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Abstract
On-the-fly reconstruction of 3D indoor environments has re-

cently become an important research field to provide situational
awareness for first responders, like police and defence officers.
The protocols do not allow deployment of active sensors (LiDAR,
ToF, IR cameras) to prevent the danger of being exposed. There-
fore, passive sensors, such as stereo cameras or moving mono
sensors, are the only viable options for 3D reconstruction. At
present, even the best portable stereo cameras provide an inac-
curate estimation of depth images, caused by the small camera
baseline. Reconstructing a complete scene from inaccurate depth
images becomes then a challenging task. In this paper, we present
a real-time ROS-based system for first responders that performs
semantic 3D indoor reconstruction based purely on stereo cam-
era imaging. The major components in the ROS system are depth
estimation, semantic segmentation, SLAM and 3D point-cloud fil-
tering. First, we improve the semantic segmentation by training
the DeepLab V3+ model [9] with a filtered combination of sev-
eral publicly available semantic segmentation datasets. Second,
we propose and experiment with several noise filtering techniques
on both depth images and generated point-clouds. Finally, we em-
bed semantic information into the mapping procedure to achieve
an accurate 3D floor plan. The obtained semantic reconstruc-
tion provides important clues on the inside structure of an unseen
building which can be used for navigation.

Introduction
Defence and/or police officers may enter unknown buildings

and hostile environments for indoor inspection. Currently, the
commander coordinates these officers by radio communication
with limited or no visual observations. This provides low global
situational awareness for the commander, which degrades the ef-
ficiency and safety of the inspection. On-the-fly 3D reconstruc-
tion of premises via on-body sensors and simultaneous localiza-
tion and mapping (SLAM) can help to achieve global situational
awareness, by offering a live view of the 3D model and officer
locations to the commander in a remote application.

Existing work on SLAM can be divided into active [1] and
passive SLAM [2, 3, 4], based on the applied sensor types. How-
ever, to prevent military officers from being exposed, active sen-
sors (e.g. LiDAR, ToF and infrared camera) cannot be employed.
Therefore, in this paper, a SLAM system deployment is inves-
tigated with passive sensors for generation of a global 3D floor
plan.

The hardest challenge of stereo SLAM is the inaccurate es-
timation of depth images caused by a small baseline of a stereo
camera or poor indoor illumination. Incorrect depth images lead

Figure 1. 3D Reconstruction from our stereo SLAM system. Top: point-

cloud from SLAM baseline. Bottom: filtered point-cloud.

to noisy 3D reconstruction. It is also difficult to extract a mean-
ingful 3D floor plan from a noisy reconstruction.

This paper proposes a stereo SLAM system, which provides
an accurate 3D model (as shown in the example of Fig. 1) of an
unknown indoor environment. We aim at providing a clean 3D
reconstruction with walls, windows and doors. To achieve this,
first, we propose several noise filtering techniques on both depth
images and generated point-clouds. Second, we deploy all of our
components into the robotic operation system (ROS). Finally, we
generate and embed semantic information into the 3D mapping
procedure.

State of the art
SLAM can be categorized into active and passive sensor

SLAM. Our focus is on the passive sensor SLAM, which can be
further divided into mono SLAM and stereo SLAM. Mono SLAM
incurs low cost, but its performance limited due to lack of scale
information [7]. The emergence of stereo cameras have solved
this problem. A stereo camera is similar to the human eye, where
the depth information is calculated by the difference between the
left and right images [10].

The stereo SLAM system can build a sparse or dense 3D re-
construction, by utilizing the estimated depth image and visual
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Figure 2. Block diagram of the proposed system in ROS. The square and

arrow represent an ROS node and an ROS topic, respectively. The blue ROS

nodes compose our SLAM baseline. The camera SDK [6] is responsible for

processing the stereo images and publishing topics, such as estimated depth

images. RTAB-Map [3] is responsible for real-time pose tracking of the sensor

and global point-cloud generation from the received topics.

odometry. A sparse reconstruction cannot provide completeness
in environment description, thus, it is normally used for localiza-
tion purposes [2]. A dense reconstruction provides more com-
plete data, but as the scanned environment becomes larger, the
computation becomes extremely expensive [11]. An Open-source
SLAM system RTAB-Map provides a proper memory manage-
ment, which makes the reconstruction process independent of
time and scale of the environment [3].

The 3D map reconstructed by stereo SLAM is usually lim-
ited and noisy, due to inaccurate depth estimation. In addition to
the small camera baseline, the variable indoor lighting conditions
and depth interpolation are the main influencing factors. Incor-
rect depth information can lead to a very noisy 3D reconstruction.
Therefore, an accurately tuned indoor SLAM system with passive
stereo sensors is required, where additional filtering and semantic
data integration can help to recover from the deficiencies of the
stereo data.

Method: Architecture and stages
Fig 2 presents the proposed ROS-based system architecture.

Subsection A first introduces the SLAM baseline. Afterwards,
Subsection B explains the preprocessing step of the estimated
depth image. Then, the semantic segmentation training proce-
dure is explained in Subsection C. Subsection D introduces the
proposed point-cloud “column filtering” approach. Finally, Sub-
section E discusses the integration of semantic segmentation into
the proposed system.

A. SLAM baseline
The SLAM baseline consists of two parts: 1) the SDK of

the selected Zed Mini camera [6] and 2) the visual SLAM system
known as Real-Time Appearance-Based Mapping (RTAB-Map).
Both parts are integrated as ROS nodes.

The camera SDK [6] (Stereolabs Inc., San Francisco, USA)
estimates and interpolates depth information from the left and
right image pairs. The odometry is estimated by the embedded
IMU. The depth and odometry information is published as an
ROS topic for other ROS nodes.

The RTAB-Map node subscribes for the depth image and
odometry topics to generate the 3D point-cloud of an unknown
environment. The left part in Fig. 3 presents a 3D reconstruc-
tion of a building, based solely on the SLAM baseline. The radial
noise is caused by the incorrectly estimated depth information. At
such quality, the commander is not able to recognize that there are
six rooms inside the building. Therefore, we improve this base-
line with the three techniques (shown as yellow blocks in Fig. 2):
depth-image filtering, semantic segmentation and column filter-
ing.

B. Depth-image preprocessing
We observe that the depth error increases with distance. Each

pixel in the depth image has a confidence score. As a SLAM
preprocessing step, we discard pixels with long distances and low
confidence scores based on empirically defined thresholds (in this
study, the distance threshold is 8 meters, the confidence threshold
is 0.95). As shown in Fig. 2, the node publishes the filtered depth
images, serving as an input to the RTAB-Map node.

C. Semantic Segmentation
To pinpoint locations of interest on the map for the comman-

der, such as windows, doors and stairs, a semantic segmentation
network is trained with public datasets to classify these objects
at the pixel level. Mapping of the pixel-level labels to either the
3D reconstruction or 2D floor map is then performed by back-
projection.

For practical feasibility, the floor-plan creation system
should operate at near real-time speed on a laptop. This places
constraints on the selection of the segmentation neural networks
architecture. Acceptable execution speed can be achieved with the
the Deeplab V3+ model [5] with a ResNet-50 [?] backbone, us-
ing images downscaled to 853×480 pixels and speed-up by Ten-
sorRT and fp-16 execution. Initial experiments were performed
with the ResNet [9] backbone and at higher resolutions, but the
accuracy was similar, while being significantly slower.

To improve the accuracy of the semantic segmentation net-
work, we have re-trained it on a combination of several public
datasets [12, 13, 14, 15, 16]. Public datasets all use different
classes and different data formats, which makes merging a non-
trivial task. In order to create a usable dataset, seven classes have
been defined that are considered to be of interest to the project.
‘Wall’, ‘floor’ and ‘ceiling’ can be used by the floor-plan gener-
ation algorithms to make them more accurate. ‘Window’, ‘door’
and ‘stairs’ are special objects of interest that should be marked on
the floor plan, because they are highly relevant for the comman-
der. Finally, all other objects are marked as ‘other’, to ensure that
the algorithm is not forced to assign any of the first six classes to
irrelevant objects such as chairs. The mapping of classes from
public datasets to our own classes of interest is shown in Ta-
ble 1. The ”stairs” class in Stanford2D3DS and 3DFacilities is
not annotated, but is now a part of the datesets’ ”unknown” class.
To prevent network confusion during training, the ”unknown”
class from these two datasets is ignored entirely and instead, it
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Classes ADE20k SUNRGBD Stanford2D3DS 3DFacilities COCO-stuff Ours
wall X X+ whiteboard X+ column + beam X+ column + beam X X
floor X X X X X+ carpet + rug X
ceiling X X X X X X
window X+ blind + screen X+ blinds X X X X
door X+ screen door X X X X X
stairs X+ step + escalator x x X X X Total
#images 22,210 10,335 70,496 25,586 123,287 393 251,914
#images 11,692 9,710 69,993 10,143 19,822 393 121,360

Table 1. Summary of combined datasets for semantic segmentation. All sets are publicly available, except ”test set”, which
consists of our own annotated recordings of four different university buildings and four buildings on another terrain.

is mapped to our ”other” class. Furthermore, the images are fil-
tered on scene type (only indoor scenes are selected) and class
coverage (at least 30% of the pixels in an image should be within
the classes of interest).

The deep learning network is evaluated on a small, self-
annotated dataset gathered in buildings on the other terrain, con-
taining 258 annotated images. To be able to train the network
with images taken by the ZEDm camera used in this work, with-
out compromising the validity of the test set, a separate set of 135
images from three university buildings is annotated and added to
the training set. Finally, this results in a train set of 121,102 im-
ages for training and 258 for testing.

D. Column filtering
The 3D reconstruction example in the left part of Fig. 3 con-

tains noise caused by incorrect depth estimations. This noise can
be regarded as outliers in reconstructed building structures. Thus,
we filter the reconstructed point-cloud by removing points that
are detected as outliers. Our filtering technique assumes the fol-
lowing steps. 1) The baseline output contains a dense reconstruc-
tion of the main structures, such as walls, doors and cupboards
(i.e. main structures should contain more points than the noisy
point-cloud areas). 2) All the structures of interest (walls, doors,
windows) are perpendicular to the ground plane. 3) The buildings
are single-story or multi-story with aligned walls (the structure of
each floor is the same). This study does not target reconstruction
of ceilings and floors, since they occlude the inside structures and
prevent viewing them. Hence, we employ a ’3D column filter’ to
remove points not belonging to the structures of interest.

Fig. 3 depicts an example of the filtering procedure. We first
separate the horizontal plane into a 10× 10-cm grid map of 2D
cells, since we found that the scanned mean thickness of the walls
are close to 10 cm. Each grid cell aggregates corresponding points
in a vertical direction. The boundaries of the cell extruded in the
vertical direction define the vertical 3D columns. We calculate
the amount of points that belong to each column as the column
value. Each column can be seen as a square pillar on the top-
view grid map. Computation of the column value converts the
pillar to one value assigned to the corresponding grid cell. We
then apply a sliding 3×3 mask window to the grid map to check
the neighbors of each column. We calculate the mean value un-
der each mask and refer to it as ‘local threshold’. We have also
experimented with median and standard deviation operation for
the ’local threshold’ calculation. The median operation provides
a grid map with many scattered grids at noisy areas (more noise
components are preserved) compared to the other two operations.
Considering the computational cost, we have adopted the low-cost
mean operation, since its performance is similar to using the stan-

dard deviation. We accept a column value if that value is higher
than the corresponding local threshold.

After filtering by the local threshold, we calculate the mean
value of all surviving columns to define a ‘global threshold’. If the
column value is higher than the global value, then this column is
seen as valid and the points located inside are kept as a part of the
building structure. Otherwise, the points are considered outliers
and removed from the point-cloud.

E. Integration of semantic segmentation
We use the depth image combined with the semantic seg-

mentation image to create a “semantic point-cloud” by aligning
the 2D semantic information with the 3D point-cloud. Each voxel
represents a cube of optimal size 20×20×20 cm. The class label
of each voxel is defined by the most frequently occurring seman-
tic class (e.g. door) of all 3D points in that voxel, combined with
the class labels of the neighboring voxels.

Experiments and results
The first part of the section shows the quantitative semantic

segmentation results on our test set. This is followed by quali-
tative results for the column-filtered point-cloud, and finally, the
semantic 3D integration model is discussed.

Dataset creation is based on using the ZED Mini (ZEDm)
stereo camera. All results depend on this dataset. Four buildings
with different properties were scanned and reconstructed for eval-
uation. Table 2 shows important properties of these four build-
ings.

Building # B1 B2 B3 B4
Light Off On On Off
Window Open Close Close Half closed
Roof type Tilted Titled Flat Flat
Floors 2 1 3 1

Table 3. Properties of the four different scanned buildings,
referred to as B1 through B4, in our testing dataset.

A. Semantic segmentation results
To evaluate the semantic segmentation network, we compare

both the accuracy and mean Intersection over Union (mIoU) on
our annotated other terrain testset. The results are shown in Ta-
ble 3. As a sanity check, first the scores for trivial segmentations
consisting entirely of the most common class (wall) were com-
puted to derive a reference point, giving a 55% score, which is
not plotted in the table. Then we use the 8 classes for perfor-
mance testing and increase the dataset sizes, as shown in the ta-
ble. To verify that the network has sufficient learning capacity, we
overtrain on the test set, which indeed reaches near-100% perfor-
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Figure 3. Procedure of the column filter. Input is the row point-cloud (left image), the output is a clean point-cloud (bottom right) and 2D floor plan (top right).

Model: 8 classes Accuracy mIoU
Trained on ADE20k 71.40% 40.32%
Trained on public datasets 70.93% 44.54%
Trained on public + own data 71.70% 46.58%
Overtrained (upper bound) 97.69% 94.17%

Table 2. Impact of combining public datasets and adding a
small amount of same-camera data on accuracy and mIoU.

mance. Next, we evaluate the performance of the network trained
only on the commonly used ADE20k dataset as a realistic base-
line. This already results in reasonable performance, but a higher
mIoU is desirable to make the final semantic floor plan more ac-
curate. Training with the filtered combination of public datasets
improves the mIoU by over 4 percentage points. Finally, adding
the 135 university-building images (each image 100 times for bal-
ancing reasons) improves the mIoU by another 2 percent points.
This means that having images taken with the same camera that
is used for testing is still valuable, even when the scenes are com-
pletely different and the number of training images with the same
camera is small.

B. Column-filtering results
Fig. 4 shows the experimental results. The top subfigures

depict the original 3D point-clouds, while the bottom subfigures
show the filtered clean 3D maps of buildings in our dataset. It can
be observed that most radial noise points are removed by the col-
umn filtering. It can be noticed that there are empty areas in the re-
constructed wall structures. The reasons for these empty areas are
twofold. 1) The empty areas could not be scanned during dataset
creation (e.g. the scanning route was blocked by furniture). 2)
The empty areas can be windows, with the state of these windows
being open (e.g. building B1). Only the frames of the window are
left in this area and there are not enough points to complete the
inner part of the window. Thus, these areas are seen as invalid and
the points inside are removed. In future work, we will aggregate
semantic information to the column-filtering procedure to prevent
removing points that belong to an opened window. It can be ob-

served that the internal structures of building B2, B3 and B4 are
visible. The filtered building B1 is not as clean as other buildings,
since it has a tilted roof. Our column filter is currently limited in
filtering these kinds of non-vertical structures, since it is beyond
the scope of our building assumptions.

C. Integration of semantic segmentation
As explained in the method section, we align the 2D seman-

tic information with the 3D point-cloud based on a voxel-grid ap-
proach. The resulting semantic 3D reconstruction is shown in
Fig. 5. Colors present different classes. Walls, windows and doors
are colored as red, yellow and blue, respectively. Currently, the
semantic reconstruction is not very accurate and needs to be im-
proved in future work. However, it is a meaningful map for a
commander to use in practice, since it offers clean building struc-
tures and provides direct clues on the structural elements of the
rooms.

Conclusion
In this paper, we have introduced a ROS-based SLAM sys-

tem for a passive stereo camera, which also creates a depth signal
besides RGB data. The proposed system generates a clean indoor
3D reconstruction, even with inaccurate depth information from
the small baseline stereo camera. The key contribution to our sys-
tem performance is as follows. We deploy a point-cloud “column-
filtering” approach to remove undesired data points, while re-
training a DeepLab V3+ model with a filtered combination of
public datasets to extract semantic information. Then we utilize
a voxel-grid approach to integrate the 2D semantic information
with the clean (filtered) 3D reconstruction. The important objects
such as walls, doors and windows are labeled in the clean 3D re-
construction. Experimental results show that for our own created
dataset, we are able to remove most of undesired points in the 3D
reconstruction of buildings with different properties. The seman-
tic reconstruction provides important clues on the inside structure
of an unseen building which can be used for navigation. For future
work, a more accurate semantic 3D map is pursued.
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Figure 4. Comparison between SLAM baseline output and column-filtering output. 3D Reconstruction of four different buildings are listed from left to right.

Images in the top line are results from RTAB-Map, Images in the bottom line are column-filtered results.

Figure 5. 3D Reconstruction with semantic information. Left and middle subfigures portray 3D views, the right figure is a top view. Different colors present

different classes. Red: wall. Blue: door. Yellow: window. Black: others.
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