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Abstract 
Stereo matching algorithms are useful for estimating a dense 

depth characteristic of a scene by finding corresponding points 

from stereo images of the scene. Several factors such as occlusion, 

noise, and illumination inconsistencies in the scene affect the 

disparity estimates and make this process challenging. Algorithms 

developed to overcome these challenges can be broadly 

categorized as learning-based and non-learning based disparity 

estimation algorithms. The learning-based approaches are more 

accurate but computationally expensive. In contrary, non-learning 

based algorithms are widely used and are computationally efficient 

algorithms. In this paper, we propose a new stereo matching 

algorithm using guided image filtering (GIF)-based cost 

aggregation. The main contribution of our approach is a cost 

calculation framework which is a hybrid of cross-correlation 

between stereo-image pairs and scene segmentation (HCS). The 

performance of our HCS technique was compared with state-of-

the-art techniques using version 3 of the benchmark Middlebury 

dataset. Our results confirm the effective performance of the HCS 

technique. 

1. Introductions and Related Works 
Stereo matching techniques estimate a disparity map comprised 

of dense pixelwise correspondences between rectified stereo-image 

pairs of a scene with only horizontal disparity present. The 

horizontal disparity in stereo vision refers to an apparent shift 

between the left- and right-channel images in a stereo pair due to 

the underlying geometry of the stereo vision setup. The generated 

disparity map and perceived depth of the images are inversely 

proportional. Hence, for stereo cameras with parallel optical axes, 

focal length 𝑓, baseline 𝐵, and disparity 𝑑, the perceived depth is 

calculated by triangulation as (𝐵 ∗ 𝑓) / 𝑑. Stereo vision is useful 

in many fields such as for robotic navigation [1], 3D surface 

reconstruction [2], face recognition [3], and autonomous driving 

[4]. Stereo matching is a challenging problem because of the 

presence of occlusion, distortion, noise, and ambiguous nature of 

the imaging environment such as presence of large homogeneous 

regions in the scene. 

Stereo matching algorithms can be broadly classified as global 

and local algorithms [5]. In the global stereo matching algorithms, 

the disparity map is obtained by optimizing an energy or cost as a 

function of data and spatial smoothness of the solution (e.g. graph 

cut [6], belief propagation [7]). Though this category of the 

algorithms provides an accurate disparity estimate, they are 

computationally expensive. In contrast to the energy-based 

approaches, the local methods utilize a cost function defined based 

on corresponding spatial locations with a support window in the 

stereo-image pairs (e.g. correlation, sum of absolute differences). 

Hence, local methods have low complexity and are also suitable 

for real-world applications.  

Most of the local stereo matching algorithms follow the same 

framework comprised of an initial matching cost calculation, cost 

aggregation, optimal disparity selection, and final disparity 

refinement steps. Among these steps, the initial matching cost 

computation step is important for obtaining an accurate stereo 

disparity map and the cost aggregation step is essential for 

obtaining more robust results in the presence of noise, scene 

occlusion, and pixel homogeneity. Commonly used data cost are 

sum of absolute difference (SAD) [8], gradient similarity [9], sum 

of squared difference (SSD) [10], non-parametric transforms [11], 

and normalized cross-correlation [12]. 

Recently, several cost aggregation strategies have been 

introduced to overcome the above-mentioned challenges in stereo 

disparity estimation. He et al. [13] developed a superior edge-

preserving filter called guided image filtering (GIF).  Hosni et al. 

[14]  extended GIF for faster computation and utilized the GIF for 

cost aggregation by fast cost-volume filtering (FCVF). In [15] 

Hong et al., GIF computational time was further improved by 

computing linear coefficients using sub-sampled slices of the cost 

volume. Li et al. [16] took advantage of global and local 

smoothing filters and proposed weighted guided image filtering 

(WGIF) to achieve  better visual quality. Using this modified 

regularized filter, Hone et al. [17] achieved a limited improvement 

in performance by applying WGIF to their pixelwise matching cost 

function. Based on WGIF, Zhu et al. [18] proposed a stereo 

matching algorithm with a modified census transform and 

constructed an adaptive rectangular support window to perform the 

cost aggregation. Yoon et al. [19] introduced the use of adaptive 

support weight (ASW) in local methods which was utilized and 

improved in various frameworks such as from Yang et al. [20], 

Zhu et al. [18]. Recently, using GIF or its extension, Hong and 

Kim [21], Zhu and Chang [22], and Han et al. [23] reported 

significant improvements in the disparity estimates.  

In this paper, we propose a new stereo matching algorithm using 

GIF based cost aggregation. The main contribution of our method 

lies in the cost calculation framework using a hybrid of a priori 

scene segmentation and cross-correlation between stereo images 

(HCS) to generate an initial disparity map. We used the 

Middlebury dataset to test our proposed approach and extensively 

compared it with recent state-of-the-art approaches based on the 

Middlebury evaluation stereo images version 3.0.  

The rest of the paper is organized as follows. Section 2 provides 

a detailed description of the proposed stereo matching algorithm. 

Experimental results and discussion are presented in Section 3 and 

our conclusion is presented in Section 4. 

2. Proposed Algorithm 
The proposed stereo-matching algorithm consists of five main 

steps namely, preprocessing, initial cost computation, cost 

aggregation, disparity computation, and post-processing. 

2.A. Preprocessing 
We used homomorphic filtering to correct for any illumination 

differences in the rectified image pair before disparity estimation 

[24].  
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In homomorphic filtering, an image I is first decomposed into an 

illumination component l and a reflectance component r as 

𝐼(𝑥, 𝑦) = 𝑙(𝑥, 𝑦) 𝑟(𝑥, 𝑦) (1) 

The reflectance component is related to the inherent optical 

properties of objects that comprise the scene while the illumination 

component arises from the scene lighting condition and camera 

orientation. Therefore, to correct for illumination differences, the 

illumination component is minimized, and the reflectance 

component of the image is retained by the homomorphic filter.  In 

general, because illumination variation across a scene is gradual, a 

low-pass filter is used to estimate the illumination component in 

the image. In log-domain, 

log( 𝐼(𝑥, 𝑦)) = log( 𝑙(𝑥, 𝑦)) + log( 𝑟(𝑥, 𝑦)) (2) 

Therefore, we estimated the illumination-corrected images by 

subtracting the illumination component of an image from each of 

the respective images in the log-domain.  Let, �̂�𝑙 and �̂�𝑟 are the 

illumination corrected (reflectance dominant) stereo image pair.  In 

our proposed hybrid technique, these illumination-corrected stereo 

image pairs were used for disparity estimation. 

2.B. Initial Cost Computation using Our Hybrid 
Technique 

Based on the epipolar constraint [25], location corresponding to 

any point in one of the images in the stereo pair is bound to lie 

along an epipolar line in the other image in the stereo pair. For 

example, any point in the left channel image �̂�𝑙 lies along a 

corresponding epipolar line in the right channel image �̂�𝑟.  After 

stereo rectification, these epipolar lines in each of the images in the 

stereo pair become horizontal and are aligned with the scanlines 

containing the corresponding points in the other rectified image in 

the stereo pair [26].  With one of the images in the stereo pair as 

reference (e.g. left channel �̂�𝑙), the difference in the coordinates of 

the corresponding points in the stereo pair is an estimate of stereo 

disparity.  Only horizontal disparity exists between rectified stereo 

images. 

To minimize the computational complexity of estimating dense 

disparity at each of the pixel locations, we first segmented the 

reference image based on its regional texture characteristics using 

an unsupervised texture segmentation algorithm [27].  Next, we 

estimated a distribution of disparity estimates for each of the 

segmented zones in the reference image.  The zonal disparity 

distributions were used as a priori disparity estimates for the 

respective image regions or segments to estimate dense disparities. 

The unsupervised texture segmentation algorithm uses a Gabor 

filterbank to derive multi-resolution texture features capable of 

defining sharp segment boundaries.  Using the k-means clustering 

algorithm, the Gabor texture features are integrated to generate an 

image segmentation map [27].  For generating a priori distribution 

of zonal disparities, we evaluated various feature detection 

techniques namely the minimum eigenvalue algorithm [28], 

speeded up robust features algorithm (SURF) [29], Harris corner 

and edge detector algorithm [30] and accelerated segment test 

algorithm (FAST) [31].  At sparse image locations with robust 

features, disparity was estimated by identifying spatial 

correspondences between the stereo images by feature matching.   

The sparse disparity estimates within each segment in the reference 

image were pooled to generate a zone-specific distribution of 

stereo disparities.  Thus, all locations within a zone or segment in 

the reference image were assigned a priori mean disparity 𝜇𝑑 and 

offset disparity 𝜎𝑑, where the offset disparity captures the 

maximum disparity deviation at any location within the zone with 

respect to the zonal mean disparity.  We expect that this a priori 

characterization of disparity distribution in each zone can reduce 

the computational complexity in generating a dense disparity map. 

Disparity at each of the locations in the reference image were 

estimated using a template matching procedure as follows.  For 

each location (𝑥, 𝑦) in the reference image, a template 𝑔𝑙 centered 

at that location in the reference image and a horizontal image strip 

ℎ𝑟 centered at coordinate (𝑥 + 𝜇𝑑 , 𝑦) with a width of 2𝜎𝑑 + 1 from 

the second image were selected.  Thus, the search zone for 

identifying disparity at each location was limited by the a priori 

zonal disparity distribution along the respective scanline.  A cost 

volume 𝐶(𝑥, 𝑦, 𝑑) at each of the locations (𝑥, 𝑦) in the reference 

image for various possible choices of disparity 𝑑 was built using a 

normalized cross-correlation measure.  For faster computation, the 

correlation coefficients were estimated in the Fourier domain [32].  

A dense disparity map can be obtained from cost optimization as  

�̂�(𝑥, 𝑦) = argmax
𝑑

  𝐶(𝑥, 𝑦, 𝑑) (3) 

2.C. Cost Aggregation and Disparity Estimation 
Prior to cost optimization, the cost volume 𝐶(𝑥, 𝑦, 𝑑) at each 

disparity level was smoothed using a guided image filter as in He 

et al [13].  A unique spatially varying filter at each of the locations 

(𝑥, 𝑦) in the reference image �̂�𝑙 is defined with respect to the 

reference image �̂�𝑙 based on the intensity distribution within a 

window 𝜔𝑥𝑦 centered at (𝑥, 𝑦) in the reference image.  Let, |𝜔𝑥𝑦| 

be the number of locations within the window 𝜔𝑥𝑦; 𝜇𝑥𝑦 be the 

mean illumination corrected intensity within the window; and 𝜎𝑥𝑦 

be its standard deviation.  Guided filter 𝑊 with a regularization 

parameter 𝜖 for location (𝑥, 𝑦) is defined as 

𝑊𝑥𝑦(𝑖, 𝑗) =
1

|𝜔𝑥𝑦|2
∑ (1 +

(�̂�𝑙(𝑖,𝑗)−𝜇𝑥𝑦) (�̂�𝑙(𝑘,𝑙)−𝜇𝑥𝑦)

𝜎𝑥𝑦
2 +ϵ

)∀(𝑘,𝑙)∈𝜔𝑥𝑦
 (4) 

To derive a spatially coherent disparity map �̂�(𝑥, 𝑦), an 

aggregated cost volume �̂� was estimated using the guided filter 

𝑊𝑥𝑦 as  

�̂�(𝑥, 𝑦, 𝑑) = ∑ 𝑊𝑥𝑦∀(𝑥,�̂�) (�̂�, �̂�) 𝐶(�̂�, �̂�, 𝑑) (5) 

Disparity at each location (𝑥, 𝑦) was estimated using a winner-

take-all optimization strategy as  

𝑑(𝑥, 𝑦) = argmax
 𝑑

 �̂�(𝑥, 𝑦, 𝑑) (6) 

2.D. Post-Processing 
To identify occluded locations, a left-right consistency check 

was used.  Locations with differing disparity estimates with left 

channel image as the reference image and the right channel image 

as the reference image were identified as occluded locations.  

Disparity at the occluded locations were assumed to be the same as 

the disparity of the nearest non-occluded location in the same 

scanline.  A median filter was applied to obtain a final dense 

disparity map. 

3. Experimental Results and Discussion 
The proposed algorithm was implemented in MATLAB 2018a 

on an Intel(R) Xeon(R), CPU E3-1271 v3, 3.6 GHZ processor. We 

performed extensive experiments to verify the effectiveness of the 

proposed method for disparity map estimation. At first, we tested 

the proposed framework using three different datasets 

[33],[34],[35] of the Middlebury benchmark stereo database [36]. 
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Then, we compared the proposed method with related state-of-the-

art approaches based on the Middlebury evaluation dataset version 

3.0.  Disparity error maps, peak signal-to-noise ratio (PSNR), and 

average absolute error (Avg. err in pixels) were calculated for each 

of the test data for performance evaluation. 

PSNR provides a measure of similarity between the estimated 

disparity map �̂�(𝑥, 𝑦) and the ground-truth disparity map 𝑑(𝑥, 𝑦) 

each of size 𝑚 × 𝑛 pixels. 

𝑃𝑆𝑁𝑅 = 10 log10
2552×𝑚×𝑛

∑ (�̂�(𝑥,𝑦)−𝑑(𝑥,𝑦))
2

∀(𝑥,𝑦)

 (7) 

Disparity error maps were computed as location-wise difference 

between the estimated disparity �̂�(𝑥, 𝑦) and its ground-truth 

𝑑(𝑥, 𝑦) as �̂�(𝑥, 𝑦) − 𝑑(𝑥, 𝑦).  A thresholded average disparity 

error metric with a threshold of 𝑇 pixels of disparity difference was 

defined as 

𝐵𝑎𝑑 = (
1

𝑚𝑛
∑ (|�̂�(𝑥, 𝑦) − 𝑑(𝑥, 𝑦)|)∀(𝑥,𝑦) > 𝑇) × 100 (8) 

The average disparity error was quantitatively assessed at three 

threshold levels namely Bad1.0 with 𝑇 = 1 pixel, Bad2.0 with 𝑇 =
2 pixels, and Avg. err with 𝑇 = 0 pixels. 

3.A. Evaluation of the Initial Disparity on the 
Middlebury Benchmark 

Quantitative measures of accuracy of the initial disparity map 

generated by our proposed hybrid method are presented in Table 1.  

Table 1: Quantitative evaluation of the initial disparity map 

generated by our proposed hybrid method on a subset of 

Middlebury stereo dataset. 

Figure 1 shows the initial disparity maps estimated using the 

proposed approach on a subset of Middlebury dataset namely, 

Cones, Teddy, Baby1 and Cloth3 stereo pairs along with the 

ground truth and the disparity error map. 

Figure 1. Results of the initial disparity map on Middlebury dataset images. 
Cones, Teddy, Baby1, and Cloth3 from left to right. (a) Ground truth, (b) the 
initial estimated results from the proposed approach, and (c) error map. The 
occluded regions are included on all the obtained results. 

3.B. Evaluation of the Cost Aggregation on the 
Middlebury Benchmark 

In this section, we evaluate the performance of the proposed 

algorithm after cost aggregation using guided image filtering. The 

filter kernel window size was set to 7 × 7 pixels, and the 

regularization parameter 𝜖 initialized to 1 × 10−7.  Quantitative 

error metrics of PSNR, Bad1.0, Bad2.0 and Avg. err for the cost-

aggregated disparity estimates are presented in Table 2. 

Table 2: Quantitative evaluation of the aggregated disparity 

map generated by our proposed hybrid method on a subset of 

Middlebury stereo dataset 

Qualitative results after cost aggregation using guided image 

filtering are shown in Figure 2, which illustrates enhanced 

accuracy of the estimated disparity map in Cones, Teddy, Baby1 

and Cloth3 from Middlebury dataset images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Results of the disparity map after cost aggregation on Middlebury 
dataset images. Cones, Teddy, Baby1, and Cloth3 from left to right. (a) 
Ground truth, (b) the estimated results from the proposed approach without 
refinement, and (c) error maps. The occluded regions are included on all the 
obtained results. 

3.C. Evaluation of the Final Disparity Map on the 
Middlebury Benchmark 

The performance of the final results after postprocessing was 

evaluated based on the PSNR, Bad1.0, Bad2.0 and Avg. err 

metrics on the subset of benchmark Middlebury dataset. Table 3 

shows quantitative evaluation of the final results and Figure 3 

demonstrates the final results for Cones, Teddy, Baby1, and Cloth3 

images. 

Table 3: Quantitative evaluation of the final disparity map on 

the subset of the Middlebury stereo images. 

 

Metrics Cones Teddy Baby1 Cloth3 

Avg. err 5.88 5.18 3.91 5.30 

PSNR (dB) 25.20 26.33 29.66 25.70 

Bad 1.0 (%) 27.22 27.14 25.89 21.81 

Bad 2.0 (%) 25.69 24.21 23.52 20.65 

Run time (s) 42.50  39.68  42.94  44.21  

Metrics Cones Teddy Baby1 Cloth3 

Avg. err 5.96 4.28 3.25 4.46 

PSNR (dB) 26.67 28.13 31.87 27.56 

Bad 1.0 (%) 25.30 26.10 21.18 27.57 

Bad 2.0 (%) 22.04 21.57 16.23 15.49 

Run time (s) 73.85  60.02  82.01  87.30  

Metrics Cones Teddy Baby1 Cloth3 

Avg. err 2.36 2.10 1.55 1.97 

PSNR (dB) 33.26 32.88 37.84 34.91 

Bad 1.0 (%) 18.96 17.72 11.30 19.91 

Bad 2.0 (%) 15.35 10.61 6.11 8.38 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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Figure 3. Results of final disparity map on Middlebury dataset images. Cones, 
Teddy, Baby1, and Cloth3 from left to right. (a) Ground truth, (b) the estimated 
results from the proposed approach, and (c) error maps. The occluded regions 
are included on all the obtained results. 

We selected 12 stereo image pairs from the Middlebury 

benchmark dataset to illustrate the performance of the proposed 

approach on stereo images with a variety of textures. Quantitative 

metrics are presented in Table 4 and qualitative disparity map 

evaluations are presented in Figure 4. 

Table 4: Quantitative evaluation of the final disparity map on 12 

stereo pairs from three different Middlebury dataset. 

 

Figure 4. Visualization of the calculated percentage of the bad pixels and the 
average absolute error of the final disparity map (on 12 pair of images) on the 
three different Middlebury datasets. 

Finally, we evaluated the proposed algorithm based on the 

current evaluation criteria of the Middlebury dataset (version 3.0). 

Table 5 shows the quantitative error metrics for the 15 image pairs 

in the current version 3.0 evaluation dataset. 

Table 5: Evaluation of the final disparity map on the current 

evaluation criteria of the Middlebury data version 3.0. 

 

 

3.D. Comparison of the Proposed Approach with 
Other Algorithms 

 

Performance of our proposed method was compared with that 

of 12 state-of-the-art non-learning algorithms recently published 

and reported on Middlebury evaluation version 3.0.  Quantitative 

and qualitative measures of performance of our proposed method 

and the 12 non-learning methods namely APAP-Stereo[37], 

MTS[38], SM-AWP[39], FASW[40], MBM[41], IEBIMst[42], 

MotionStereo[43], DoGGuided[44], SGMEPi[45], IGF[46], 

ADSM[47], SPS[48] are presented in Table 6. Our proposed 

method provided the best error metric for 8 of the 15 stereo pairs 

evaluated. 

4. Conclusions 
 

We presented a new hybrid stereo matching algorithm (HCS) 

that utilized segmentation based a priori distribution of disparity 

estimates and a normalized cross-correlation cost measure. Our 

framework calculates initial disparity map efficiently by guiding 

the search locations in the Middlebury benchmark stereo images. 

We aggregated the obtained cost volume with the edge-preserving 

guided filtering to improve the accuracy of the results. The results 

of our proposed method were compared with those of the recent 

and state-of-the-art approaches. Our proposed hybrid method 

provided lower disparity errors in 8 of the 15 stereo pairs tested 

among all the state-of-the-art non-learning methods evaluated.  In 

stereo images with large disparity, our approach provided a 

relatively higher disparity error.  Overall, our approach performed 

better when compared with the recent state-of-the-art approaches 

in terms of the calculated average disparity error.  In a future work, 

we will consider global optimization techniques to further enhance 

the accuracy of the disparity map.  

 

Images 
PSNR 
(dB) 

Percentage of bad 
pixels (%) 

Average 
error 

Bad01 Bad02 

Cones 33.26 18.96 15.35 2.36 

Teddy 32.88 17.72 10.61 2.10 

Baby2 31.29 31.77 10.83 2.97 

Cloth1 30.03 28.73 15.80 3.57 

Cloth3 34.91 19.91 8.38 1.97 

Cloth4 29.49 24.69 12.81 3.43 

Rocks1 30.70 33.35 12.83 3.02 

Rocks2 29.58 25.97 11.07 3.05 

Wood1 32.17 26.34 24.67 2.34 

Baby1 37.84 11.30 6.11 1.55 

Baby3 28.18 18.65 15.49 3.84 

Dolls 34.72 36.72 19.35 2.23 

AVG 32.06 24.67 13.79 2.71 

Images 
PSNR 
(dB) 

Percentage of bad 
pixels (%) 

Average 
error 

Bad01 Bad02 

Adirondack 29.76 33.85 21.68 3.98 

ArtL 31.35 46.26 38.65 4.31 

Jadelant 25.98 43.26 37.19 27.22 

Motorcycle 29.35 37.69 21.66 3.91 

MotorcycleE 26.47 42.75 30.07 6.12 

Piano 28.15 46.94 35.12 5.23 

PianoL 26.61 48.2 38.48 7.44 

Pipes 25.74 44.84 38.62 7.52 

Playroom 25.76 45.92 34.68 6.16 

Playtable 31.17 46.06 28.47 3.57 

PlaytableP 31.64 38.5 24.83 3.17 

Recycle 31.63 49.54 32.23 3.62 

Shelves 27.17 49.49 33.64 5.51 

Teddy 32.88 17.72 10.61 2.10 

Vintage 28.68 42.87 33.16 10.62 

AVG 28.78 42.37 30.72 6.71 

(a) 

(b) 

(c) 
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Table 6: Evaluation of the final disparity map on the current evaluation criteria of the Middlebury data version 3.0. Comparison of the 

final disparity map on the current evaluation set of the Middlebury dataset (version 3.0) with other state-of-the-art algorithms. The 

best result for each stereo image pair is highlighted in bold. 
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