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Abstract 

With the prevalence of 3D scanners and 3D printers, 
manufacturing various 3D objects has become easier in recent 
years. When measuring the surface shape of an object using a 3D 
scanner, it is desirable to perform measurements at the highest 
possible resolution. However, there are many objects for which the 
resolution of commercial 3D scanners is insufficient. One solution 
to this problem is to apply super-resolution technology by 
measuring 3D data multiple times. It is crucial to align the 3D 
point clouds generated by multiple measurements accurately, but 
the conventional alignment methods are not accurate enough. This 
study aimed to improve the accuracy of the alignment process for 
3D point clouds. The proposed method consists of the following 
four steps: (1) 3D point clouds are adaptively sampled. (2) A fast 
point feature histogram is used to extract features from the 
sampled point clouds. (3) The random sample consensus method is 
used to estimate an initial alignment. (4) The iterative closest point 
method is used to perform a precise alignment procedure. The 
feasibility of the proposed method is verified through experiments 
using real objects. 

Introduction  
In recent years, 3D scanners and 3D printers have become 

more popular. Consequently, manufacturing using 3D printers has 
become easier for companies and individuals. In general, there are 
two main approaches to forming a desired object using a 3D 
printer. One is to use a design tool (such as computer-aided design 
software), and the other is to capture information from a real object. 
In the latter case, 3D scanners play a crucial role in performing 
sophisticated object analysis. The accuracy of 3D scanners has 
improved dramatically in recent years. Popular instruments have 
traditionally used monocular cameras. However, such instruments 
require long measurement times. In recent years, active 
measurement instruments using stereo cameras have emerged, 
which has significantly reduced measurement times. 

To represent the appearance of an object accurately, it is 
important to measure and reproduce small irregularities and 
textures on the surface of the object. For example, the width of a 
cloth fiber is typically approximately 0.01 mm. Therefore, to 
capture the appearance of cloth on a 3D object, it is necessary to 
capture data with a very high resolution. However, very few 
commercial 3D scanner products can perform measurements at 
sufficiently high resolutions. 

As an approach to increasing resolution, some studies have 
adopted super-resolution techniques. Schultz et al. implemented 
super-resolution for 2D images using a Bayesian maximum a 
posteriori probability estimation technique that minimizes 
assessment functions corresponding to posterior probabilities based 
on the continuity of several 2D images [1]. However, such 
methods cannot implement super-resolution for 3D data. Schuon et 

al. proposed an approach for obtaining high-resolution 3D data by 
super-resolving depth images [2]. However, their approach 
adopted super-resolved depth images captured from a particular 
direction, meaning arbitrary 3D data could not be super-resolved. 
In a study on alignment processes for 3D data, Makadia et al. 
proposed an approach to correct the alignment of scanned data 
automatically with little overlap [3]. Their study mainly focused on 
producing a single omnidirectional 3D representation from several 
scanned datasets. However, because a large portion of the 3D data 
used in super-resolution techniques overlap and differ in terms of 
sampling locations, it is difficult to apply the alignment procedure 
described above to generalized super-resolution techniques.  

In this study, we aim to improve the alignment accuracy of 
3D point clouds for super-resolution techniques. 

Proposed method 
An outline of the processing steps of the proposed method is 

presented in Fig. 1, and consists of the following four steps: (1) 3D 
point clouds are adaptively sampled. (2) A fast point feature 
histogram (FPFH) is used to extract features from the sampled 
point clouds. (3) The random sample consensus (RANSAC) 
method is used to estimate an initial alignment. (4) The iterative 
closest point (ICP) method is used to perform a precise alignment 
procedure. 

Adaptive sampling 
In the first step, point clouds are adaptively sampled 

according to their importance for alignment processing.  
In the alignment of 3D point clouds, regions with locally 

uniform normals (such as planes) tend to fall into local optimal 
solutions, leading to decreased accuracy. Therefore, we extract 
regions in which normals are locally uniform and down-sample the 
point clouds associated with those regions. In this study, we 
extracted regions based on the method described in [4] as follows: 
1. Specify the thresholds of curvature 𝑟௧௛ and smoothness 𝜃௧௛. 
2. During region expansion, soft point clouds P ൌ ሼ𝑝௜ሽ by the 

curvature values of their corresponding normal vectors to 
identify a seed point 𝑝଴ with the minimum curvature. Find the 
30 nearest neighbors of the current seed point 𝑝଴. 

3. If the angle between the normal 𝑛଴ of 𝑝଴ and the normal 𝑛௝ of 
a nearby point 𝑝௝ satisfies ฮ𝑛଴ ∙ 𝑛௝ฮ ൐ cos 𝜃௧௛, then add point 
𝑝௝  to the current region. If the curvature of the point 𝑝௝  is less 
than 𝑟௧௛, then add the point to the list of potential seed points. 
Perform this process for all 30 nearest neighbors. 

4. If the potential seed point list is not empty, set the current 
seed to the next available seed and return to Step 3. 

5. Add the current region to the segmentation results and return 
to Step 2. 

6. Return the segmentation results. 
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Among the segmented regions, regions with large areas become 
target regions for down-sampling. In this study, down-sampling 
was performed by using the center of gravity of the voxel in the 
target area as a representative point. 
 

 
Figure 1. Processing steps used by the proposed method. 
 

Feature Extraction based on FPFH 
In this section, we will explain a feature extraction method of 

the down-sampled 3D data based on FPFH [5]. FPFH improved 
the calculation speed of point feature histograms (PFH) method [6].  
How to find the PFH of a point 𝑝௤ in the sampled point cloud P is 
as follow: 1. for each point 𝑝௤, all of 𝑝௤ 's neighbors enclosed in the 
sphere with a given radius r are selected (k -neighborhood); 2. for 
every pair of points 𝑝௜  and 𝑝௝ (i ≠ j)  in the k-neighborhood of 𝑝௤ 
and their estimated normals 𝑛௜  and 𝑛௝ , we define a Darboux uvn  
frame (𝑢 ൌ 𝑛௜ , 𝑣 ൌ ሺ𝑝௝ െ 𝑝௜ሻ ൈ 𝑢,𝑤 ൌ 𝑢 ൈ 𝑣) and compute these 
three angular variations of 𝑛௜ and 𝑛௝ as follows: 

𝛼 ൌ 𝑣 ൉ 𝑛௝ (1) 

𝜑 ൌ
௨൉൫௣ೕି௣೔൯

ฮ൫௣ೕି௣೔൯ฮ
 (2) 

𝜃 ൌ  𝑎𝑟𝑐 tanሺ𝑤 ൉ 𝑛௝ ,𝑢 ൉ 𝑛௝ሻ (3) 

An influence region diagram illustrating FPFH computation is 
presented in Fig. 2. Eventually, features are outputted as a feature 
point cloud Pி. This process is also applied to another point cloud 
Q, resulting in a feature point cloud Qி . Next, initial alignment 
estimation is performed using the feature point clouds Pி and Qி . 
 

Initial Estimation using RANSAC 
This section describes how we compute initial position 

estimates for the ICP method using an FPFH. To derive initial 
estimates from FPFHs, RANSAC [7] was adopted in this study. 
The point clouds PQ and feature point clouds 𝑃ி𝑄ி are the inputs 
for RANSAC. RANSAC estimates a 3D affine transformation 
matrix  𝑇଴  that minimizes the sum of squared distances between 
each point 𝑝 ∈ P and the corresponding points 𝑞 ∈ Q as follows: 

 

𝑇଴ ൌ
௔௥௚௠௜௡

் 𝜀ሺ𝑇ሻ ൌ ௔௥௚௠௜௡
் ∑ ሺ𝑇𝑝 െ 𝑞ሻଶ௣ఢ௉  (4) 

The RANSAC algorithm can be summarized as follows. 
1. Find 𝑛 random points in the point cloud P and the 

corresponding points in Q using the feature point clouds Pி 
and Qி  obtained by an FPFH. 

2. If the Euclidean distance between corresponding points is 
greater than a threshold, return to Step 1. 

3. Estimate a 3D affine transformation matrix 𝑇଴ using 𝑛 
sampled correspondences. 

4. Apply the matrix 𝑇଴ to transform the point cloud P. 
5. Find inlier points by performing a spatial nearest neighbor 

search between the transformed points and the point cloud Q, 
followed by Euclidean thresholding. If the number of inliers is 
too low, return to Step 1. 

6. Re-estimate a 3D affine transformation matrix based on the 
inlier point correspondences. Measure ε(𝑇଴) using the inliers. 
If this measurement results in the smallest value thus far, then 
set 𝑇଴ to the resulting transformation matrix. 

3D Alignment using ICP 
In this section, we describe a 3D alignment method based on 

ICP [8]. For this process, the initial matrix derived in Sec. 2.3 and 
each point cloud are used as inputs. In its simplest form, the ICP 
algorithm iterates using two steps. Beginning with an initial 
estimate of the alignment parameters 𝑇଴ , the algorithm forms a 
sequence of estimates 𝑇௞  that progressively reduce errors. Each 
iteration of the algorithm consists of the following two steps: 

𝜑 ൌ argmin
௤∈୕

𝜖ଶሺ|𝑞 െ 𝑇௞ሺ𝑝ሻ|ሻ   𝑝 ∈ P (5) 

𝑇௞ାଵ ൌ argmin
்

∑ 𝜖ଶ௣∈୔ ൫ห𝑞஦ െ 𝑇ሺ𝑝ሻห൯ (6) 

Here, correspondence is denoted by the function 𝜑. For each data 
point, this function selects the corresponding point in another point 
cloud. 𝜖ଶ denotes Euclidean distance in the form of an error 
function. One can see that both steps reduce the error and that the 
error is bounded from below. Therefore, convergence to a local 
minimum is guaranteed. Furthermore, it is straightforward to 
discern a termination criterion. When the set of correspondences 

 
Figure 2. Influence region diagram for an FPFH. 
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does not change in the first step, the value of 𝑇௞ାଵ will be set equal 
to 𝑇௞ in the second step, meaning no further change is possible. 

The final result obtained by the proposed alignment method is 
a 3D affine transformation matrix 𝑇௞. 

Experiments 
To verify the proposed method, we conducted evaluation 

experiments using real objects. In this section, we describe the 
measurement method and acquired point cloud data, as well as 
experimental results. In our experiment, we used a threshold of 
𝑟௧௛ ൌ 1.0  and 𝜃௧௛  was varied from 𝜋/180  to 3𝜋/180  based on 
empirical observations. The voxel size for adaptive sampling was 
set to 9 mm (real size). 

Measurement 
Figure 3 presents the test samples used in our experiments. 

Each object in Fig. 3 is characterized by many planar regions or 
repeating patterns. The measurement system used for our 
experiments was an HP 3D Structured Light Scanner Pro 3. This 
system can collect 3D data at resolutions up to 0.05 mm. The 
specifications of the measurement system are listed in Table 1. For 
measurement, 3D object data were obtained by synthesizing data 
measured four times at 90° intervals using a 360° rotation table. 
The data were outputted in the PLY 3D format. 

The measurement environment is presented in Fig. 4. We 
assumed that the collected data would be used for super-resolution 
applications. Therefore, the sampling position was shifted for 
each measurement. In our measurements, we moved and rotated 
each object appropriately so the sampling position did not 
return to the first measurement position. Table 2 lists the data 
collected from the test samples. 
 

     
(a)                                                   (b) 

     
(c)                                                  (d) 

    
(e)                                                 (f) 

Figure 3. Test samples. (a) Object containing many planes, (b) magnified view 
of (a) (c) another object with many planes, (d) magnified view of (c), (e) object 
containing repeating patterns, and (f) magnified view of (e). 

Table 1. Specifications of the 3D scanner 

 3D Structured Light Scanner Pro 

Measurement method 
Pattern optical projection camera 
method 

Maximum resolution 0.05 mm 
Measuring speed 2s per scan 
Output format OBJ, PLY, STL 

 

 
Figure 4. Measurement environment. 

Table 2. Data sizes and numbers of points collected from the 

test samples 

 Data sizes Numbers of points 

Fig. 3(a) 94,768 KB 824,440 
Fig. 3(b) 98,760 KB 1,266,897 
Fig. 3(c) 100,887 KB 1,273,444 

 

Experimental Results 
The experimental results for the test samples are presented in 

Figs. 5 to 7. Figure 5 presents the results for the object in Fig. 3(a). 
This object has a long stick shape with letters on its surface. 
Therefore, as shown in Figs. 5(b) and 5(c), the corresponding 
initial positions in Fig. 5(a), which are indicated by blue and 
orange, respectively, can be easily aligned without performing 
adaptive sampling. Fig. 5(d) presents a point cloud after adaptive 
sampling. One can see that the points on the plane are relatively 
coarse. As shown in Figs. 5(e) and 5(f), with adaptive sampling, 
alignment can still be performed with sufficient accuracy. 

Figure 6 presents the results for the object in Fig. 3(b). The 
surface of this object has many planar regions and a circular shape. 
Therefore, sampling is likely to fall into local optimal solutions. As 
shown in Figs. 6(b) and 6(c), when adaptive sampling is not 
performed with respect to the initial position in Fig. 6(a), 
alignment fails. Fig. 6(d) presents a point cloud after adaptive 
sampling. It can be confirmed that the points on the plane are 
relatively coarse. As shown in Figs. 6(e) and 6(f), by performing 
adaptive sampling, alignment can be performed with sufficient 
accuracy. 

Figure 7 presents the results for the object in Fig. 3(c). The 
surface of this object has an irregular texture pattern. Therefore, 
sampling is likely to fall into local optimal solutions. As shown in 
Figs. 7(b) and 7(c), if adaptive sampling is not performed with 
respect to the initial position in Fig. 7(a), alignment fails. Fig. 7(d) 
presents a point cloud following adaptive sampling. Some points 
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are relatively coarse and unstable. As shown in Figs. 7(e) and 7(f), 
even when adaptive sampling is performed, alignment fails. 

Conclusion 
In this study, we improved the alignment accuracy of 3D 

point clouds for 3D super-resolution applications. The proposed 
method consists of four steps: adaptive sampling, feature 
extraction, initial estimation, and final alignment. For adaptive 
sampling, we selectively down-sampled points that were not 
important for alignment. Real sample measurement and alignment 
experiments demonstrated that it is possible to avoid local optimal 
solutions for objects with severe local normal alignment, and the 
effectiveness of adaptive sampling was confirmed. 

In objects such as fabrics with repeated patterns, even if the 
proposed method is applied, it is still easy to fall into local optimal 
solutions. Future research will focus on improving alignment 
accuracy for such objects. 
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Figure 5. Experimental results for the object in Fig. 3(a). (a) Initial 
position, (b) results without adaptive sampling, (c) magnified view of (b), 
(d) point cloud with adaptive sampling, (e) final results with adaptive 
sampling, and (f) magnified view of (e). 
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(e)                                       (f) 

Figure 6. Experimental results for the object in Fig. 3(b). (a) Initial 
position, (b) results without adaptive sampling, (c) magnified view of (b), 
(d) point cloud with adaptive sampling, (e) final results with adaptive 
sampling, and (f) magnified view of (e). 
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Figure 7. Experimental results for the object in Fig. 3(c). (a) Initial 
position, (b) results without adaptive sampling, (c) magnified view of (b), 
(d) point cloud with adaptive sampling, (e) final results with adaptive 
sampling, (f) magnified view of (e). 
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