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Abstract
Current assistance systems for manual assembly reduce the

efficiency of the worker by being invasive in the workflow. To re-
store the efficiency and at the same time to maintain the benefits of
assistance systems, real time hand pose estimation can be used.
However, no suitable data set is available for training such ap-
plication specific detectors. In the presented work, a data set is
generated that allows the use of different work gloves and pre-
pares the overlay of realistic hand textures. We use low cost data
gloves for hand pose tracking and a RGBD camera to capture the
data set with 30 data points per second. This low cost approach
is presented in an application for the manual assembly scenario,
although transfer of the method to other scenarios is possible.

Motivation
Production processes have been changing for years. Cus-

tomers demand personalized products, which leads to an increase
in product variety and smaller batch sizes of a product with the
extreme case of a batch size of one. This increases setup time and
lowers the cost efficiency of the production itself. To address this
problem, automation is becoming more flexible, but the worker
himself is one of the most flexible, if not the most flexible, tool in
the production line. Therefore, manual assembly remains an im-
portant and time-consuming part of the production process, even
though automation is on the rise. In addition to personalized prod-
ucts and the increased variety of products, manual assembly work
is increasingly being performed by unskilled workers. Training
these unskilled workers is also time-consuming and, above all,
not cost-effective due to the additional effort required of the su-
pervisor. Assistance systems for manual assembly can support the
worker in overcoming these challenges, increase efficiency and
at the same time relieve the worker. The assistance systems can
guide the worker through the production process and help them
remember small variations between similar products. This also
helps the worker to learn new processes while being productive
and at the same time takes the burden off the supervisor. This is an
important part because hiring often occurs during periods of high
demand, when extra work puts even more strain on workers. As-
sistance systems can also detect errors, increasing product quality
and reducing the amount of rework required. Another benefit is
automated documentation of the real process where required.

However, current vision-based assembly systems 1 2 3 inter-
rupt the worker’s workflow very strongly and the worker must in-

1ActiveAssist: https://www.boschrexroth.com/de/de/produkte/produkt
gruppen/montagetechnik/news/assistenzsystem-activeassist/index

2Schlaue Klaus: https://www.optimum-gmbh.de/produkte/der-
schlaue-klaus

3Quality Assist: https://sarissa.de/qualityassist

Figure 1. The left image shows a typical depth image from the data set,

while the right image shows a typical depth image in the application scenario.

teract with the assistance system in addition to his normal work.
Interactions with the system do not add value and should there-
fore be reduced to a minimum. In addition, existing systems often
rely on simple algorithms such as detecting contours in bounding
boxes for a certain amount of time to detect whether a particular
step has been performed. Another problem is the flexibility of the
systems, which is why the acquisition of an assistance system of-
ten involves a major integration project. Changes in the process
or adding new products are costly and time-consuming.

Hand pose estimation is not currently integrated in vision-
based manual assembly assistance systems but it can be an en-
abling technology to solve the existing problems of current as-
sistance systems. By tracking each process step based on hand
pose estimation, the interaction between the assistance system and
the worker can be kept to a minimum and the worker can remain
in the workflow, while the assistance system only requires atten-
tion when it is actually assisting the worker in his value-adding
task. However, hand pose estimation in manual assembly scenar-
ios face its own challenges.

There are several methods and data sets for hand position es-
timation. However, the authors are not aware of any application-
specific data set for hand position estimation in manual assembly
scenarios. In [1], it is shown that current data sets differ from the
real scenario and transfer is not practical for several reasons (see
Fig. 1).

• Occlusion by objects (e.g., parts of the finished product or
tools) and self-occlusion are strongly present. A few data
sets already deal with this problem.

• Hands are very close to a surface and do not float in open
space, which changes the depth data in particular so much
that it is massively different from the data in the training set.

• Gloves are not included in the data sets, but are often worn
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in production. This could be remedied by using only depth
data, which is impractical due to the previous point.

With these differences between the available training data
and the real scenario, the authors were in [1] not able to use the
trained models for hand pose estimation in this application sce-
nario, so a new application-specific data set is needed. The re-
quired data set must be diverse and capture different process steps
and work glove types. For completeness, it should include both
depth data and color data. In addition, the amount of data needed
is very large and the movements in production can be very fast,
so the data should be recorded at a minimum of 30 data points per
second.

This topic is important for the 3D imaging community be-
cause it allows them to quickly generate hand pose data sets for
specific applications and to develop new applications based on
hand poses themselves.

The paper is organized as follows. First, related work on
hand position estimation, including available data sets, is dis-
cussed. Then, the hardware setup is described, including a com-
parison of different methods for acquiring hand position data. The
following section discusses the calibration of the gloves to the
subject’s hand and the transformation between the different coor-
dinate systems. The scope of the data set and the different data
formats are then presented. Finally, a conclusion and an outlook
are given.

Related Work
Hand pose estimation itself can be divided into different cat-

egories. There are generative approaches [2], [3], [4] and discrim-
inative approaches [5], [6], [7], [8]. While generative approaches,
or model-driven approaches, rely on knowledge about the struc-
ture of the hand, discriminative approaches are purely data-driven
and attempt to learn the features using only data. Recently, hy-
brid approaches [9], [10], [11], [12] have shown very promising
results. Here, knowledge about the structure of the hand and its
limited degrees of freedom is integrated into the data-driven ap-
proach in different ways. This could be achieved, for example,
by using Principal Component Analysis and dimensionality re-
duction [13] in the neural network. Convolutional Pose Machines
[14], for example, uses different neural networks to determine the
different joint positions and uses so-called Belief Maps to learn
spatial models of the relationships between different joints.

One way to categorize the discriminative, data-driven and the
hybrid approaches is the input and output data types of the estima-
tors. Data-driven approaches initially relied on depth images as
input images and output the 3D coordinates of the joints in cam-
era coordinates, which yields a complete hand skeleton with usu-
ally 21 joint positions. DeepPrior++ [13] is a prominent example
of this. However, using depth images can have some limitations,
e.g., a good quality depth image is expensive or difficult to obtain
(as in the application presented in this paper) and therefore limits
the range of possible applications. With the use of RGB images
as input data, the possible applications expand again. When us-
ing RGB, there is 2D hand pose estimation, which provides the
position of the wrists in pixel coordinates, and 3D hand pose es-
timation, which learns the 3D hand pose from a single RGB im-
age. An example of 2D hand pose estimation is SRHandNet [15],
while an example of 3D hand pose estimation is presented in [16].

Recently, one can also find hand meshes as output data of a model
[17]. Since the output of a mesh does not provide any benefit to
the application scenario, the focus in this paper is on 3D hand
pose estimation from RGB images.

Most methods rely on large data sets, so data sets with more
than a million data points are no exception. Therefore, the ac-
quisition of a data set is also a large effort and can be the first
point of failure in hand pose estimation. The existing data sets
can be divided into three categories. Depth image-based data
sets, RGB image-based data sets, and RGBD image-based data
sets that contain both an RGB and a depth image. Most data sets
are based on real captured images, some consist of purely syn-
thetically generated images or are a mixture of both. There are
also different viewpoints, distinguished only between first- and
third-person views. In the manual assembly application, however,
a very specific third-person view exists; the top view of the work-
place. Views from the front or side are not used in manual assem-
bly assistance systems due to space conflicts with the part feeding
system. The hand poses provided consist of varying numbers of
joints, with 21 joints being the most common. Since meshes are
not of interest for the task in this work, they are not considered,
although some data sets provide them as well. Table 1 shows an
overview of some of the larger data sets for hand pose estimation.

While the disadvantages of the depth image-based data sets
for this application have already been reviewed, the RGB and
RGBD image-based data sets have not been fully discussed. How-
ever, the first-person perspective data sets have already been cov-
ered. The RGB data sets InterHand2.6M and CMU Panoptic
HandDB as well as the RGBD data set RHD do not contain object
interactions and are therefore also not suitable for the application
scenario. This results in two remaining data sets from the Table 1,
both of which are fairly up-to-date: FreiHAND and ContactPose.
ContactPose contains interactions with objects, but both the hand
and the object are in open space and no interactions exist between
the hands, which is unusual in manual assembly scenarios. The
data set is closer to the application compared to other existing data
sets, but not close enough so that an application-specific data set
is still beneficial to close the gap between training data and real
application. The same statement can be made about FreiHAND.
In contrast to ContactPose, in FreiHAND there are more objects
in the data set that resemble a manual assembly scenario, but the
training data is still very unspecific with respect to manual assem-
bly applications. Therefore, an application specific data set for
hand pose estimation in manual assembly scenarios is missing.

Hardware Setup
It was discussed that an application-specific data set is re-

quired for hand pose estimation. However, there may be other
applications where a separate data set could be beneficial. There-
fore, the proposed method should be time efficient, transferable
to other hand pose estimation use cases, and use comparatively
inexpensive sensors. The method must be able to acquire both
the RGB image and the depth image, and the acquisition of dif-
ferent types of work gloves is required for diversity. In addition,
training a neural network for hand pose estimation requires a large
amount of data and the movements in manual assembly are very
fast. Therefore, recording at up to 30 frames per second should
be possible.
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Table 1: Data sets for hand pose estimation4.
Data set Name Type Year Real/Synth No. Joints Viewpoint No. Frames Source
NYU Depth 2014 Real 36 3rd Person 72k [18]
BigHands2.2M Depth 2017 Real 21 3rd Person 2.2M [19]
ICVL Depth 2014 Real 16 3rd Person 331k [20]
InterHand2.6M RGB 2020 Real 21 3rd Person 2.6M [21]
FreiHAND RGB 2019 Real 21 3rd Person 130k [22]
GANerated Hands RGB 2018 Synth 21 1st Person 330k [23]
CMU Panoptic HandDB RGB 2017 Real+Synth 21 3rd Person 15k [24]
ContactPose RGBD 2020 Real 21 3rd Person 2.9M [25]
Ego3DHands RGBD 2020 Synth 21 1st Person 50k [26]
RHD RGBD 2017 Synth 21 3rd Person 41k [27]
SynthHands RGBD 2017 Synth 21 1st Person 64k [28]

Figure 2. Preparation of hands for data acquisition with the optical tracking

system QualiSys.

There are several ways to create a data set for manual hand
pose estimation. However, manual labeling is very time con-
suming and therefore is not considered here. Optical trackers,
gloves with magnetic sensors, and gloves with IMU sensors are
instead potential means for automated labeling. Optical trackers
have several disadvantages. The setup is very time consuming,
as an optical marker must be attached to the hand for each joint.
In addition, post-processing is demanding. First, the RGB im-
ages must be post-processed to remove the markers on the hands,
as shown in Figure 2, and second, the data must also be post-
processed. Every time the line of sight between a camera and one
of the optical markers is broken, which is common in manual as-
sembly scenarios, the system creates a new trajectory with a new
ID, which then has to be manually connected to the existing tra-
jectories. Therefore, optical trackers are not an optimal solution
for the task at hand. However, magnetic and IMU-based gloves
do not have these disadvantages. The magnetic sensors are more
precise than IMUs, but are also susceptible to disturbances in the
magnetic field that could be introduced by tools during manual as-
sembly, for example. Since the disadvantage in precision is small
and IMU-based gloves can still achieve sub-centimeter precision
at remarkably lower cost, IMU-based gloves are used in this work.
This setup allows us putting on work gloves over the data gloves
during the data collection and is independent from occlusion and
object interactions.

An Intel Realsense D435 (Fig. 3a) is used for the image data
acquisition and placed above the workplace so that it looks down
on the workplace from above, as shown in Fig. 4a. The camera
captures both the RGB image and the 16-bit depth image with a
resolution of 1280x720 pixels at 30 frames per second. For ab-

Figure 3. The hardware used in this work from left to right: a) Realsense

D435 Camera, b)VIVE trackers, c) ManusVR Prime II gloves.

Figure 4. Left image: Camera view on the workplace. Right image: Work-

place with VIVE base stations.

solute positioning, VIVE trackers (Fig. 3b) are placed above the
wrist. They can track their own positions in 3D space and require
a line of sight with the VIVE base stations. To ensure permanent
line of sight, the trackers are placed above the wrist in an area,
which is not prone to occlusion. The hardware setup includes four
different base stations (cf. red circles in Fig. 4b). The ManusVR
Prime II gloves (Fig. 3c) are used for tracking hand rotations.
They are IMU-based gloves that track the relative rotations of
21 joints and their lateral movements (e.g., finger spread). The
joint rotations are accessible via an API as quaternions. To en-
sure diversity in the data set, work gloves and unicolor gloves are
worn over the data gloves. The use of unicolor gloves allows for
subsequent data manipulation with synthetically generated hand
textures.

Calibration and Data Acquisition
The hand model is similar to other data sets and uses 21 hand

joints as shown in Figure 5. The wrist joint is the source for all
finger structures. Each finger structure, including the thumb, con-
tains four joints. Starting from the wrist, these are the MetaCar-
poPhalangeal joint (MCP), Proximal InterPhalangeal joint (PIP),

4https://github.com/xinghaochen/awesome-hand-pose-estimation

IS&T International Symposium on Electronic Imaging 2021
3D Imaging and Applications 2021 119-3



Figure 5. A model of the 21 joints and the coordinate system, shown for

the right hand. The x-axis (red) points towards the person, the y-axis (green)

points upwards away from the top of the hand and the z-axis (blue) points to

the left, so it is a right-sided system.

Distal InterPhalangeal joint (DIP) and finally the tip of the finger.
The thumb does not follow the medical definition as it has no DIP
joint. For simplicity, our model differs from the medical defini-
tion. We place the MCP joint of the thumb next to the wrist, the
medical MCP joint is the PIP joint, and the medical PIP joint is
the DIP joint. Thus, the thumb also has 4 joints from MCP to TIP
in our model. The wrist is placed in the extension of the middle
finger, while the fake MCP joint is placed in the extension of the
index finger.

The coordinate system is also shown in Figure 5. For each
joint, the x-axis in red always points towards the person, while
the y-axis in green points upwards away from the top of the hand.
The z-axis in blue points to the left, resulting in a right-sided co-
ordinate system.

The gloves provide the rotations for each of the joints in the
coordinate system of the joint. For a complete hand model in
the coordinates of the tracker system, the distances between the
joints, the bone lengths, are still missing. This can be provided by
generating a person-specific hand model.

The procedure consists of several steps. First, the hands
are placed on a flat surface and an image is taken. Then, each
joint is marked in the RGB image. This step is repeated n
times to minimize errors. The result are n matrices Pi of size
j× 2 containing the pixel coordinates u,v for each joint j with
range 0, ...,20 in measurement i of n. The depth image is
aligned to the RGB image and together with the intrinsic camera
parameters, the coordinates of each joint can be calculated in
camera coordinates resulting in n matrices Mi of size j×3 based
on the pixel coordinates u,v with the function f (u,v) = (x,y,z)

z = d,

x =
u− ppx

fx
z,

y =
v− ppy

fy
z,

(1)

where d is the depth at coordinate (u,v) in the corresponding
depth image, pp the principal point of the camera and f is the
focal length of the camera.. The bone length d of bone b can now
be calculated with the Euclidean distance

db,i =
√
|m2

j,i +m2
j+1,i|, (2)

with j and j+ 1 selected such that they represent adjacent joints
of the requested bone b according to the hand model. Now we
can remove the outliers with a threshold approach, resulting in ñ
valid measurements and then calculate the length of each bone as
the mean value

d̃b =
1
ñ

ñ

∑
i=0

dbi. (3)

Together with the rotations of the individual joints and the
tracker, we can calculate the forward kinematics in the tracker
coordinates. However, the hand data is needed in the camera co-
ordinate system thus, a proper tracker-camera calibration is nec-
essary. The calibration from tracker to camera coordinates is done
in a similar way than the calculation of the bone lengths and com-
pletes the step of describing the individual joints in camera coor-
dinates. The process is separate from the generation of the hand
model, since the hand model is person-specific, while the calibra-
tion of the camera coordinates is hardware-specific.

An image is acquired with both trackers visible. With the
aligned depth image as well as the intrinsic camera parameters,
the positions are available in both camera coordinates C and
tracker coordinates T . Points are described as vector p and ro-
tation matrices as matrix R with indexes describing the corre-
sponding locations like T for the trackers or W for the wrist. The
tracker coordinates are provided directly by the trackers. This step
is repeated several times and results in two sets of correspond-
ing points MC and MT . The Umeyama implementation [29] in
OpenCV computes the homogeneous transformation matrix TC,T ,
which contains the rotation matrix RC,T and the translation vector
tC,T from the tracker coordinates to the camera coordinates.

The calculation of any joint is now possible in camera coor-
dinates. The wrist W in camera coordinates pW can be calculated
as

pW = TC,T pT +RC,T RT bT,W . (4)

bT,W represents the corresponding bone from the tracker to the
wrist according to the personal hand model. Based on this infor-
mation the forwards kinematics can be calculated, for example the
tip of the index finger pindex,T IP is calculated as

pT IP = pDIP +RC,T RT RW RMCPRPIPRDIPbDIP,T IP. (5)

It is assumed that pDIP is already calculated in an iterative manner
comparably as in Eq. (5).

Data Set
With the hardware setup in place and the coordination trans-

formation in place, the main parts of the data set generation sys-
tem are complete. The system stores an RGB image and a 16-bit
depth image. The RGB image is shown in Figure 6. As part of the
data set, for every image there exist multiple text files containing
data about the visible hands in the image.

The first text file contains the coordinates of each of the 21
hand joints, where each line represents one hand. The values are
whitespace separated and contain the x, y and z value of each joint
starting from the wrist and moving on with the thumb in order.
The second text file contains the same information but in the pixel
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Figure 6. Sample datapoint of the data set. The worker is currently assem-

bling a lock.

Figure 7. An image from the video of a recording. The hand data is drawn

on the RGB image.

coordinates of the image. For this, the intrinsics are used with the
inverted transformation from Equation (1).

Finally, by expanding the minimal and maximal pixel values
in each dimension of each hand, a bounding box for each hand
is defined. This bounding box can be used for training an object
detector for hand localization in the image. The most prominent
example currently is YOLOv3 [30], therefore the pixel values are
translated into the corresponding format.

For each recording, a video is created where the pixel coor-
dinates are drawn over the RGB images. An image of the video is
shown in Figure 7.

Conclusion and Future Work
In the presented work, the need for an application-specific

data set for hand pose estimation was motivated based on the cur-
rent state of the art in manual assembly assistance systems. Differ-
ent hand pose tracking methods were compared and IMU-based
gloves were identified as a more suitable and cost-efficient solu-
tion compared to optical trackers, magnetic gloves and manual la-
beling. The hardware setup further comprises a low-cost RGBD
sensor and trackers for absolute positioning of the hands. The
calibration procedure involves matching the glove to the subject’s
hand as well as transforming the wrist positions from the track-
ers’ coordinate system to the camera’s coordinate system. As a
result, the method is able to generate hand pose data in camera as
well as pixel coordinates and hand localization data in the pixel
coordinates. With the data provided by the method, it is possible
to train a hand localizer and hand pose detection algorithm based
on either RGB images, depth images or both.

The proposed method is comparatively inexpensive with
hardware costs of about 5,000 EUR to record an application-
specific data set for hand pose estimation. The method requires
very little setup time and there is no post-processing of the hand
data. For applications, where gloves are worn, the same is true
for post-processing of the image data. If bare hands are required
in the data set, the problem of manipulating the RGB images re-
mains an unsolved problem. With the proposed method, the data
set can be acquired at up to 30 data points per second which makes
the data acquisition very fast. This is especially important for
hand pose estimation data sets since a lot of data is required for
good results. The presented method allows transfer to new appli-
cations apart from manual assembly and achieves high efficiency
while maintaining diversity and low investment costs.

For future work, the resulting data set needs to be com-
pared to existing methods and proven itself in real manual as-
sembly scenarios. For this purpose, the authors need to train the
application-specific data set with different hand pose estimation
methods. Based on the results of the hand pose estimation, assis-
tance systems for manual assembly can be improved as motivated
in this work. In order to incorporate the possibility of capturing a
bare hands data set with the proposed method, a method for post-
processing or manipulating the RGB images to include bare hands
is required. This could be achieved very easily by drawing avail-
able hand models with different textures over the current RGB
image, based on the known hand pose. Another solution could be
to use Auto-Encoders or GANs for this purpose, similar to Deep
Fakes [31], [32].
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