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Abstract 

Immersive video enables interactive natural consumption of 

visual content by empowering a user to navigate through six 

degrees of freedom, with motion parallax and wide-angle rotation. 

Supporting immersive experiences requires content captured by 

multiple cameras and efficient video coding to meet bandwidth and 

decoder complexity constraints, while delivering high quality video 

to end users. The Moving Picture Experts Group (MPEG) is 

developing an immersive video (MIV) standard to data access and 

delivery of such content. One of MIV operating modes is an object-

based immersive video coding which enables innovative use cases 

where the streaming bandwidth can be better allocated to objects 

of interest and users can personalize the rendered streamed 

content. In this paper, we describe a software implementation of 

the object-based solution on top of the MPEG Test Model for 

Immersive Video (TMIV). We demonstrate how encoding 

foreground objects can lead to a significant saving in pixel rate 

and bitrate while still delivering better subjective and objective 

results compared to the generic MIV operating mode without the 

object-based solution. 

Introduction  
Advancements in digital media technology are enabling worldwide 

adoption of immersive media by bringing innovative six Degrees 

of Freedom (6DoF) visual experiences of immersive media 

formats, such as multi-view video, point-cloud video and 

volumetric video, to mass-consumer market. By enabling 6DoF 

with motion parallax and wide-angle rotation capabilities, an 

immersive media platform shown in Fig. 1 allows viewers to 

navigate the content in a more natural, personalized and interactive 

way. 

A complete real-time immersive media platform includes 

everything from the capturing of immersive content to the 

production, processing, and delivery of immersive visual 

experiences and services. For a real-time immersive media 

platform, it is difficult to move large amounts of captured media 

data along a media processing pipeline with minimal latency, 

compute the immersive media data efficiently with resource 

constraints, and deliver the best possible quality of media content 

over limited network bandwidth.  Given those challenges, such 

immersive experiences have previously been limited to virtual 

videos, pre-synthesized at the capture side, where the content 

creator determines the navigation path, renders ordinary 2D video 

for the navigation path, and distributes content using legacy video 

distribution methods. 

The coded representation of immersive media being developed by 

the Moving Picture Expert Group (MPEG), is part of the MPEG-I 

[1] project, which is an industry effort to develop a suite of 

standards to support immersive media access and delivery.  By 

leveraging the state-of-art high efficiency video compression 

technologies, e.g., HEVC, MPEG Immersive Video (MIV) [2], one 

of the MPEG-I standards, is promising to deliver a standard-based 

coding solution without compromising the interactivity and 6DoF 

capabilities of immersive media content. One of MIV operating 

modes is the object-based immersive video coding which enables 

novel use cases for objects within the immersive content at the 

encoding and decoding stages. 

In this paper, we first show an example immersive video sequence 

with the generated object maps. Then we discuss the novel use 

cases enabled by our object-based coding scheme. Afterwards we 

explain the design of object-based MPEG immersive video coding 

and how it is implemented in the Test Model for Immersive Video 

(TMIV) [3], the reference software of MIV. The quality 

improvement as well as the bandwidth saving, and the performance 

gain of the object-based solution are evaluated. 

 
Figure 1. Immersive media capture, platform, and playback stages delivering 
6DoF experience 

Immersive Video Content Sample 
One of the synthetic content sequences, called Museum [4], used 

during the MIV development process has been utilized here. We 

first describe the sequence and its object maps that we have 

generated from it to showcase the object-based solution. 

Museum Content 
The dataset represents a time-sequence of 300 frames, where each 

frame contains 24 views rendered from 24 virtual cameras each 

directed normal outward to a sphere, see figure 2-left. Each view is 

made up of a 2048x2048 texture image and a corresponding16-bit 

depth image (see Figure 2-right) stored as equirectangular 

projections with a 180-degree vertical and horizontal field of view.  

Camera position, orientation, and projection information are 

provided for all 24 views. 

 

 

 
Figure 2. Capturing camera system composed of 24 cameras (left) along with 
the texture and depth components of one of the views at a given frame 
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Object Maps 
Our object-based coding solution requires input information which 

indicates which object each pixel within a view per frame belongs 

to. This can be provided in a form of supplemental object maps 

associated with the content. For the Museum sequence, the object 

maps feature 25 different objects indexed as illustrated in Fig. 3. 

Note that for this content, ObjectIDs [0, 5] are reserved for the 

background objects while ObjectIDs [6, 24] are reserved for all 

other foreground objects in the scene. The generation of these 

object maps is further explained in appendix A.1. 

  
Figure 3. The indexing of Museum’s Object Maps shown in 3D layout (left) 
and color-indexed object map of v5 – frame 100 (right). 

Object-Based Immersive Applications 
The object-based coded representation of immersive media enables 

many novel use cases for volumetric video coding and rendering. 

In addition, it helps addressing several MPEG requirements for 

immersive media access and delivery [5] including the 

manipulation of decoded objects at higher level without having 

access to the actual pixel information. 

Priority Objects Rendering 
Object-based coded representation of immersive media speeds up 

processing of content at the decoding side to meet real-time 

requirements.  Each object in the bitstream can be signaled for its 

priority over the rest of the objects.  When such object priority 

information is available at the decoder side, the renderer can 

choose to process the high priority objects only while dropping low 

priority objects to meet latency or computing constraints. 

Objects Filtering 
Since each object is coded individually, viewers may choose to 

view only the objects of interests while not displaying the other 

objects. Object-based coded representation not only allows such 

kind of personalized viewing on the decoder side but also allows 

the encoder to pack only objects of interest in the bitstream in the 

event of limited network bandwidth or supporting less capable 

client devices. 

Background Rendering 
In object-based code representation, background is considered to 

be a special object that can be rendered by itself independent of 

other objects. The background object can be synthesized from 

virtual / pre-rendered content. For example, the venue of a sports 

game can be synthesized as a 3D model ahead of a live game and 

used for rendering as the background in a scene augmented with 

objects (players, balls, etc.) captured from the live game. 

Object-Based Scalability 
Traditional adaptive streaming technique alters the quality of entire 

video stream in order to fit to different network conditions. In 

object-based coded representation, encoder may use contextual 

information available to it to decide the relative importance of 

different objects and provide object-based scalability for adaptive 

streaming.  For example, unimportant objects, e.g., objects too far 

away from a viewport, can be dropped entirely or compressed at 

lower visual quality.  The quality for objects that are important to 

the viewers does not degrade even at lower network bandwidth. 

Objects of Interest 
Object-based coded representation also allows highly personalized 

content because each object can be compressed in different visual 

quality.  If one is interested in a specific object, one can select the 

stream with the object-of-interest encoded in higher visual quality.   

MPEG Immersive Video Coding 
The immersive video format that is input to a MIV encoder is a 

multiplicity of synchronized view videos captured by real and/or 

virtual cameras that can be arranged in a variety of configurations, 

including outward-facing, inward-facing, or a planar camera array. 

The content can be synthetic (i.e. computer generated) or natural 

(i.e. real-world) and in 360 degree (e.g. equirectangular) or 

perspective projection format. Each view is composed of two 

components; a texture content (e.g. RGB / YUV channels) and its 

associated depth map (whether captured or estimated). 

The MIV standard [2] is based on the Visual Volumetric Video-

based Coding (V3C) specification and aims at exploiting 

redundancy between the views and leveraging state-of-art video 

codecs to deliver the best quality at minimal bandwidth and with a 

minimum requirement of decoder complexity. The MIV standard 

defines the format of the compressed bitstream and the normative 

decoding process to deliver the 6DoF experience while TMIV [3], 

its reference software, provides an exemplary full implementation 

of the encoder and decoder stages. A brief description of the TMIV 

software is given here to establish the technical background for the 

object-based solution described in a later section. 

The immersive media content streamed in MIV can be navigated 

with 6 DoF by a wide range of consumer devices which contain 

video decoding hardware and a GPU, such as computers with face 

tracking camera, smartphones/tablets with inertial sensors, head-

mounted displays, volumetric and multi-view displays. 

TMIV Encoder 
The TMIV encoder takes as inputs texture and depth videos for 

multiple synchronized source views, each at a particular position 

and orientation. The input views are processed using reprojection 

between views to remove redundant regions, in order to reduce the 

bitrate and pixel rate needed to represent the whole content. 

The TMIV encoder identifies a few of the views as basic views, 

each of which is fully encoded within a single patch. The 

additional views are then projected against the basic ones (and 

previously pruned ones) to extract the non-redundant information 

in a form of rectangular patches and pack them into atlases 

(composed of texture and depth components) during the atlas 

construction process. Occupancy maps are also generated to 

indicate the active pixels (for the non-redundant regions) per patch 

and helps resolving overlapped patches later at the decoding stage. 

The occupancy maps are embedded within the lower range of the 

depth component of the atlases. The atlases are finally encoded 

using the existing HEVC video codec. The associated view 

parameters list (illustrating how views are placed and oriented in 

the coordinate space) and the atlas data (indicating how patches are 

mapped between the atlases and the views) are carried as metadata 
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within the bitstream. The encoding process of a simplified TMIV 

software is summarized in Fig. 4 while example atlases are shown 

in Fig. 7. 

The TMIV encoder attempts to optimize bitrate, to reduce the 

network bandwidth requirements, and to optimize pixel rate, which 

directly impact decoder complexity requirements. Pixel rate is 

calculated as the resolution of the combined atlases multiplied by 

the frame rate. 

 
Figure 4. Flow diagram of a simplified TMIV encoder 

TMIV Decoder 
At the decoding stage, video decoding is applied to retrieve the 

atlases, the metadata is parsed, and the occupancy maps and block 

to patch maps (indicating patchIDs of each pixel in the atlas) are 

recovered. The renderer then within the exemplary TMIV decoder 

outputs a perspective viewport, selected based upon a viewer’s 

position and orientation, generated from the decoded atlases and 

metadata of the immersive decoder. The TMIV rendering process 

is illustrated in Fig. 5 which includes a patch culling step to 

exclude all patches that do not contribute to the viewport, a 

geometry process to retrieve the geometry at full resolution and 

find the metric depth, the reconstruction of pruned views, the 

unprojection and reprojection to the target viewport, the merging 

and inpainting steps. The complexity of the TMIV decoding 

process is largely driven by the pixel rate. Note that the MIV 

standard [2] itself does not specify the reference renderer but 

supplies it with the required metadata and decoded content.  

 
Figure 5. Flow diagram of a simplified TMIV renderer 

Object-Based Implementation in TMIV 
As the encoding and decoding stages of the TMIV software have 

been introduced, we explain here the modifications added on top of 

the software to bring the object-based capabilities to it. Note that 

the TMIV software including the object-based solution is 

accessible publicly on the Gitlab server at https://gitlab.com/mpeg-

i-visual/tmiv/. 

 

Object-Based Encoder 
The modified TMIV encoder features an object-based atlas 

constructor which is illustrated in Fig. 6. All other blocks are left 

unmodified as in the original TMIV encoder. Note that in the 

object-based solution, object maps for all views and frames are 

made available as an input as well in addition to the texture content 

and depth maps. Also, the basic views here are just used for 

pruning and packing but not being streamed since each patch shall 

carry only pixels that belong to a specific object. Some 

components of the atlas constructor operate on frame level while 

others on intra-period level (i.e. random-access period). 

 
Figure 6. Flow diagram of an object-based atlas constructor inside TMIV 
encoder 

Frame Level Operations 
The object-based atlas constructor takes as an input the texture, 

depth, and object maps of the frame being processed in addition to 

what views being labeled as basics along with their camera 

parameters. A loop is established over the objects selected for the 

encoding (whether preset by a user or decided based on an 

encoding metric) where in each iteration the related object layers 

are extracted from the frame’s views (texture and depth) and 

passed to the pruner which finds the nonredundant parts and 

returns the related binary masks. Note that the looping over the 

pruner can be parallelized over various objects since there is no 

dependency and to maintain reasonable encoding time. 

The pixels of the basic views’ masks by default (i.e. in the original 

atlas constructor) are turned on (i.e. set entirely to max grey level) 

denoting that the entire basic views are streamed in whole patches. 

However, for the object-based implementation no patch can have 

pixels belong to more than one object at a time. Thus, the basic 

masks are updated in the object masker based on the object maps 

such that pixels are turned on only for pixels belong to the 

extracted object. The other pruning masks are refined as well to 

accurately represent the object. Then object masks are formed such 

that the related objectID is assigned to all “on” pixels within the 

refined masks (across all views) for the frame being processed. 

The object masks are merged with those in the previous iteration, 

this way objectID can be tracked and patches can be tagged with 

the right objectID label at a later stage. The object layers resulted 

from the object separator stage are also merged together and 

pushed into a buffer so they can be used in the atlas generation 

stage. The aggregator then aggregates the pruning binary masks 

and the merged multi-level object masks to account for motion 

across frames within an intra-period. 
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Inter-Period Level Operations 
After processing all frames within an intra-period (i.e. random-

access period), the aggregator terminates the accumulation of the 

masks and passes them to the patch packer. The aggregated object 

masks are then used to filter out the binary masks, so clustering is 

applied per object and the resulted clusters are tagged with the 

related objectID and queued together. After clustering over all 

objects, the clusters are ordered based on how many active pixels 

they include (unless they belong to the basic views). Patches are 

then formed from the clusters and packed into the atlases. Note that 

each patch carries the same objectID of the cluster that initiated it. 

Finally, an atlas generator is deployed to write the texture and 

depth content of the patches. The content of a given patch is 

extracted from the associated object views passed by the object 

masker and merger block. 

Object-Based Decoder 
The TMIV renderer has been modified to support the object-based 

filtering and rendering operations, although block-wise it remains 

as illustrated in Fig. 5 (but now the object filtering block will be in 

used). The user can pick a desired set of objects to be rendered, 

and the block to patch map per atlas is updated such that the 

patchIDs of patches that carry objectIDs of excluded objects are set 

to unoccupied. This way the renderer ignores them when 

synthesizing the desired viewport. Since pixels of filtered out 

objects might be still occupying pixels in the rendered viewport, 

the inpainter assumes missing info and try to fill them causing 

stretched artifacts. Thus, in this implementation we are bypassing 

the inpainter for inactive pixels outside the rendered objects and 

simply fill them by a neutral color. 

Object-Based Video Coding Study 
A Common Test Conditions (CTC) [6] procedure has been 

established by the MIV group to evaluate improvements and 

solutions proposed for immersive video coding. We follow the 

CTC guidelines and report below the objective and subjective 

results of object-based coding (encoding foreground objects only) 

compared to the MIV anchor (i.e. encoding full-content but using 

the ordinary MIV operation mode). For the object-based coding, 

we only select the foreground objects to be encoded and reduce the 

number of outputted atlases to 1. The study is conducted using 

TMIV software-version 7.2. 

In terms of encoded atlases, the MIV anchors encoding full content 

requires 2 atlases (of texture size 2048×4352 and 2048×1824) 

however the object-based solution requires only 1 atlas (of texture 

size 2048×2272) for encoding foreground objects resulting in 

~65% saving in pixel rate. The atlases of both approaches are 

shown in Fig. 7. Note how in the object-based solution, patches 

packed in the atlas only include content of a single object per each. 

Also, there is no basic view being streamed yet the patches coming 

from the basic views are prioritized during the packing process. 

The atlases are HEVC video encoded following the CTC 

guidelines and decoded accordingly. The block to patch maps are 

filtered to keep foreground objects as well. The rendered views 

have no background content hence the objective metrics are 

computed with background pixels being masked out to get an 

unbiased objective comparison. In other words, object maps are 

used to mask both the reference source views and the reconstructed 

ones such that background pixels are substituted with neutral grey.  

The masking procedure is also applied to MIV anchor’s rendered 

views so only the foreground object pixels are included, for a fair 

comparison with the object-based coding results. 

 

MIV Coding – A97 

 

Object Coding – E97 

 

 

Figure 7. TMIV encoder results (shown for frame 2) for MIV anchor (left) 
including 2 atlases and encoding full-content and for object-based coding 
results (right) including 1 atlas encoding only foreground objects. 

Three objective metrics are used for the evaluation according to the 

CTC: the weighted-to-spherically uniform PSNR [7], the Video 

Multimethod Assessment Fusion (VMAF) [8], and the Immersive 

Video PSNR (IV-PSNR) [9]. The objective results of the delivered 

quality vs bitrate for various quantization points (QPs) are 

illustrated numerically in table 1 and as curves in Fig. 8. Note the 

significant saving in bit distortion rates across various metrics 

(~46% in PSNR, ~57% in VMAF, and ~56% in IV-PSNR) when 

excluding the background content. Also, in terms of the processing 

time the rendering speed of the foreground objects here is nearly 

double the speed when rendering the full content. 

Table 1. Objective results (in terms of low & high bit distortion 

rates of various metrics) showing the gain when foreground 

object coding is used compared to the MIV anchor.  
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Figure 8. The rate-distortion curves of object-based solution (dot dashed red 
curves) compared to MIV anchor (dashed blue curves) using masked Y-PSNR 
(luma channel only) (top), masked VMAF (middle), and masked IV-PSNR 
(bottom). 

Figure 9 shows subjective comparison between MIV anchors & 

object-based coding results at 3rd frame of v5 [6] at nearly matched 

bitrate. We can see better subjective results (e.g. more details on 

faces of the actors, fine textures on the snake-shaped sculpture) in 

the object-based coding case. There are two key reasons why the 

object-based coding produces better subjective results. The first is 

that by reducing the amount of content to be coded by excluding 

the background areas, the HEVC QP can be reduced while meeting 

the same bitrate. In addition, the artifacts created by HEVC 

encoding the depth atlas can be reduced by avoiding having 

significant differences in depth values within the same patch, e.g. 

foreground and background depth values. 

The improvements in subjective quality prove the main motivation 

of the object-based solution where streaming bandwidth can be 

more efficiently geared to deliver the objects of interest in a better 

quality rather than sacrificing the whole content to fit in case of a 

limited bandwidth. 

 

 
Figure 9. Subjective results of object-based solution compared to MIV anchors 
showing a zoomed version of v5-frame 2 of MIV anchor-QP5 (top) and object-
based coding -QP3 (below). Note the subjective results are shown for different 
QPs but with nearly matched bitrate. 

Conclusion 
An object-based coding solution is introduced into the MPEG 

Immersive Video (MIV) to enable innovative immersive 

experiences including efficient bandwidth utilization for encoded 

objects of interest and personalized rendering of selected objects 

on synthesized background. A software implementation is 

available in the Test Model for MPEG Immersive Video (TMIV) 

for both the encoding and decoding stages. The solution produces 

patches that include a content for a single object per patch, 

allowing each patch to be associated with an objectID. When 

excluding the background objects from the encoded stream of one 

of the MIV sequences (i.e. the Museum sequence), the coding 

results show a ~65% saving in pixel rate, ~50% gain in bit-

distortion rate, and rendering at nearly double speed as opposed to 

encoding and rendering the full content. Reduction of pixel rate 

enables support for immersive video playback on a wider range of 

decoder devices. We also report significant improvement in the 

subjective quality of object-based solution compared to MIV 

anchors which serves as a proof that the streaming bandwidth 

budget can be better geared toward delivering the objects of 

interest in a better quality as oppose to a global reduction in quality 

when streaming the whole content within a limited bandwidth. 
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Appendix 

Object Maps Generation 
Given the intrinsic and extrinsic camera parameters we can 

compute the 3D location associated with each pixel in the texture 

of a known depth value.  Figure 10 - left shows the point-cloud 

constructed from its associated depth and texture images.  The 

shadow-like holes in the point-cloud result from the large number 

surfaces that are occluded from the single camera’s viewpoint.  A 

more complete point-cloud can be created for each frame by 

transforming all the point-clouds from every camera into a 

common coordinate system. We leverage point-cloud clustering 

techniques to segment each frame into its constituent objects as 

describe here. 

Since the data is effectively noiseless (i.e. synthetic), we can 

accurately isolate the various objects in the scene. For a given 

frame we reconstruct a point cloud, Fig. 10-left, using the 

corresponding ground-truth depth maps and the exact camera 

parameters. If we remove the points representing the floor object, 

then the segmentation problem of various objects within the frame 

is reduced to a 3D connected components problem (i.e.; point-

cloud clustering). 

Background Removal 
The floor object can be removed by numerically computing a best 

fitting plane for the floor geometry via the method of least squares. 

We can then cull all points that lie close to the plane, see Fig. 10-

center. By repeating this procedure for the remaining walls and 

ceiling we remove the remaining background points, see Fig. 10-

right. Note that each background object is assigned a unique 

objectID which are in the range [0, 5] for the Museum sequence, 

illustrated in Fig. 3-left.  

   
Figure 10. Point-cloud recon. from a single frame (left), floor removed (center), 
background removed (right). 

Per-frame Clustering 
After assigning the background pixels their associated objectID, 

we investigate the labeling for other objects. An object mask (to 

contain the resulting cluster labels for each pixel in the frame) is 

initialized and background pixels are labeled. Then an unlabeled 

pixel is selected as a seed value, and the mask is flood-filled (i.e. 

over the connected neighboring pixels) and assigned the next 

available object label. The flood-fill uses a threshold on the 

distance between the reconstructed 3D points associated with each 

pixel as the criterion for propagating the label value. This process 

is repeated until all pixels are assigned a label. Note that the mask 

not only stores the object labels but also controls the boundaries of 

the flood-fill. 

Consistent Labeling 
The remaining problem is to find a consistent labeling across views 

and frames. Also, some objects will be divided into multiple pieces 

(e.g. the metallic snake that goes through various objects) which 

we want to merge and assign a single label as shown in Fig. 11. To 

accomplish this, we build a complete point-cloud for each frame 

using all 24 views and perform a full 3D clustering to define a 

canonical label for each object. Each frame’s cluster labels are 

then remapped to their canonical value by finding the closest 

cluster in the canonical cluster set. Furthermore, since the objects 

do not move much within the sequence and are reasonably 

separated, we only compute the canonical clusters for the first 

frame and carry-out the labeling results across all frames as 

opposed to laboriously creating point-cloud clusters for all 300 

frames and unifying their label values.  

  
Figure 11. Initial clustering results of shown for v5 - frame 0 (left) and the 
refined consistent labeled clusters (right), note that piecemeal clusters are 
merged to single objects. Note how the snake metal object (behind the person 
at the center) was broken to 4 pieces initially but combined into one object 
label eventually. 
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