

Delivering Object-Based Immersive Video Experiences

Basel Salahieh; Intel Corporation, Santa Clara, CA, USA, basel.salahieh@intel.com

Wayne Cochran; Intel Corporation, Hillsboro, OR, USA, wayne.cochran@intel.com

Jill Boyce; Intel Corporation, Hillsboro, OR, USA, jill.boyce@intel.com

Abstract

Immersive video enables interactive natural consumption of

visual content by empowering a user to navigate through six

degrees of freedom, with motion parallax and wide-angle rotation.

Supporting immersive experiences requires content captured by

multiple cameras and efficient video coding to meet bandwidth and

decoder complexity constraints, while delivering high quality video

to end users. The Moving Picture Experts Group (MPEG) is

developing an immersive video (MIV) standard to data access and

delivery of such content. One of MIV operating modes is an object-

based immersive video coding which enables innovative use cases

where the streaming bandwidth can be better allocated to objects

of interest and users can personalize the rendered streamed

content. In this paper, we describe a software implementation of

the object-based solution on top of the MPEG Test Model for

Immersive Video (TMIV). We demonstrate how encoding

foreground objects can lead to a significant saving in pixel rate

and bitrate while still delivering better subjective and objective

results compared to the generic MIV operating mode without the

object-based solution.

Introduction
Advancements in digital media technology are enabling worldwide

adoption of immersive media by bringing innovative six Degrees

of Freedom (6DoF) visual experiences of immersive media

formats, such as multi-view video, point-cloud video and

volumetric video, to mass-consumer market. By enabling 6DoF

with motion parallax and wide-angle rotation capabilities, an

immersive media platform shown in Fig. 1 allows viewers to

navigate the content in a more natural, personalized and interactive

way.

A complete real-time immersive media platform includes

everything from the capturing of immersive content to the

production, processing, and delivery of immersive visual

experiences and services. For a real-time immersive media

platform, it is difficult to move large amounts of captured media

data along a media processing pipeline with minimal latency,

compute the immersive media data efficiently with resource

constraints, and deliver the best possible quality of media content

over limited network bandwidth. Given those challenges, such

immersive experiences have previously been limited to virtual

videos, pre-synthesized at the capture side, where the content

creator determines the navigation path, renders ordinary 2D video

for the navigation path, and distributes content using legacy video

distribution methods.

The coded representation of immersive media being developed by

the Moving Picture Expert Group (MPEG), is part of the MPEG-I

[1] project, which is an industry effort to develop a suite of

standards to support immersive media access and delivery. By

leveraging the state-of-art high efficiency video compression

technologies, e.g., HEVC, MPEG Immersive Video (MIV) [2], one

of the MPEG-I standards, is promising to deliver a standard-based

coding solution without compromising the interactivity and 6DoF

capabilities of immersive media content. One of MIV operating

modes is the object-based immersive video coding which enables

novel use cases for objects within the immersive content at the

encoding and decoding stages.

In this paper, we first show an example immersive video sequence

with the generated object maps. Then we discuss the novel use

cases enabled by our object-based coding scheme. Afterwards we

explain the design of object-based MPEG immersive video coding

and how it is implemented in the Test Model for Immersive Video

(TMIV) [3], the reference software of MIV. The quality

improvement as well as the bandwidth saving, and the performance

gain of the object-based solution are evaluated.

Figure 1. Immersive media capture, platform, and playback stages delivering
6DoF experience

Immersive Video Content Sample
One of the synthetic content sequences, called Museum [4], used

during the MIV development process has been utilized here. We

first describe the sequence and its object maps that we have

generated from it to showcase the object-based solution.

Museum Content
The dataset represents a time-sequence of 300 frames, where each

frame contains 24 views rendered from 24 virtual cameras each

directed normal outward to a sphere, see figure 2-left. Each view is

made up of a 2048x2048 texture image and a corresponding16-bit

depth image (see Figure 2-right) stored as equirectangular

projections with a 180-degree vertical and horizontal field of view.

Camera position, orientation, and projection information are

provided for all 24 views.

Figure 2. Capturing camera system composed of 24 cameras (left) along with
the texture and depth components of one of the views at a given frame

IS&T International Symposium on Electronic Imaging 2021
3D Imaging and Applications 2021 103-1

https://doi.org/10.2352/ISSN.2470-1173.2021.18.3DIA-103
© 2021, Society for Imaging Science and Technology

Object Maps
Our object-based coding solution requires input information which

indicates which object each pixel within a view per frame belongs

to. This can be provided in a form of supplemental object maps

associated with the content. For the Museum sequence, the object

maps feature 25 different objects indexed as illustrated in Fig. 3.

Note that for this content, ObjectIDs [0, 5] are reserved for the

background objects while ObjectIDs [6, 24] are reserved for all

other foreground objects in the scene. The generation of these

object maps is further explained in appendix A.1.

Figure 3. The indexing of Museum’s Object Maps shown in 3D layout (left)
and color-indexed object map of v5 – frame 100 (right).

Object-Based Immersive Applications
The object-based coded representation of immersive media enables

many novel use cases for volumetric video coding and rendering.

In addition, it helps addressing several MPEG requirements for

immersive media access and delivery [5] including the

manipulation of decoded objects at higher level without having

access to the actual pixel information.

Priority Objects Rendering
Object-based coded representation of immersive media speeds up

processing of content at the decoding side to meet real-time

requirements. Each object in the bitstream can be signaled for its

priority over the rest of the objects. When such object priority

information is available at the decoder side, the renderer can

choose to process the high priority objects only while dropping low

priority objects to meet latency or computing constraints.

Objects Filtering
Since each object is coded individually, viewers may choose to

view only the objects of interests while not displaying the other

objects. Object-based coded representation not only allows such

kind of personalized viewing on the decoder side but also allows

the encoder to pack only objects of interest in the bitstream in the

event of limited network bandwidth or supporting less capable

client devices.

Background Rendering
In object-based code representation, background is considered to

be a special object that can be rendered by itself independent of

other objects. The background object can be synthesized from

virtual / pre-rendered content. For example, the venue of a sports

game can be synthesized as a 3D model ahead of a live game and

used for rendering as the background in a scene augmented with

objects (players, balls, etc.) captured from the live game.

Object-Based Scalability
Traditional adaptive streaming technique alters the quality of entire

video stream in order to fit to different network conditions. In

object-based coded representation, encoder may use contextual

information available to it to decide the relative importance of

different objects and provide object-based scalability for adaptive

streaming. For example, unimportant objects, e.g., objects too far

away from a viewport, can be dropped entirely or compressed at

lower visual quality. The quality for objects that are important to

the viewers does not degrade even at lower network bandwidth.

Objects of Interest
Object-based coded representation also allows highly personalized

content because each object can be compressed in different visual

quality. If one is interested in a specific object, one can select the

stream with the object-of-interest encoded in higher visual quality.

MPEG Immersive Video Coding
The immersive video format that is input to a MIV encoder is a

multiplicity of synchronized view videos captured by real and/or

virtual cameras that can be arranged in a variety of configurations,

including outward-facing, inward-facing, or a planar camera array.

The content can be synthetic (i.e. computer generated) or natural

(i.e. real-world) and in 360 degree (e.g. equirectangular) or

perspective projection format. Each view is composed of two

components; a texture content (e.g. RGB / YUV channels) and its

associated depth map (whether captured or estimated).

The MIV standard [2] is based on the Visual Volumetric Video-

based Coding (V3C) specification and aims at exploiting

redundancy between the views and leveraging state-of-art video

codecs to deliver the best quality at minimal bandwidth and with a

minimum requirement of decoder complexity. The MIV standard

defines the format of the compressed bitstream and the normative

decoding process to deliver the 6DoF experience while TMIV [3],

its reference software, provides an exemplary full implementation

of the encoder and decoder stages. A brief description of the TMIV

software is given here to establish the technical background for the

object-based solution described in a later section.

The immersive media content streamed in MIV can be navigated

with 6 DoF by a wide range of consumer devices which contain

video decoding hardware and a GPU, such as computers with face

tracking camera, smartphones/tablets with inertial sensors, head-

mounted displays, volumetric and multi-view displays.

TMIV Encoder
The TMIV encoder takes as inputs texture and depth videos for

multiple synchronized source views, each at a particular position

and orientation. The input views are processed using reprojection

between views to remove redundant regions, in order to reduce the

bitrate and pixel rate needed to represent the whole content.

The TMIV encoder identifies a few of the views as basic views,

each of which is fully encoded within a single patch. The

additional views are then projected against the basic ones (and

previously pruned ones) to extract the non-redundant information

in a form of rectangular patches and pack them into atlases

(composed of texture and depth components) during the atlas

construction process. Occupancy maps are also generated to

indicate the active pixels (for the non-redundant regions) per patch

and helps resolving overlapped patches later at the decoding stage.

The occupancy maps are embedded within the lower range of the

depth component of the atlases. The atlases are finally encoded

using the existing HEVC video codec. The associated view

parameters list (illustrating how views are placed and oriented in

the coordinate space) and the atlas data (indicating how patches are

mapped between the atlases and the views) are carried as metadata

103-2
IS&T International Symposium on Electronic Imaging 2021

3D Imaging and Applications 2021

within the bitstream. The encoding process of a simplified TMIV

software is summarized in Fig. 4 while example atlases are shown

in Fig. 7.

The TMIV encoder attempts to optimize bitrate, to reduce the

network bandwidth requirements, and to optimize pixel rate, which

directly impact decoder complexity requirements. Pixel rate is

calculated as the resolution of the combined atlases multiplied by

the frame rate.

Figure 4. Flow diagram of a simplified TMIV encoder

TMIV Decoder
At the decoding stage, video decoding is applied to retrieve the

atlases, the metadata is parsed, and the occupancy maps and block

to patch maps (indicating patchIDs of each pixel in the atlas) are

recovered. The renderer then within the exemplary TMIV decoder

outputs a perspective viewport, selected based upon a viewer’s

position and orientation, generated from the decoded atlases and

metadata of the immersive decoder. The TMIV rendering process

is illustrated in Fig. 5 which includes a patch culling step to

exclude all patches that do not contribute to the viewport, a

geometry process to retrieve the geometry at full resolution and

find the metric depth, the reconstruction of pruned views, the

unprojection and reprojection to the target viewport, the merging

and inpainting steps. The complexity of the TMIV decoding

process is largely driven by the pixel rate. Note that the MIV

standard [2] itself does not specify the reference renderer but

supplies it with the required metadata and decoded content.

Figure 5. Flow diagram of a simplified TMIV renderer

Object-Based Implementation in TMIV
As the encoding and decoding stages of the TMIV software have

been introduced, we explain here the modifications added on top of

the software to bring the object-based capabilities to it. Note that

the TMIV software including the object-based solution is

accessible publicly on the Gitlab server at https://gitlab.com/mpeg-

i-visual/tmiv/.

Object-Based Encoder
The modified TMIV encoder features an object-based atlas

constructor which is illustrated in Fig. 6. All other blocks are left

unmodified as in the original TMIV encoder. Note that in the

object-based solution, object maps for all views and frames are

made available as an input as well in addition to the texture content

and depth maps. Also, the basic views here are just used for

pruning and packing but not being streamed since each patch shall

carry only pixels that belong to a specific object. Some

components of the atlas constructor operate on frame level while

others on intra-period level (i.e. random-access period).

Figure 6. Flow diagram of an object-based atlas constructor inside TMIV
encoder

Frame Level Operations
The object-based atlas constructor takes as an input the texture,

depth, and object maps of the frame being processed in addition to

what views being labeled as basics along with their camera

parameters. A loop is established over the objects selected for the

encoding (whether preset by a user or decided based on an

encoding metric) where in each iteration the related object layers

are extracted from the frame’s views (texture and depth) and

passed to the pruner which finds the nonredundant parts and

returns the related binary masks. Note that the looping over the

pruner can be parallelized over various objects since there is no

dependency and to maintain reasonable encoding time.

The pixels of the basic views’ masks by default (i.e. in the original

atlas constructor) are turned on (i.e. set entirely to max grey level)

denoting that the entire basic views are streamed in whole patches.

However, for the object-based implementation no patch can have

pixels belong to more than one object at a time. Thus, the basic

masks are updated in the object masker based on the object maps

such that pixels are turned on only for pixels belong to the

extracted object. The other pruning masks are refined as well to

accurately represent the object. Then object masks are formed such

that the related objectID is assigned to all “on” pixels within the

refined masks (across all views) for the frame being processed.

The object masks are merged with those in the previous iteration,

this way objectID can be tracked and patches can be tagged with

the right objectID label at a later stage. The object layers resulted

from the object separator stage are also merged together and

pushed into a buffer so they can be used in the atlas generation

stage. The aggregator then aggregates the pruning binary masks

and the merged multi-level object masks to account for motion

across frames within an intra-period.

IS&T International Symposium on Electronic Imaging 2021
3D Imaging and Applications 2021 103-3

https://gitlab.com/mpeg-i-visual/tmiv/
https://gitlab.com/mpeg-i-visual/tmiv/

Inter-Period Level Operations
After processing all frames within an intra-period (i.e. random-

access period), the aggregator terminates the accumulation of the

masks and passes them to the patch packer. The aggregated object

masks are then used to filter out the binary masks, so clustering is

applied per object and the resulted clusters are tagged with the

related objectID and queued together. After clustering over all

objects, the clusters are ordered based on how many active pixels

they include (unless they belong to the basic views). Patches are

then formed from the clusters and packed into the atlases. Note that

each patch carries the same objectID of the cluster that initiated it.

Finally, an atlas generator is deployed to write the texture and

depth content of the patches. The content of a given patch is

extracted from the associated object views passed by the object

masker and merger block.

Object-Based Decoder
The TMIV renderer has been modified to support the object-based

filtering and rendering operations, although block-wise it remains

as illustrated in Fig. 5 (but now the object filtering block will be in

used). The user can pick a desired set of objects to be rendered,

and the block to patch map per atlas is updated such that the

patchIDs of patches that carry objectIDs of excluded objects are set

to unoccupied. This way the renderer ignores them when

synthesizing the desired viewport. Since pixels of filtered out

objects might be still occupying pixels in the rendered viewport,

the inpainter assumes missing info and try to fill them causing

stretched artifacts. Thus, in this implementation we are bypassing

the inpainter for inactive pixels outside the rendered objects and

simply fill them by a neutral color.

Object-Based Video Coding Study
A Common Test Conditions (CTC) [6] procedure has been

established by the MIV group to evaluate improvements and

solutions proposed for immersive video coding. We follow the

CTC guidelines and report below the objective and subjective

results of object-based coding (encoding foreground objects only)

compared to the MIV anchor (i.e. encoding full-content but using

the ordinary MIV operation mode). For the object-based coding,

we only select the foreground objects to be encoded and reduce the

number of outputted atlases to 1. The study is conducted using

TMIV software-version 7.2.

In terms of encoded atlases, the MIV anchors encoding full content

requires 2 atlases (of texture size 2048×4352 and 2048×1824)

however the object-based solution requires only 1 atlas (of texture

size 2048×2272) for encoding foreground objects resulting in

~65% saving in pixel rate. The atlases of both approaches are

shown in Fig. 7. Note how in the object-based solution, patches

packed in the atlas only include content of a single object per each.

Also, there is no basic view being streamed yet the patches coming

from the basic views are prioritized during the packing process.

The atlases are HEVC video encoded following the CTC

guidelines and decoded accordingly. The block to patch maps are

filtered to keep foreground objects as well. The rendered views

have no background content hence the objective metrics are

computed with background pixels being masked out to get an

unbiased objective comparison. In other words, object maps are

used to mask both the reference source views and the reconstructed

ones such that background pixels are substituted with neutral grey.

The masking procedure is also applied to MIV anchor’s rendered

views so only the foreground object pixels are included, for a fair

comparison with the object-based coding results.

MIV Coding – A97

Object Coding – E97

Figure 7. TMIV encoder results (shown for frame 2) for MIV anchor (left)
including 2 atlases and encoding full-content and for object-based coding
results (right) including 1 atlas encoding only foreground objects.

Three objective metrics are used for the evaluation according to the

CTC: the weighted-to-spherically uniform PSNR [7], the Video

Multimethod Assessment Fusion (VMAF) [8], and the Immersive

Video PSNR (IV-PSNR) [9]. The objective results of the delivered

quality vs bitrate for various quantization points (QPs) are

illustrated numerically in table 1 and as curves in Fig. 8. Note the

significant saving in bit distortion rates across various metrics

(~46% in PSNR, ~57% in VMAF, and ~56% in IV-PSNR) when

excluding the background content. Also, in terms of the processing

time the rendering speed of the foreground objects here is nearly

double the speed when rendering the full content.

Table 1. Objective results (in terms of low & high bit distortion

rates of various metrics) showing the gain when foreground

object coding is used compared to the MIV anchor.

103-4
IS&T International Symposium on Electronic Imaging 2021

3D Imaging and Applications 2021

Figure 8. The rate-distortion curves of object-based solution (dot dashed red
curves) compared to MIV anchor (dashed blue curves) using masked Y-PSNR
(luma channel only) (top), masked VMAF (middle), and masked IV-PSNR
(bottom).

Figure 9 shows subjective comparison between MIV anchors &

object-based coding results at 3rd frame of v5 [6] at nearly matched

bitrate. We can see better subjective results (e.g. more details on

faces of the actors, fine textures on the snake-shaped sculpture) in

the object-based coding case. There are two key reasons why the

object-based coding produces better subjective results. The first is

that by reducing the amount of content to be coded by excluding

the background areas, the HEVC QP can be reduced while meeting

the same bitrate. In addition, the artifacts created by HEVC

encoding the depth atlas can be reduced by avoiding having

significant differences in depth values within the same patch, e.g.

foreground and background depth values.

The improvements in subjective quality prove the main motivation

of the object-based solution where streaming bandwidth can be

more efficiently geared to deliver the objects of interest in a better

quality rather than sacrificing the whole content to fit in case of a

limited bandwidth.

Figure 9. Subjective results of object-based solution compared to MIV anchors
showing a zoomed version of v5-frame 2 of MIV anchor-QP5 (top) and object-
based coding -QP3 (below). Note the subjective results are shown for different
QPs but with nearly matched bitrate.

Conclusion
An object-based coding solution is introduced into the MPEG

Immersive Video (MIV) to enable innovative immersive

experiences including efficient bandwidth utilization for encoded

objects of interest and personalized rendering of selected objects

on synthesized background. A software implementation is

available in the Test Model for MPEG Immersive Video (TMIV)

for both the encoding and decoding stages. The solution produces

patches that include a content for a single object per patch,

allowing each patch to be associated with an objectID. When

excluding the background objects from the encoded stream of one

of the MIV sequences (i.e. the Museum sequence), the coding

results show a ~65% saving in pixel rate, ~50% gain in bit-

distortion rate, and rendering at nearly double speed as opposed to

encoding and rendering the full content. Reduction of pixel rate

enables support for immersive video playback on a wider range of

decoder devices. We also report significant improvement in the

subjective quality of object-based solution compared to MIV

anchors which serves as a proof that the streaming bandwidth

budget can be better geared toward delivering the objects of

interest in a better quality as oppose to a global reduction in quality

when streaming the whole content within a limited bandwidth.

IS&T International Symposium on Electronic Imaging 2021
3D Imaging and Applications 2021 103-5

References
[1] MPEG-I: Coded Representation of Immersive Media. ISO/IEC

23090.

[2] J. Boyce, R. Doré, V. K. M. Vadakital (Eds.). Committee Draft of

MPEG Immersive Video. ISO/IEC JTC1/SC29/WG11

MPEG/N19482, July. 2020, Online.

[3] B. Salahieh, B. Kroon, J. Jung, A. Dziembowski (Eds). Test Model 7

for MPEG Immersive Video. ISO/IEC JTC1/SC29/WG04 N0005,

Oct. 2020, Online.

[4] R. Doré, G. Briand, T. Tapie. Technicolor 3DoFPlus Test Materials.

ISO/IEC JTC1/SC29/WG11 MPEG/m42349, April 2018, San Diego,

USA.

[5] Requirements for Immersive Media Access and Delivery. ISO/IEC

JTC1/SC29/WG11 MPEG/N18654, July 2019, Gothenburg, Sweden.

[6] J. Jung, B. Kroon, J. Boyce. Common Test Conditions for MPEG

Immersive Video. ISO/IEC JTC1/SC29/WG04 MPEG/N0006, Oct.

2020, Online.

[7] Y. Sun, A. Lu and L. Yu, “Weighted-to-spherically-uniform quality

evaluation for omnidirectional video,” IEEE Signal Processing

Letters, vol. 24, no. 9, pp. 1408-1412, 2017.

[8] Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy and M. Manohara,

“Toward a practical perceptual video quality metric,” Netflix

Technology Blog, 2016.

[9] “Software manual of IV-PSNR for Immersive Video,” ISO/IEC

JTC1/SC29/WG11 MPEG/N18709, Göteborg, Sweden, July 2019.

Appendix

Object Maps Generation
Given the intrinsic and extrinsic camera parameters we can

compute the 3D location associated with each pixel in the texture

of a known depth value. Figure 10 - left shows the point-cloud

constructed from its associated depth and texture images. The

shadow-like holes in the point-cloud result from the large number

surfaces that are occluded from the single camera’s viewpoint. A

more complete point-cloud can be created for each frame by

transforming all the point-clouds from every camera into a

common coordinate system. We leverage point-cloud clustering

techniques to segment each frame into its constituent objects as

describe here.

Since the data is effectively noiseless (i.e. synthetic), we can

accurately isolate the various objects in the scene. For a given

frame we reconstruct a point cloud, Fig. 10-left, using the

corresponding ground-truth depth maps and the exact camera

parameters. If we remove the points representing the floor object,

then the segmentation problem of various objects within the frame

is reduced to a 3D connected components problem (i.e.; point-

cloud clustering).

Background Removal
The floor object can be removed by numerically computing a best

fitting plane for the floor geometry via the method of least squares.

We can then cull all points that lie close to the plane, see Fig. 10-

center. By repeating this procedure for the remaining walls and

ceiling we remove the remaining background points, see Fig. 10-

right. Note that each background object is assigned a unique

objectID which are in the range [0, 5] for the Museum sequence,

illustrated in Fig. 3-left.

Figure 10. Point-cloud recon. from a single frame (left), floor removed (center),
background removed (right).

Per-frame Clustering
After assigning the background pixels their associated objectID,

we investigate the labeling for other objects. An object mask (to

contain the resulting cluster labels for each pixel in the frame) is

initialized and background pixels are labeled. Then an unlabeled

pixel is selected as a seed value, and the mask is flood-filled (i.e.

over the connected neighboring pixels) and assigned the next

available object label. The flood-fill uses a threshold on the

distance between the reconstructed 3D points associated with each

pixel as the criterion for propagating the label value. This process

is repeated until all pixels are assigned a label. Note that the mask

not only stores the object labels but also controls the boundaries of

the flood-fill.

Consistent Labeling
The remaining problem is to find a consistent labeling across views

and frames. Also, some objects will be divided into multiple pieces

(e.g. the metallic snake that goes through various objects) which

we want to merge and assign a single label as shown in Fig. 11. To

accomplish this, we build a complete point-cloud for each frame

using all 24 views and perform a full 3D clustering to define a

canonical label for each object. Each frame’s cluster labels are

then remapped to their canonical value by finding the closest

cluster in the canonical cluster set. Furthermore, since the objects

do not move much within the sequence and are reasonably

separated, we only compute the canonical clusters for the first

frame and carry-out the labeling results across all frames as

opposed to laboriously creating point-cloud clusters for all 300

frames and unifying their label values.

Figure 11. Initial clustering results of shown for v5 - frame 0 (left) and the
refined consistent labeled clusters (right), note that piecemeal clusters are
merged to single objects. Note how the snake metal object (behind the person
at the center) was broken to 4 pieces initially but combined into one object
label eventually.

Biography
Basel Salahieh is immersive media algorithms and standards architect at

Intel (CA, USA) responsible for delivering immersive experiences on intel

devices, holding a Ph.D. degree in electrical and computer engineering

and M.S. in optical science from the University of Arizona (AZ, USA), M.S.

103-6
IS&T International Symposium on Electronic Imaging 2021

3D Imaging and Applications 2021

in electrical engineering from the University of Oklahoma (OK, USA), and

B.S. in communication engineering from Aleppo University (Syria). His

research interests are related to light fields, point clouds, mixed reality,

and immersive video systems. Basel is also a developer and editor to the

test model of MPEG immersive video.

Wayne Cochran is a software engineer in Intel sports and assistant

professor in Washington State University teaching computer graphics,

compilers, numerical computing, and Mobile App development courses.

Wayne holds a Ph.D. degree in computer science from Washington State

University (WA, USA) and B.S degree in mathematics from University of

Washington (WA, USA).

Jill Boyce is Intel Fellow and Chief Media Architect at Intel, responsible

for defining media hardware architectures for Intel’s video hardware

designs. She represents Intel at the Joint Video Exploration Team (JVET)

of ITU-T SG16 and ISO/IEC MPEG. She serves as Associate Rapporteur of

ITU-T VCEG, and is an editor of the MIV specification. She is an IEEE

Fellow. She received a B.S. in Electrical Engineering from the University

of Kansas in 1988 and an M.S.E. in Electrical Engineering from Princeton

University in 1990. She was formerly Director of Algorithms at Vidyo, Inc.

where she led video and audio coding and processing algorithm

development. She was formerly VP of Research and Innovation Princeton

for Technicolor, formerly Thomson. She was formerly with Lucent

Technologies Bell Labs, AT&T Labs, and Hitachi America. She was

Associate Editor from 2006 to 2010 of IEEE Transactions on Circuits and

Systems for Video Technology.

IS&T International Symposium on Electronic Imaging 2021
3D Imaging and Applications 2021 103-7

• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . . Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org

