhou and Makris [28] introduced a hardware-assisted

machine learning-based rootkit detection mechanism that first

identifies the process class using machine learning algorithms and

then employs Kernel Density Estimation (KDE) to indicate a

compromise in process behavior caused by a kernel-level rootkit.

Wang et al. [29] proposed a machine learning-based trusted

kernel rootkit detection method. They combine the memory

forensic analysis with bio-inspired machine learning technology.

The training features are extracted from volatile memory dumps

using the Volatility framework [30]. The extracted features include

hidden kernel modules, device tree, the SSDT function, callbacks,

timers, orphan threads, and driver objects. Seven different machine

learning classifiers are used to train the model and detect kernel

rootkits. Lee and Nadim suggested some key features of the

kernel-level rootkit and showed some possible attack scenarios in

the container-based cloud computing system [31].

Our kernel-level rootkit features are closely related to the

features used by Wang et al. [29]. The advantage of using volatile

memory traces is that the detection system can be implemented

separately. The drawback of this approach is that the attack can

happen between snapping two volatile memory traces (transient

attack). We explain the characteristic features more elaborately.

We also represent all possible states of the features and how they

can be labeled as normal or malicious to train learning-based

models. Importantly, we tried to cover some features that will not

be affected by the transient attack. Some cross-view features and

integrity features are also included in our feature set. In the feature

set ‘1’ indicates the presence of a feature and ‘0’ indicates the

absence.

III. Kernel-level Rootkit
The rootkits of the first generation are mainly user-level

rootkits that conceal themselves as disk-resident system programs

by mimicking the system process files. Those rootkits are easy to

detect and remove by using file integrity tools. So, the modern

rootkits have moved to memory-residency to evade the detection

by file integrity tools. The rootkits of the second generation modify

the control flow to execute malicious code by using the hooking

technique. By executing the malicious code, the return value or

functionality requested from the OS can be altered. User-mode

hooking is easy to detect compared to kernel-mode hooking, as it is

implemented in the user-space. Kernel-mode hooking injects

malicious code into the kernel-space via device driver which

makes it difficult to detect by a user-mode intrusion detection

system (IDS). System Service Descriptor Table (SSDT), Interrupt

Descriptor Table (IDT) and I/O Request Packet (IRP) function

tables are the most common target for implementing kernel hooks.

The execution of malicious code by the second-generation rootkit

leaves a memory footprint in both user-space and kernel-space that

can be detected and analyzed. The rootkits of the third generation

are mostly kernel-level rootkits. Though they have limited

applications, they are difficult to detect as they modify the

dynamic kernel data structures. Direct Kernel Object Manipulation

(DKOM) attack, implemented by the third-generation rootkits,

targets the dynamic data structures in kernel whose values change

during runtime. We can summarize the action of the kernel-level

rootkit into the following categories: System Service Hijacking

(system call table hooking, replacing system call table), Dynamic

Kernel Object Hooking (virtual file system hooking), and Direct

Kernel Object Manipulation (DKOM).

System Service Hijacking
A system call is implemented in such way that it works as an

interface between user-level processes and an OS. Through this

interface, user-level programs access the system resources. All the

actual system call routine memory addresses are stored in a table

named System Service Descriptor Table (SSDT) or System Call

Table. The kernel-level rootkits can attack the system call table in

different ways. For example, attackers can modify the system call

routine address in the system call table to replace the legitimate

system call with their own malicious system call. By modifying the

code in the target address, attackers can also change the control

flow of a system call. The control flow is passed to the malicious

code usually by injecting jump instructions. Additionally, attackers

can overwrite the memory that stores the system call table address

to replace the whole system call table with their own version of the

system call table [32]. Another important hooking target is the

Interrupt Descriptor Table (IDT). The processor uses the IDT to

determine the correct response to interrupts and exceptions. As

interrupts have no return values, interrupt requests can only be

denied by hooking the IDT. In a multiprocessing system, an

attacker needs to hook all IDTs as each CPU has its own IDT.

Dynamic Kernel Object Hooking
The OS kernel uses Virtual File System (VFS) to handle the

file system operations across different types of file systems such as

EXT2, EXT3, and NTFS. Thus, VFS is a layer between the actual

file systems and the user-level programs that make the file

handling system calls to access the files. Different data structures

are used by VFS to achieve a common file model such as the file

object, inode object, and dentry object. The kernel-level rootkit can

modify the file object data structure field that contains a pointer to

the file_operation structure (f_op) to hide without modifying the

system call table. Function pointers to inode operation functions

such as lookup function are stored in the inode data structure. The

kernel-level rootkit can hide a process by modifying the function

pointer of the lookup function for the process directory’s (/proc)

inode data structure [33].

Direct Kernel Object Manipulation
By using the DKOM technique, the kernel-level rootkits can

also modify the kernel data structures. As the DKOM technique

aims to modify dynamic kernel data structures, it is harder to detect

than kernel hooking because the dynamic object changes during

normal runtime operations. Malicious process hiding is a perfect

example of the DKOM technique. EPROCESS data structure is the

OS kernel’s representation of a process object. To hide a malicious

process, kernel-level rootkits unlink the malicious process’s

EPROCESS data structure that is maintained in a doubly linked

034-2
IS&T International Symposium on Electronic Imaging 2021

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2021

list. Unlinking an element from the process list implemented in a

doubly linked list makes the process invisible to both user and

kernel-mode programs. Other than process, Kernel device drivers,

active ports can also be hidden by using this technique.

Implementation of DKOM is extremely difficult because an

incorrect change in OS kernel data structure may result in system

crashes.

IV. Characteristic Features of the Kernel-level
Rootkit

In this section, we will describe the important characteristic

features of the Kernel-level rootkit and show how the features can

be represented to train learning-based models.

Modules
Kernel-level rootkits are often loaded into the kernel as an

LKM. When a kernel module is loaded into the kernel,

LDR_DATA_TABLE_ENTRY, a metadata structure is generated

to create a doubly linked list pointed to by PsLoadedModuleList.

In Windows OS, Get-Module -ListAvailable command looks into

C:\Program Files\WindowsPowerShell\Modules and

C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules

directories to list all modules loaded on the system [34]. In the

Linux OS, the ‘lsmod’ command searches the /proc/modules

directory for listing all loaded modules. If kernel-level rootkit

hides the module from those directories using the file hiding

technique, then user-level applications and utility tools will not

find the malicious module. In that case, we can check the memory

for the doubly linked list associated with the modules to find the

hidden module. Unfortunately, the kernel-level rootkit can also

modify the module’s doubly linked list by unlinking the

corresponding entry using the DKOM technique to hide its

presence (figure 1). In that case, we need to scan the memory to

find out the unlinked module.

Figure 1. Hiding module from the doubly linked list.

The data structure entry for the malicious module will still be

in the memory though it is unlinked from the doubly linked list.

All unlinked and unloaded modules can be detected from volatile

memory by using a pool tag scanning approach that looks for the

pool tag (MmLd) associated with the kernel module in the physical

address space [35]. If the module is not in the list of unloaded

modules, that indicates an unlinked malicious module hidden by

the kernel-level rootkit. In Windows OS, the Windows Debugger

can be used to extract the list of unloaded modules. If the pool tag

‘MmLd’ of the metadata structure LDR_DATA_TABLE_ENTRY

is corrupted or destroyed by the kernel-level rootkit, a pool tag

scanning in the physical memory address for DRIVER_OBJECT

data structure reveals the list of kernel modules.

Processes
In Windows OS, an EPROCESS data structure is associated

with each process and all active processes’ EPROCESS data

structure creates a doubly linked list pointed to by

PsActiveProcessHead (Figure 2). A kernel-level rootkit can hide

processes from system utilities by hooking

NtQuerySystemInformation. However, by checking the doubly

linked list in the memory, a hidden process from the system utility

can be detected when hooking is conducted. A kernel-level rootkit

can also use the DKOM to unlink the process’s EPROCESS data

structure from the doubly linked list for hiding the process

information. The ActiveProcessLinks field in the EPROCESS data

structure contains two members: Flink (forward link) points to the

next EPROCESS data structure and Blink (backward link) points

to the previous EPROCESS data structure. A kernel-level rootkit

can modify this ActiveProcessLinks to unlink the malicious

process from the doubly linked list. Each EPROCESS data

structure contains a pool tag ‘Proc’ that is searchable in a pool tag

scanning approach resulting in the detection of the unlinked

process [35]. Inactive or terminated processes can also be detected

if they reside in memory. When distinguishing the unlinked and

terminated processes, the exit time of processes is useful.

Figure 2. The doubly linked list of EPROCESS data structure.

Threads
A Thread is a flow of instruction execution within a process

with an ETHREAD data structure. A thread that does not belong to

any active module can be named as an orphan thread. The starting

address of a thread (thread.StartAddress) points to the owning

driver of that thread. If the start address of a thread does not match

with any kernel module in the PsLoadedModuleList, this may

indicate an orphan thread left by the kernel-level rootkit. A process

can own multiple threads to perform parallel execution of

instructions. Through the list-traversal in volatile memory, all the

threads hidden from a utility debugger can be identified [36]. A

pool tag ‘Thre’ scanning in physical memory can also detect all the

hidden threads. As the ETHREAD data structure contains

information about its parent process, it is possible to identify any

hidden processes by carefully examining the thread information.

Table 1 shows possible states for modules, processes, and threads

information for the feature set.

Kernel Hooks
The SSDT is a critical target for kernel-level rootkit as it

contains the system service routines pointers in kernel space. A

kernel-level rootkit can overwrite the SSDT function pointers for

pointing to malicious modules.

IS&T International Symposium on Electronic Imaging 2021
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2021 034-3

Table 1. Possible states for Modules, Processes, and Threads as a feature set.

Feature
Diff_1 Diff_2 Diff_3 Diff_4 Diff_5 Diff_6 Orphan Thread

Label

Normal 0 0 0 0 0 0 0

Malicious 0 0 0 0 0 0 1

Malicious 0 0 0 0 0 1 1/0

Malicious 0 0 0 0 1 1/0 1/0

Malicious 0 0 0 1 1/0 1/0 1/0

Malicious 0 0 1 1/0 1/0 1/0 1/0

Malicious 0 1 1/0 1/0 1/0 1/0 1/0

Malicious 1 1/0 1/0 1/0 1/0 1/0 1/0
Diff_1 = difference between system utility output and memory scanning of the doubly linked list for loaded modules.
Diff_2 = difference between memory scanning of the doubly linked list and ‘MmLd’ pool tag scanning for loaded modules.
Diff_3 = difference between memory scanning of the doubly linked list and pool tag scanning of DRIVER_OBJECT data structure for loaded modules.
Diff_4 = difference between system utility output and memory scanning of the doubly linked list for active processes.
Diff_5 = difference between memory scanning of the doubly linked list and ‘Proc’ pool tag scanning for active processes.
Diff_6 = difference between utility debugger output and memory scanning for active threads

In Windows OS, the SSDT table stores the pointers to core

kernel API functions of NT modules, and the SSDT shadow table

stores the pointer to GUI related functions of win32k.sys module.

Scanning all the ETHREAD objects in the memory and checking

ETHREAD.Tcb.ServiceTable pointers make it easy to detect any

modification of SSDT. The Interrupt Descriptor Table (IDT) that

stores the function pointer of interrupt service routines or interrupt

handlers is another critical target and the kernel-level rootkits can

modify IDT entries to redirect the control flow to the malicious

code for execution. By checking the memory of IDT, we can find

the hooked IDT entry that resides outside the known clean memory

region. It is possible to find the hooked address containing

malicious code by checking the volatile memory. The kernel-level

rootkit is not only limited to system table hooking. It can also

target a function in the kernel and forcing it to jump to a memory

address containing malicious code.

Callbacks and Timers
To monitor the occurrence of a particular event in the

Windows OS, drivers need to be registered for a callback routine.

The callback function allows the kernel-level rootkit driver to

monitor system activities and take different malicious actions

accordingly [37]. For example, a kernel-level rootkit can install a

callback routine for monitoring process execution and termination

on the system. Similar to callbacks, a kernel-level rootkit can

create a timer to get notification of a specific time elapsed. A

kernel-level rootkit can schedule periodic operations by using this

functionality. We can check the volatile memory for callback

objects and timer objects to find any malicious or unknown

modules indicating a kernel-level rootkit.

Special Machine Registers
This feature section is similar to the features suggested by Lee

and Nadim [31]. The kernel-level rootkits can tamper with the

machine register values to alter the kernel control flow and that

makes the machine registers an important feature to detect the

kernel-level rootkit. Machine registers were focused on prior

research to monitor the integrity of the kernel and any violation of

integrity indicates a kernel-level rootkit detection [9, 38, 39]. Since

some machine registers hold the memory location of important

kernel tables, by altering the value of the register, kernel-level

rootkits can redirect the control flow to the memory address where

malicious executables reside. After system boot, the value stored in

some machine registers become fixed. That means any alteration to

those machine registers will indicate suspicious activity.

Interrupt Descriptor Table register
The IDT is a data structure that stores the list of interrupt

descriptors to determine the correct response of interrupts and

exceptions. Interrupt descriptor table register (IDTR) stores both

the physical base address and length of the IDT. Using the Load

instruction of IDT (LIDT) the kernel-level rootkit can change the

base address of the IDT and redirect all interrupt requests to the

malicious address. The process of changing the value stored in the

IDTR register using the load instruction (LIDT) is well described

by Kad [40]. A traditional security scanner may check the integrity

of the old IDT and the kernel-level rootkit will remain undetected.

So, the write operation to the IDTR can be incorporated into the

feature set of the learning model.

Global and Local Descriptor Table registers
The characteristics of various memory areas used during the

program execution are defined in the global descriptor table (GDT)

and the local descriptor table (LDT) data structures. GDT contains

the global segment (memory area), while LDT contains a program-

specific private memory segment. Global descriptor table register

(GDTR), and local descriptor table register (LDTR) stores the

value that points to GDT and LDT, respectively. Kernel-level

rootkits can modify these register values to point to the memory

address where a malicious executable exists [27].

Cr0 Control register
The general behavior of the CPU and other devices can be

controlled or changed by the control registers [41]. cr0 is a 32-bit

control register with various flags that can modify the basic

operation of the processor. For the write protection, the 16th bit of

the cr0 register is used. If it is set, then the CPU will not be able to

write to the read-only memory section. 16th bit of cr0 register can

be modified to bypass the write protection and the kernel-level

rootkit can then write malicious executable in the read-only

memory or hook SSDT [27]. The technique of SSDT hooking by

modifying the cr0 register has been described by Dejan [42]. Some

legitimate kernel drivers like Anti-virus or firewall products may

need to modify cr0 register. It is still an important feature to

incorporate into the learning model.

Table 2 shows possible states for the kernel hooks, callbacks

and timers, and special machine registers as feature set.

034-4
IS&T International Symposium on Electronic Imaging 2021

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2021

Table 2. Possible states for Kernel hooks, Callbacks and Timers, and Special Machine Registers as feature set.

Feature SSDT
hook

IDT
hook

Inline
hook

Abnormal
callbacks

Abnormal
timers

IDTR value
changed

GDTR
value
changed

cr0 value
changed

Label

Normal 0 0 0 0 0 0 0 1/0

Malicious 0 0 0 0 0 0 1 1/0

Malicious 0 0 0 0 0 1 1/0 1/0

Malicious 0 0 0 0 1 1/0 1/0 1/0

Malicious 0 0 0 1 1/0 1/0 1/0 1/0

Malicious 0 0 1 1/0 1/0 1/0 1/0 1/0

Malicious 0 1 1/0 1/0 1/0 1/0 1/0 1/0

Malicious 1 1/0 1/0 1/0 1/0 1/0 1/0 1/0

The write protection bit of the cr0 register in Linux can be

disabled as follows:

write_cr0(read_cr0() & (~ 0x10000))

After the malicious write operation, the write protection bit of

the cr0 register needs to be reset, otherwise, the system will crash.

It can be reset as follows:

write_cr0(read_cr0() | 0x10000)

V. Useful Tools for Feature Collection
Memory forensic is widely used in prior research to detect the

malicious behavior of the computer system. Kernel-level rootkit

behaviors such as malicious code injection, hooking, process

hiding, module hiding, etc. can be easily detected by memory

forensic techniques. Prior works have used volatile memory to

detect the kernel-level rootkit [29, 43 - 46]. The most commonly

used memory forensic framework is Volatility [30]. It can extract

digital artifacts from volatile memory without interrupting the

system being investigated. This open-source tool supports all three

major OS (Windows, Linux, and macOS). Other memory forensic

tools such as BlackLight[47], SANS SIFT[48] can also be used to

analyze the volatile memory. The volatility framework does not

provide memory acquisition capability, but it is flexible to support

the different file formats of volatile memory.

The detection system can be isolated from the target OS by

running the target OS in a virtualized environment. VirtualBox

[49] is one of the most popular open-source hypervisors to create

virtual environments. Command-line tools can be used to read the

machine register value of a target OS running inside a virtual

machine. For example, the ‘VBoxManage debugvm vm_name

getregisters idtr’ command will return the value stored in the IDTR

register (base address and length of IDT). ‘VBoxManage debugvm

vm_name getregisters gdtr’ command, ‘VBoxManage debugvm

vm_name getregisters cr0’ command will return the value stored in

the GDTR register and cr0 register, respectively. Here, vm_name

in the command will be the name of the virtual machine. These

values can be stored for a clean system and checked later for

detecting any modification. Different system utility tools can be

used to construct lists of modules and processes inside the host.

Windows (tasklist, driverquery), Linux (lsmod, ps aux) have their

own implementation of system utility tools. Then socket

connection can be used to send the lists to the detection system

outside the host for a view comparison.

VI. Conclusion and Future Work
In this paper, we elaborately describe and suggest some

characteristic features of the kernel-level rootkit and how they can

be represented to train learning-based models. We also suggest

some useful tools that can be used to collect the features. Volatile

memory traces used in prior research have flaws to detect the

transient attacks. We include some characteristic features of the

kernel-level rootkit that will come from continuous monitoring so

that the transient attacks can be detected. Our future work includes

creating an open-source dataset and then train learning-based

models to detect the kernel-level rootkit.

References
[1] The ZeroAccess Rootkit. J. Wyke and S. Labs. 2020. Retrieved from:

https://nakedsecurity.sophos.com/zeroaccess/.

[2] Zacinlo malware ad fraud. 2020. Retrieved from:

https://labs.bitdefender.com/2018/06/six-years-and-counting-inside-

the-complex-zacinlo-ad-fraud-operation/

[3] Hoglund, G. and Butler, J., 2006. Rootkits: subverting the Windows

kernel. Addison-Wesley Professional.

[4] Kruegel, C., Robertson, W. and Vigna, G., 2004. Detecting kernel-

level rootkits through binary analysis. In 20th Annual Computer

Security Applications Conference (pp. 91-100). IEEE.

[5] Rhee, J., Lin, Z. and Xu, D., 2011. Characterizing kernel malware

behavior with kernel data access patterns. In Proceedings of the 6th

ACM Symposium on Information, Computer and Communications

Security (pp. 207-216).

[6] Rhee, J., Riley, R., Xu, D. and Jiang, X., 2009, March. Defeating

dynamic data kernel rootkit attacks via vmm-based guest-transparent

monitoring. In 2009 international conference on availability,

reliability and security (pp. 74-81). IEEE.

[7] Wang, X. and Karri, R., 2013, May. Numchecker: Detecting kernel

control-flow modifying rootkits by using hardware performance

counters. In 2013 50th ACM/EDAC/IEEE Design Automation

Conference (DAC) (pp. 1-7). IEEE.

[8] Bianchi, A., Shoshitaishvili, Y., Kruegel, C. and Vigna, G., 2012,

October. Blacksheep: detecting compromised hosts in homogeneous

crowds. In Proceedings of the 2012 ACM conference on Computer

and communications security (pp. 341-352).

[9] Hofmann, O.S., Dunn, A.M., Kim, S., Roy, I. and Witchel, E., 2011.

Ensuring operating system kernel integrity with OSck. ACM

SIGARCH Computer Architecture News, 39(1), pp.279-290.

[10] Wang, Y.M., Beck, D., Vo, B., Roussev, R. and Verbowski, C., 2005,

June. Detecting stealth software with strider ghostbuster. In 2005

International Conference on Dependable Systems and Networks

(DSN'05) (pp. 368-377). IEEE.

[11] Rhee, J., Riley, R., Xu, D. and Jiang, X., 2010, September. Kernel

malware analysis with un-tampered and temporal views of dynamic

IS&T International Symposium on Electronic Imaging 2021
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2021 034-5

https://nakedsecurity.sophos.com/zeroaccess/

kernel memory. In International Workshop on Recent Advances in

Intrusion Detection (pp. 178-197). Springer, Berlin, Heidelberg.

[12] Hua, Q. and Zhang, Y., 2015, October. Detecting malware and rootkit

via memory forensics. In 2015 International Conference on Computer

Science and Mechanical Automation (CSMA) (pp. 92-96). IEEE.

[13] Garfinkel, T. and Rosenblum, M., 2003, February. A virtual machine

introspection-based architecture for intrusion detection. In Ndss (Vol.

3, No. 2003, pp. 191-206).

[14] Baliga, A., Chen, X. and Iftode, L., 2006. Paladin: Automated

detection and containment of rootkit attacks. Department of

Computer Science, Rutgers University.

[15] Quynh, N.A. and Takefuji, Y., 2007, March. Towards a tamper-

resistant kernel rootkit detector. In Proceedings of the 2007 ACM

symposium on Applied computing (pp. 276-283).

[16] Petroni Jr, N.L. and Hicks, M., 2007, October. Automated detection

of persistent kernel control-flow attacks. In Proceedings of the 14th

ACM conference on Computer and communications security (pp.

103-115).

[17] Srivastava, A. and Giffin, J., 2012, December. Efficient protection of

kernel data structures via object partitioning. In Proceedings of the

28th annual computer security applications conference (pp. 429-438).

[18] Petroni Jr, N.L., Fraser, T., Molina, J. and Arbaugh, W.A., 2004,

August. Copilot-a Coprocessor-based Kernel Runtime Integrity

Monitor. In USENIX security symposium (pp. 179-194).

[19] Baliga, A., Ganapathy, V. and Iftode, L., 2010. Detecting kernel-level

rootkits using data structure invariants. IEEE Transactions on

Dependable and Secure Computing, 8(5), pp.670-684.

[20] Moon, H., Lee, H., Lee, J., Kim, K., Paek, Y. and Kang, B.B., 2012,

October. Vigilare: toward snoop-based kernel integrity monitor. In

Proceedings of the 2012 ACM conference on Computer and

communications security (pp. 28-37).

[21] Lee, H., Moon, H., Jang, D., Kim, K., Lee, J., Paek, Y. and Kang,

B.B., 2013. Ki-mon: A hardware-assisted event-triggered monitoring

platform for mutable kernel object. In 22nd {USENIX} Security

Symposium ({USENIX} Security 13) (pp. 511-526).

[22] Singh, B., Evtyushkin, D., Elwell, J., Riley, R. and Cervesato, I.,

2017, April. On the detection of kernel-level rootkits using hardware

performance counters. In Proceedings of the 2017 ACM on Asia

Conference on Computer and Communications Security (pp. 483-

493).

[23] Xu, Z., Ray, S., Subramanyan, P. and Malik, S., 2017, March.

Malware detection using machine learning based analysis of virtual

memory access patterns. In Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2017 (pp. 169-174). IEEE.

[24] Luckett, P., McDonald, J.T. and Dawson, J., 2016, April. Neural

network analysis of system call timing for rootkit detection. In 2016

Cybersecurity Symposium (CYBERSEC) (pp. 1-6). IEEE.

[25] Wilhelm, J. and Chiueh, T.C., 2007, September. A forced sampled

execution approach to kernel rootkit identification. In International

Workshop on Recent Advances in Intrusion Detection (pp. 219-235).

Springer, Berlin, Heidelberg.

[26] Musavi, S.A. and Kharrazi, M., 2014. Back to static analysis for

kernel-level rootkit detection. IEEE Transactions on Information

Forensics and Security, 9(9), pp.1465-1476.

[27] Tian, D., Ma, R., Jia, X. and Hu, C., 2019. A Kernel Rootkit

Detection Approach Based on Virtualization and Machine Learning.

IEEE Access, 7, pp.91657-91666.

[28] Zhou, L. and Makris, Y., 2018, March. Hardware-assisted rootkit

detection via on-line statistical fingerprinting of process execution. In

2018 Design, Automation & Test in Europe Conference & Exhibition

(DATE) (pp. 1580-1585). IEEE.

[29] Wang, X., Zhang, J., Zhang, A. and Ren, J., 2019. TKRD: Trusted

kernel rootkit detection for cybersecurity of VMs based on machine

learning and memory forensic analysis. Mathematical Biosciences

and Engineering, 16(4), pp.2650-2667.

[30] Volatility framework. 2020. Retrieved from:

https://www.volatilityfoundation.org/

[31] Lee, W. and Nadim, M., 2020, August. Kernel-Level Rootkits

Features to Train Learning Models Against Namespace Attacks on

Containers. In 2020 7th IEEE International Conference on Cyber

Security and Cloud Computing (CSCloud)/2020 6th IEEE

International Conference on Edge Computing and Scalable Cloud

(EdgeCom) (pp. 50-55). IEEE.

[32] Levine, J., Grizzard, J. and Owen, H., 2004. A methodology to detect

and characterize kernel level rootkit exploits involving redirection of

the system call table. In Second IEEE International Information

Assurance Workshop, 2004. Proceedings. (pp. 107-125). IEEE.

[33] Jakobsson, M. and R. Zulfikar, Eds. 2008. Crimeware: Understanding

New Attacks and Defenses, Addison-Wesley Professional

[34] Microsoft Powershell, 2020, Retrieved from:

https://docs.microsoft.com/en-

us/powershell/module/microsoft.powershell.core/get-

module?view=powershell-7

[35] Sylve, J.T., Marziale, V. and Richard III, G.G., 2016. Pool tag quick

scanning for windows memory analysis. Digital Investigation, 16,

pp.S25-S32.

[36] Investigating Windows Threads with Volatility, 2020, Retrieved

from: http://mnin.blogspot.com/2011/04/investigating-windows-

threads-with.html

[37] The art of memory forensics: detecting malware and threats in

windows, linux, and Mac memory.

[38] Wang, Z., Jiang, X., Cui, W. and Ning, P., 2009, November.

Countering kernel rootkits with lightweight hook protection. In

Proceedings of the 16th ACM conference on Computer and

communications security (pp. 545-554).

[39] Zhang, F., Wang, J., Sun, K. and Stavrou, A., 2013. Hypercheck: A

hardware-assistedintegrity monitor. IEEE Transactions on

Dependable and Secure Computing, 11(4), pp.332-344.

[40] Handling Interrupt Descriptor Table for fun and profit - kad. Phrack

Vol. 0x0b, Issue 0x3b

[41] Control register, 2020. Retrieved from:

https://en.wikipedia.org/wiki/Control_register

[42] Hooking the System Service Dispatch Table (SSDT), 2020. Retrieved

from: https://resources.infosecinstitute.com/hooking-system-service-

dispatchtable-ssdt/#gref

[43] Hay, B. and Nance, K., 2008. Forensics examination of volatile

system data using virtual introspection. ACM SIGOPS Operating

Systems Review, 42(3), pp.74-82.

[44] Guri, M., Poliak, Y., Shapira, B. and Elovici, Y., 2015, August.

JoKER: Trusted detection of kernel rootkits in android devices via

JTAG interface. In 2015 IEEE Trustcom/BigDataSE/ISPA (Vol. 1,

pp. 65-73). IEEE.

[45] I. Korkin, and I. Nesterov, "Applying Memory Forensics to Rootkit

Detection" (2014). Annual ADFSL Conf. on Digital Forensics,

Security and Law. 1.

[46] Ring, S. and Cole, E., 2004, October. Volatile memory computer

forensics to detect kernel level compromise. In International

Conference on Information and Communications Security (pp. 158-

170). Springer, Berlin, Heidelberg.

[47] SANS SIFT. 2020. Retrieved from: https://digital-

forensics.sans.org/community/downloads

[48] BlackLight. 2020. Retrieved from:

https://www.blackbagtech.com/products/blacklight/

[49] Oracle VM VirtualBox. 2020. Retrieved from:

https://www.virtualbox.org/

034-6
IS&T International Symposium on Electronic Imaging 2021

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2021

https://en.wikipedia.org/wiki/Control_register

• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . . Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org

