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Abstract
The high-resolution magnetic resonance image (MRI) pro-

vides detailed anatomical information critical for clinical appli-
cation diagnosis. However, high-resolution MRI typically comes
at the cost of long scan time, small spatial coverage, and low
signal-to-noise ratio. The benefits of the convolutional neural net-
work (CNN) can be applied to solve the super-resolution task to
recover high-resolution generic images from low-resolution in-
puts. Additionally, recent studies have shown the potential to use
the generative advertising network (GAN) to generate high-quality
super-resolution MRIs using learned image priors. Moreover, exist-
ing approaches require paired MRI images as training data, which
is difficult to obtain with existing datasets when the alignment
between high and low-resolution images has to be implemented
manually.

This paper implements two different GAN-based models to
handle the super-resolution: Enhanced super-resolution GAN (ES-
RGAN) and CycleGAN. Different from the generic model, the
architecture of CycleGAN is modified to solve the super-resolution
on unpaired MRI data, and the ESRGAN is implemented as a ref-
erence to compare GAN-based methods performance. The results
of GAN-based models provide generated high-resolution images
with rich textures compared to the ground-truth. Moreover, results
from experiments are performed on both 3T and 7T MRI images
in recovering different scales of resolution.

Introduction
In recent years, there has been a huge increase of computer

vision research leading to an important proportion of information
related to this field. Image super-resolution (SR) is an exploitable
image processing field that refers to recovering high-resolution
(HR) images with rich details from given low-resolution (LR)
images.

At the present time, several deep learning-based methods have
been proposed to improve the quality of images. Convolutional
neural networks (CNN) can model various complex structures
and utilize large quantities of training data. After completing the
training phase, no additional process is required to produce output
images; thus, it does not cost time for the sub-sequence process.
Recently, many CNN-based methods have outperformed in the
field of SR. Dong et at.[1] proposed the SRCNN, which learns
an end-to-end mapping from LR image to HR images. Since the
work of Dong et al. [1], different CNN based super-resolution
approaches have been implemented.

By improving the network architectures and training process,
CNN-based SR has achieved significant success on both objective
(peak signal-to-noise ratio - PSNR) [2, 3, 4] and subjective (human

visual quality assessment tests) [3, 5] criteria. A deep neural net-
work with large capacity can improve the performance in general
[6]. However, it also increases the computation cost of the training
phase. With different techniques such as skip connection [7], em-
bedding [8] or normalization [9], reducing computation time for
a effective training now is possible. Following the study of Kim
et al. [4], a deep network using advanced techniques to increase
network depth could ease the difficulty of training networks, and
the structure of the neural network is the key to obtain the high
quality of SR outputs.

Tong et al. [10] have proposed the densely connected network
(SRDenseNet) to solve SR tasks, using several hierarchical features
in different layers into the final construction layer. Sub-sequence
layers can effectively utilize extracted feature information from
convolutional layers. It is a new measure to preserve the features
of different levels extracted from different convolutional layers in
the network. It retains the ground truth image features to a greater
extent, so the dense connection can effectively improve image
reconstruction quality. SRDenseNet has significantly improved
performance over the model using multi-level features, indicating
that level fusion is indeed beneficial for SR problems. Besides,
since ResNet has been published by He et al. [7], it has proved its
efficiency in reducing training computation time and benefit in SR
fields [11]. Since their introduction in [12], generative adversarial
networks (GAN) have become a trend to solve many different
computer vision problems. The generic GAN model includes a
generator and a discriminator. While the generator is trained to
learn a mapping from source images in a domain to target images
in another domain, the discriminator distinguishes and targets
generated images with binary labels. Once well trained, GAN can
perform on high-dimensional target images.

Following the progress of neural networks applied in natural
images, medical image analysis is one of several applications
that is benefited from the improvement of SR approaches. Further
research has been proposed to improve medical image quality, such
as computed tomography (CT) or Magnetic Resonance Imaging
(MRI).

MRI is widely used in medical imaging because of its non-
invasive assessment of the body’s anatomy and physiology in both
health and disease while providing the best contrast resolution on
soft tissues. However, MRI images are normally acquired with a fi-
nite resolution limited by the signal-to-noise ratio (SNR), hardware,
or time limitation. In the clinical and research centers, usually high-
resolution and high-contrast MRI is preferred because it provides
critical structural details with a smaller voxel size. Therefore, the
request for image quality with sufficient details is fast increasing
in medical imaging. In recent years, the ultra-high-field MR 7T
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scanners were introduced, which allow high-resolution MRI scan-
ning with many advantages compared to routine MRI, such as 3T
MRI or 1.5T. The 7T MRI scanner can provide higher resolution
images while maintaining a similar signal-to-noise ratio (SNR),
which has a linear relation to the magnetic field in general for MRI
scanning.

Recently, many studies have been proposed for medical im-
age analysis, especially super-resolution. the variety of methods
stretches from statistical method such as interpolation [13, 14],
dictionary mapping [15, 16], self-learning [17] to automatically
techniques such as CNN based-method [18, 19] or hybrid meth-
ods [20]. However, most existing approaches are implemented
on private datasets because algorithms require paired datasets for
training. Such datasets usually come from collaborating hospitals.
However, these are not large enough due to the tedious and time-
consuming task of paired data retrieval. As an example, to obtain
paired 3T and 7T MRI, patients must take the test on the same day,
and later, images have to be aligned manually. Besides, there is
also the difficult to publish due to security issues.

For super-resolution task, a paired dataset contains both low
and high-resolution MRI, which is not easy to obtain. There is no
available scanner to produce HR MRI, which generally have HD
or 2K resolution. All the pre-process of super-resolution has to be
prepared manually with a very complicated process of alignment.
At this moment, there is no public dataset with paired MRI.

This paper implements two different types of GAN-based
models to solve SR on MRI images: the Enhanced Super-
Resolution GAN (ESRGAN) and CycleGAN. The advantage of
the approach is that image pairing is not required for the train-
ing dataset. Therefore they can be executed on several publicly
available MRI datasets, thus overcoming the limitations explained
earlier.

CycleGAN is known as a very popular method for image-to-
image translation. However, the super-resolution problem requires
some special characteristics due to the difference between input
and output. With some modifications to network architecture,
we make CycleGAN fit with the SR problem. The generator is
modified with several different building blocks from the generic
CycleGAN to automatically solve up-sample and down-sample im-
ages by applying skip connection techniques. In term of ESRGAN
[21], it is an improved version of SRGAN [3]. With these special
modifications of network architecture, ESRGAN has shown ex-
cellent performance in SR fields. To our knowledge there is no
ESRGAN implementation for medical images at the present time,
therefore we decide to explore ESRGAN performance in MRI
super-resolution. It also can be used as a reference to compare
with CycleGAN performance later.

In the next section, we introduce background knowledge
and concepts of image super-resolution with different CNN-based
methods and techniques. Then we discuss the details of network
architectures used in our experiments.

Related work
Image super-resolution

Before deep learning-based approaches achieved state-of-
the-art performance, SR techniques mostly relied on statistical
analysis, interpolation, edge-preservation, and sparse dictionary
learning[22]. Since the study of Dong et al. [1], CNNs have
been increasingly popular to solve the SR problem. The SRCNN

can handle feature extraction, feature space building and image
reconstruction together in an end-to-end training. Later, many
follow-up approaches with the improvement of network structures
have been inspired by the SRCNN [4, 10, 23].

Residual, dense blocks and skip connection
The performance of deep learning methods is fast improv-

ing. In contrast, these models are significantly increasing model
size, wherein the depth of modes becomes a practical problem.
Moreover, when the network is too deep, gradient disappearance
and gradient explosion issues are declared [24]. Although these
gradient issues can be solved by data regulation and batch normal-
ization, it can lead to model performance degradation. To address
this problem, ResNet proposed by He et al. [7] introduced residual
learning, where the output of the previous convolutional layer con-
nected to the next for smoother information flows through a short
cut. The detail of residual blocks is shown in Figure 1. The short-
cut connection neither increases the number of network parameters
nor the computational complexity of algorithms.

DenseNet [25] proposed a connectivity pattern to improve
the flow of feature information by concatenating information of
previous layers. The network is more efficient and outperforms
ResNet with fewer parameters. In addition, recent studies in im-
age super-resolution show that removing BN layers in residual
blocks [21] and dense blocks [2] can reduce computational cost,
memory usage, and boost model performance. The flow of the
gradient is unobstructed due to the direct link between layers.
SRDenseNet[10] is a version of DenseNet to solve the SR prob-
lems.

Additionally, Zhang et al. [26] introduced Residual Dense
Network (RDN), a combination of DenseNet and ResNet to solve
the image super-resolution task by using residual dense blocks
(RDB), which contain several dense connected layers, a local
feature fusion, and the residual learning as the final layer. Figure 1
illustrates the design of all blocks in different super-resolution
models with the removing of BN layers .

Generative adversarial network and GAN-based
Super-resolution

Since Goodfellow et al. citegoodfellow2014generative have
proposed the generative adversarial networks (GAN) model, many
follow-up studies of GAN and its variations have been applied
in several computer vision tasks. In general, GAN has proved
its efficiency to achieve state-of-the-art performance in the im-
age synthesis field. Recently, GAN has also been applied in the
super-resolution field. SRGAN [3] and ESRGAN [21] have been
successfully applied to solve SR problems for color images. Be-
sides, CycleGAN [27] proposed by Zhu et al. is an image-to-image
translation model for learning to translate an image from a source
domain to a target domain in the absence of paired examples. In
general, CycleGAN has been applied in image synthesis and image
translation domain. By applying the benefits of skip connection
techniques and CNN based methods, we can also apply Cycle-
GAN to solve SR problems. The advantage of both methods is that
they do not require paired image datasets, which is challenging
to achieve HR MRI image due to the limit of devices and manual
process.

Most previous super-resolution methods aim to optimize HR
image reconstruction by minimizing the voxel-wise difference be-
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Figure 1: Architecture of building blocks in network. (i) Residual blocks in SRGAN[3] (ii) Residual blocks without BN in [2] (iii) Dense
blocks in SRDenseNet[10] (iv) Residual Dense Blocks from (ii) and (iii) in [26], (v) Residual-in-residual dense blocks in ESRGAN[21]

tween original and generated images. However, a drawback that
merely cares about local pixel-wise differences leads to extreme
difficulty in restoring important small details. In contrast, if global
perceptual constraints can be taken into account, the SR model
is guided by both local intensity information and patch-wise per-
ceptual information, probably leading to a better and sharper SR
reconstruction [3].

With benefits from the GAN framework of Goodfellow et
al. [12] for its unsupervised-learning potential of capturing per-
ceptually important image features, Ledig et al. [3] proposed the
SRGAN to handle the super-resolution issue. The principle of
GAN relies on two components: a generator and a discriminator.
While the generator generates fake images as real as possible, the
discriminator distinguishes and evaluates to improve generated
image accuracy. In the end, the discriminator can separate real and
generated image, while the generator can produce realistic-looking
images. Next, the perceptual loss is defined in the GAN model
[12] and extended in SRGAN. SRGAN defines the perceptual loss
on the activation layers of a pre-trained deep network, where the
distance between two activated features is minimized.

Several techniques have been implemented to provide differ-
ent architectures of building units to transform LR into HR image
and reduce computation cost during the training phase. Residual
blocks (RB) from ResNet of He et al. [7] and Dense block (DB)
from DenseNet of Huang et al. [25] are the most popular archi-
tecture use in SR tasks. Based on different models, these building
blocks can be combined or modified. In SRGAN, residual blocks
have been used for the generator.

ESRGAN
Improved from SRGAN, ESRGAN proposed by Wang et al.

[21] aims to increase the quality of HR images. While SRGAN
uses residual blocks as basic blocks, ESRGAN uses Residual-
in-Residual Dense blocks (RRDB) without Batch Normalization
(BN) layers as building units. As shown in Figure 1, RRDB
is a combination of multi-level residual blocks and dense block
connection.

Recent studies have shown that removing BN layers can re-
duce computational cost, memory usage, and boost model perfor-
mance [2]. Although BN layers use mean and variance compu-
tations to normalize the features during training and later during
testing, BN layers tend to produce unpleasant artifacts and limit
generalization ability when the difference between training and

testing set is significant[21].

Figure 2: Network architecture of ESRGAN generator [21].

The addition of layer and connections can improve model
performance [26, 28], RRDB exploits deeper and more complex
connections than the residual blocks of SRGAN. Meanwhile, the
general high-architecture of the ESRGAN model is kept as SR-
GAN. The details of the generators with the additions of RRDB
are shown in Figure 2.

The discriminator of ESRGAN is also improved from SR-
GAN, based on the relativistic GAN [29]. Instead of estimating
the probability of an input being real or natural, the relativistic dis-
criminator calculates the probability of a real image to be relatively
more realistic than a fake image [21].

In terms of perceptual loss, ESRGAN uses features before
the activation layers, which helps overcoming the drawbacks of
the original design. The perceptual loss in SRGAN can cause
inconsistent reconstructed brightness compared with the ground-
truth image or the sparsely activate of features when deep network
is very deep [21]. The architecture of ESRGAN is implemented
from the original as a reference to compare performance of GAN-
based model.

CycleGAN
The core problem of the SR task in the real world is the lack

of paired datasets. Zhu et al. [27] introduced CycleGAN - an
image-to-image translation framework using unpaired data. Later,
it has inspired many following studies in different computer vision
tasks, and potential for SR. CycleGAN aims to translate input
images from a class into another class without the requirement of
paired images during training. However, different from traditional
image translation, which assumes input and output images have
the same size, SR requires output images larger than the inputs,
making it very difficult to apply CycleGAN directly.
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A recent study of Zhang et al. [26] has introduced the Resid-
ual Dense Network (RDN), which provides an exemplary architec-
ture of basic blocks. Based on residual blocks and dense blocks,
RDN proposed a Residual Dense Blocks (RDB) to handle super-
resolution tasks. Like the RRDB, RDB also removes BN layers
to reduce computational time, memory usage, and to speed up
the training process. With the addition of the basic block, the
network also introduces contiguous memory [26], which allows
direct access of information between each block layer. The model
also improves the preservation of information inside the network
using local and global feature learning which also combine the low
and high-level features.

Using the RDN, we focus on the generator architecture of
CycleGAN to adapt to super-resolution problems. In the super-
resolution CycleGAN, the generator contains several RDB for
feature extractions with local and global residual learning to keep
information convection. Next, local and global features are stacked
for up-sampling or down-sampling to produce output. The details
of the generators with the additions of RDB is shown on Figure 3.

Figure 3: Network architecture of CycleGAN generator. The gen-
erator contains several RDBs with local residual learning structure
to improve information flow. At the higher architecture, the global
residual learning structure use multi-level features to synthesize
information in LR before up-sampling.

A generic CycleGAN model can perform translations between
two classes in both directions. Therefore we build two different
generators to up-sample from LR to HR and down-sample from
HR to LR simultaneously. The architecture of the discriminator is
kept to evaluate the performance of generators.

The cycle architecture or CycleGAN is kept identical to the
original model [27]. The generator should eventually be able
to trick the discriminator about the authenticity of its generated
images. This can be done if the recommendation factor of the
discriminator for generated images is as close to 1 as possible.
The content of cycle consistency and adversarial loss - the out-
standing properties of CycleGAN - is kept. The adversarial loss
of CycleGAN is calculated based on the MSE loss between the
real and fake images of two classes. To handle the generating of
non-related output from input, the cycle loss consistency is applied.
In detail, when an image is generated, the second generator will
convert it back to the original class. Then, the cycle consistency is
calculated by the average of L1 loss between the real input and the
cyclic output. The difference between the original image and the
cyclic image should be as small as possible.

The discriminator must be trained such that recommendation
factor for images from the first category be as close to 1 as possible,
and vice versa for the second discriminator. So the first discrimina-
tor would like to minimize the loss between the generated and the
real ones, and the same goes for the second category as well. Since
discrimination should be able to distinguish between generated and
original images, it should also be predicting 0 for images produced

by the generator.

Experiment and Results
Dataset

At this moment, there is no benchmark MRI dataset for the
super-resolution task. Current MRI scanners are not available to
produce high-resolution MRI, which generally have HD or 2K
resolution. Obtaining high-resolution MRIs requires them to be
processed manually through a complex alignment system.

As mentioned in the previous section, we aim to implement
methods that does not require paired images as training data. In this
project, we used the BraTS2018 [30] dataset - a public dataset con-
taining 3T MRI images with different types of sequences. BraTS
is a very popular dataset used in the segmentation and classifica-
tion domain. The variety of the dataset is confirmed when samples
were acquired with different clinical protocols and various scanners
from multiple institutions. The field of view is 155×240×240,
wherein the slice thickness is 1mm. The size of the original image
is kept at a 1:1 ratio when the output is 240×240 pixels.

Within the project scope, we also want to explore the perfor-
mance of methods on different types of MRI. 7T MRI has proved
its function in medical image analysis. However, there is no 7T
dataset available at this moment. With the support of the 7T sys-
tem from Siemens Healthineers at Poitiers University Hospital,
we can build a dataset containing several brain 3T and 7T MRI
samples with high-quality. We aim to use that dataset to explore
super-resolution performance. Different from 3T, 7T technology
provides MRI images with higher quality and deeper voxel spacing
between slices. The field of view is 255×320×320, wherein the
slice thickness is 0.7mm. The original image’s size is also kept at
a 1:1 ratio when the output is 320×320 pixels.

Training setting
The training process is implemented on BraTS2018, which

contains only 3T MRI. Later, the testing set of BraTS and 7T MRI
dataset is used on the testing phase to evaluate the performance of
the super-resolution model. Due to the lack of high-resolution (HD
or 2K) MRI, training images in the dataset are degraded into lower-
resolution to simulate LR images with scale factors. All image
resolution changes are implemented during the pre-processing step
without modifying original data during the training phase.

The training of both ESRGAN and CycleGAN is executed
on patches to ensure the diversity of data. Besides, we also want
to reduce the computational cost of the model during the training
process. The complexity of GAN-based models is very consider-
able, with millions of parameters. This number will increase along
with the increase of model depth or the size of the input. For each
training batch, images are randomly extracted into 16 patches on
LR images corresponding to a size of 64×64 on HR images.

For CycleGAN, we keep the content of adversarial loss and
cycle consistency loss. The generator is modified to contain resid-
ual dense blocks. In CycleGAN, due to the network architecture,
two generators are built to up-sample and down-sample images. In
the down-sample generator, there are two options to down-sample
images with convolutional layers or pooling layers. The learning
rate is initialized to 0.0005 and decay starts after every 100 itera-
tions. The ADAM optimizer is used to update network weights
based on training data.

For ESRGAN, we have implemented the model following the
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original paper to use it as a reference for the GAN-based method
reference. The generator contains several RRDB. Different from
CycleGAN, a single ESRGAN model only can implement the
upsample or down-sample images. The learning rate is initialized
to 0.0002 and decay starts after the fifth epoch. The ADAM
optimizer is also used to update network weights. The first 100
batches are to ”warm-up” the training phase, which uses only
pixel-wise loss.

Results
Benefiting from these improvements, results of GAN-based

models provide generated high-resolution images with rich textures
that compare to ground-truth data. Results from our experiments
are performed on both 3T and 7T MRI images to reconstruct
different resolution levels. Figure 4 shows the result of ESRGAN
and CycleGAN on 3T and 7T MRI images with different types of
sequences.

Bicubic ESRGAN CycleGAN
PSNR SSIM PSNR SSIM PSNR SSIM

3T MRI 27.26 0.52 35.85 0.88 36.76 0.92
7T MRI 25.45 0.51 31.85 0.59 36.79 0.91

Table 1: Average value of PSNR (dB) and SSIM for scale factor
×4 on 3T and 7T MRI data

Table 1 shows average distortion and fidelity values obtained
on the test set by GAN-based methods. We have also included
simple bicubic interpolation to use it as a reference for quality.
Image quality measurement in terms of PSNR and SSIM shows
that CycleGAN methods can achieve relatively low distortion at the
×4 scale factor, while ESRGAN is still limited. We consider that
the CycleGAN has better and more stable performance compared
to ESRGAN.

As shown on Figure 4 and Table 1, both ESRGAN and Cycle-
GAN provide super-resolution 3T MRI images with rich textures.
The performance of CycleGAN outperforms that of ESRGAN
especially on 7T MRI data. CycleGAN SSIM scores exceed 0.9,
thus ensuring a better fidelity of image structures such as contours
or fine details compared to the original images. The generated
images of ESRGAN contains noise, while the CycleGAN images
are relatively stable.

Conclusion
Until now, the existing methodologies in the field of MRI SR

required paired low and high-resolution MRI images for training,
which are difficult to obtain. Due to the advantage of the GAN-
based methods, we can use the BraTS 2018 dataset as unpaired
training data. We also test the performance of models on 7T MRI
data.

The CycleGAN model is a prevalent method known for im-
age synthesis. With the advantage of self-learning between two
different classes, it can be used for super-resolution tasks. By
the modification of network architecture, we use CycleGAN to
match the problem of SR. To have a reference to compare with
CycleGAN, we also implemented ESRGAN - a popular method in
the super-resolution task which has no implementation for medical
images as far as we know.

Experimental results show that the performance of CycleGAN
on BraTS 2018 and on our 7T dataset is better and more stable
than that of the ESRGAN model. In further works, we intend

to validate our results with subjective tests made performed on a
population of radiologists trained for 7T analysis.
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