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Abstract
Robust multi-camera calibration is a fundamental task for

all multi-view camera systems, leveraging discreet camera model
fitting from sparse target observations. Stereo systems, pho-
togrammetry and light-field arrays have all demonstrated the
need for geometrically consistent calibrations to achieve higher-
levels of sub-pixel localization accuracy for improved depth es-
timation. This work presents a calibration target that leverages
multi-directional features to achieve improved dense calibrations
of camera systems. We begin by presenting a 2D target that uses
an encoded feature set, each with 12 bits of uniqueness for flex-
ible patterning and easy identification. These features combine
orthogonal sets of straight and circular binary edges, along with
Gaussian peaks. Our proposed feature extraction algorithm uses
steerable filters for edge localization, and an ellipsoidal peak fit-
ting for the circle center estimation. Feature uniqueness is used
for associativity across views, which is combined into a 3D pose
graph for nonlinear optimization. Existing camera models are
leveraged for intrinsic and extrinsic estimates, demonstrating a
reduction in mean re-projection error of for stereo calibration
from 0.2 pixels to 0.01 pixels when using a traditional checker-
board and the proposed target respectively.

Introduction
Geometric camera calibration allows a camera model to be

fit to map the geometric transformation of light through the opti-
cal elements of a camera system in addition to relative extrinsics
in the case of multi-camera systems. Such calibrations enable the
mapping of observed world features to image space, often needed
in the case of multi-view and geometric computer vision applica-
tions. Despite the emergence of auto-calibration methods which
allow systems to solve for calibration parameters at the time of
deployment, explicit calibration is required for many industrial
camera systems with limited computational power, yet real-time
estimations needs.

Camera calibration is divided into two major steps, includ-
ing intrinsic and extrinsic camera parameter estimation. Intrinsic
calibrations are widely used across applications requiring physi-
cal lens and non-perfect sensor-lens placements to be corrected.
Lens distortions, de-centering and focal lengths are the primary
variables of such intrinsic calibrations. For extrinsic parameters
of a system, it is merely a relative pose R|t. Any vision problem
involving the mapping or inverse mapping of 3D world features
into the image plane is subject to these physical effects that need
to be accounted for.

The proposed calibration target addresses a set of limitations
associated with current calibration methods. Firstly, current tar-

Figure 1: Proposed encoded calibration target.

gets lack dense features that can be uniquely identified across
multiple-views, limiting the image-space feature distribution and
hence suffering from larger calibration errors around the edges
and corners of cameras. Furthermore, a predominance of strate-
gies leverage local corner features that are subject to localization
errors larger than if larger features are used. This work therefore
proposes a dense and unique calibration target alongside a feature
extraction algorithm, and formulates the optimization problem to
obtain camera parameters for improved calibration.

Prior Work
Prior work covers a broad spectrum of approaches to fit a

camera model from a calibration target, ranging from 2D planar
targets to 3D rigs, and features of varying type. The most common
approaches adopted across open-source vision libraries such as
OpenCV [1] and Matlab use a calibration approach based on a sin-
gular planar checkerboard and a traditional corner feature detec-
tion algorithm [10]. These detection methods achieve sub-pixel
accuracy by solving for the local corner features within a win-
dow that best represents convergence of tangential gradient lines
[3], or the minimum eigenvalue of the local gradient co-variance
matrix [7]. Such checkerboard patterns can however only be de-
tected when all inner corners are visible, making acquisition of
the pattern features difficult across the full Field of View (FoV)
of a single camera, and as such even more challenging for multi-
camera systems. Figure 2 demonstrates the coverage issues which
arises from limited visibility. In the case of multi-view systems, it
is often desirable to enforce calibration constraints dependent on
the system baseline direction. Checkerboard edges only contain
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Figure 2: Calibration target visibility with partially overlapping stereo field of views. Left- traditional checkerboard target requiring full
observations for detection. Right- proposed target with unique local feature patches allowing for partial visibility.

horizontal and vertical edges, which in the case of perpendicu-
lar arrays (trinocular systems in an L-configuration, or lightfield
systems with both vertical and horizontal distribution of cameras)
are insufficient to enforce geometric constraints. Augmenting cal-
ibration targets with diagonal edges and circular features, enables
such constraints to be further increased.

Circular features have proven to improve localization accu-
racy due to their fitting from a larger neighborhood [6]. While
the improved feature localization can improve geometric calibra-
tions, overall calibration quality is still subject to having full FoV
coverage of features to ensure the calibration accounts for corner
aberrations in a set of observations. In the case of circular patterns
without unique encoding, these still require all features to be vis-
ible, again introducing the visibility limitation shown in Figure
2.

Alternatively, a fractal target encoding local square patches
of decreasing size has been used [8], with the work emphasiz-
ing the importance of sampling density and uniqueness to enable
feature samples across the full camera FoV to achieve improved
calibration. Despite the coverage improvement from this target,
the corner feature localization is still limited to the accuracy of
corner detection methods.

Calibration Target
This paper proposes a calibration target (Figure 1) designed

to address limitations of current calibration patterns and methods.
Specifically it features uniquely encoded patches that allow par-
tial visibility and enable complete sampling across camera FoVs.
The target leverages diverse straight edges and circular features
to improve the localization accuracy of feature fitting and enables
multi-view constraint enforcement.

Each target is divided into a set of arbitrary number of user-
defined patches with a spatial sizing chosen to match camera reso-
lution and FoV for reliabale detection. Target dimensions should
be selected such that the size of the smallest circle features ob-
served by a given camera system results in reliable feature detec-
tion. The square patches as shown in Figure 3 consist of large

triangle-circle pairs that anchor the patch and enforce rotational
in-variance. The rest of the patch is composited with smaller tri-
angle sets with circles of opposite gradient. The encoding for
each patch is achieved using this set of twelve smaller triangles
and circles where the gradient direction defines the binary value.
This approach supports up to 212 = 4096 unique patches, con-
taining thirteen circular features each, resulting in up to 53,248
unique circle features.

Figure 3: Annotated sections of the calibration target patches.

Additional features can be added in a fractal pattern by sub-
dividing each small triangle by 4, enabling the spacing of 6 ad-
ditional features per small triangle as can be seen in Figure 4.
Since complete patches need to be detected to identify the patch
identifier, and with the desired objective to have maximum im-
age coordinate coverage of features, it is preferable to have more
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smaller patches over increased fractal levels of circular features.

The square patches contain diagonals introduced through the
triangular features. These angled edges enable 8 different local
gradient orientations (black to white transitions). Additionally the
circle edges have 2π angular range forming close contour ellipses
when observed. The circular patches contain a continuous spher-
ical gradients that assume a Gaussian distribution. This gradient
defines the local orientation of each circle that is used to derive
the directions of the peaks and may in the future serve as areas
way for a secondary peak fitting method [9].

Figure 4: Example of a unique patch for a 3-level fractal target.

To ensure that the features are uniformly distributed with
both white and black peaks and edges of all directions, the patch
identifiers are randomly sampled without replacement. Further-
more each patch is randomly rotated pi radians to ensure a ran-
dom distribution of large circles across the target. At the time
of detection, this orientation is recovered from the large anchor
circle and set of locations of smaller circles.

Detection and Calibration
The circular features in the proposed calibration target and

patch encoding scheme require a detection pipeline which lever-
ages high sub-pixel localization accuracy to achieve reliable cal-
ibrations. We begin by an edge detection, followed by feature
linkage to separate straight lines from ellipses. Once all features
have been fit, the patches are recognized from the feature loca-
tions and identifiers to provide a dictionary of feature-coordinate
pairs used by the model fitting within the calibration. The full
pipeline is depicted in Figure 5 and will be discussed within this
section.

Feature Detection
The importance of feature localization accuracy on calibra-

tion quality imposes the requirement for good edge fitting, in turn
used for the ellipse fitting and centroid finding. Sub-pixel edge
algorithms can use first and second order image gradients, with
the first requiring additional optimization to find local ridges and
the latter explicitly being defined as the roots of second order gra-
dients. We use the steerable filtering approach introduced by [5]
with user-tunable Gaussian kernel sizes to locally steer the second
order derivatives to the locally dominant orientation. This pro-
vides an image gradient and an orientation image which is then
used for solving for the real roots of the bi-linear surface yielding
continuous edges. Edges are linked to provide edge point groups
which belong to continuous feature contours as shown in Figure 6.
With the help of the feature fitting described in the next step, these
are then separated into ellipses and lines, rejecting any remaining
outliers that do not meet fitting requirements and a minimum con-
tour length.

The target uses circles as its primary features, which when
subject to a projective transformation assume elliptical geometries
[6]. While locally non-linear lens distortions may affect that as-
sumption, it holds true as long as projected circles are small with
respect to the overall lens distortions. The ellipse fitting is done
using a direct least squares approach proposed in [2]. All con-
tributing points within a linked contour are used for the fitting,
and a secondary pass is used to merge disjoint ellipse segments
for an optimized fitting. All fit ellipses have a major and minor
axis diameter, eccentricity, with a center point and a fitting quality
metric (mean point to ellipse distance from edge points). These
metrics are used to validate only reliable ellipse fits, and the di-

Figure 5: Target detection pipeline.
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Figure 6: Proposed calibration target edge point clustering.

ameter is used to separate large from small ellipses with an Otsu
threshold biased by the ratio of large to small circles.

The edge gradient directions of the ellipses are used to ex-
tract whether the ellipse is white or black on an oppositely shaded
triangle. This direction is identified from the ellipse curvature nor-
mal direction and the locally dominant orientation from the image
filtering. If they are in agreement, both vectors point towards the
ellipse center implying a white peak, and if they have opposite
directions, they imply a black peak.

Target Extraction
To implicitly match features across image views for the cali-

bration, a direct identifier is associated to each feature, stemming
from the patch and identifier they lie in. These patches are ex-
tracted from the local distribution of ellipse centers, which are
referenced from the large ellipses. Each patch is extracted only if
all ellipses within the patch are confirmed valid. The features are
linked to the 3D world points from the target plane by associat-
ing the feature image coordinates and world coordinates via their
identifiers. A complete extraction of patches is demonstrated in
Figure 7a.

Model Fitting & Calibration
We leverage the located and matched correspondences to for-

mulate the optimization problem as a bundle adjustment prob-
lem: given the 3D points and the observed 2D locations in each
view, simultaneously optimize for the camera parameters (intrin-
sics and distortion parameters) and the pose at each view such
that the reprojection error is minimized. This bundle adjustment
problem can be solved using a variety of non-linear optimiza-
tion strategies, with the Levenberg-Marquardt optimization being
commonly chosen to combine the convergence benefits of both
Gauss-Newton and gradient descent [11]. For this problem, we
utilize OpenCV’s implementation of the Levenberg-Marquardt
based calibration to optimize over intrinsics and extrinsics.

Based on empirical evidence, it has been observed that it is
beneficial to perform the calibration process in two stages: In the
first stage, for each camera separately, we estimate and optimize

Figure 7: Evaluating localization accuracy of ground truth fractal target. The target circles are detected in the original (a), target subject
to projective distortion (b) and target subject to radial distortion (c). Detected features are shown as green crosses in red circles, overlayed
on the target.
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the intrinsic parameters and pose at each view, minimizing the re-
projection error computed by projecting the world points to image
space using the intrinsics and pose estimates. Then, in the second
stage, we use these intrinsics estimates to optimize for the relative
extrinsics between the left and right camera, by estimating and op-
timizing the pose of each view in both cameras so that the relative
pose between left and right camera remains constant, and the re-
projection error using these pose estimates and the fixed intrinsics
is minimized. It has been observed that separating the intrinsic
and extrinsic calibration optimizations ensures convergence to a
better optima.

Results
The results are divided into two sets of experiments with sep-

arate objectives: validating the localization accuracy of elliptical
features and evaluating the camera calibration performance for
monocular and stereo camera calibrations. We summarize these
as:

• Sub-pixel localization accuracy of spatial images features
given synthetically rendered images with varying degrees of
geometric distortions, to demonstrate target and algorithmic
reliability at extracting correct feature locations.

• Demonstrable and real-world results for the intrinsic and
pose estimation of a stereo camera moved around a checker-
board and fractal target. Evaluating the reprojection error
residuals across the images using a) only a monocular ap-
proach for intrinsic calibration and b) a stereo calibration to
solve the relative pose using the monocular estimated intrin-
sics.

Localization of Features in Synthetic Targets
For the first experiment, we generated a synthetic fractal tar-

get and its ground truth sub-pixel level feature locations. To com-
pare the feature localization accuracy, we subjected the target, and
the ground truth feature locations, to different kinds of distortions:
projective homographies (to yield targets similar to Figure 7b),
radial and tangential distortions (to yield targets similar to Figure
7c), and then ran our feature extractor on the warped targets.

For projective distortions, we create a projective transforma-
tion matrix of the form:

T =

 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

 (1)

and varied θ between −15 and 15 degrees.
For radial distortions, we considered the 2-variable model

for radial distortion:

xdistorted = x(1+ k1r2 + k2r4 + k3r6) (2)

ydistorted = y(1+ k1r2 + k2r4 + k3r6) (3)

r2 = x2 + y2 (4)

Where x,y are the undistorted normalized image coordinates.
For our experiment, we set k1 = k,k2 = k2,k3 = 0, where k varied
logarithmically between 1e−5, and 0.33.

For each of the tests, we compute the ground truth feature lo-
cations in the warped image by applying the same transformations

to the ground truth feature locations, and computing the mean L2
distance between the detected feature locations and the ground
truth locations.

We present both qualitative and quantitative comparisons to
demonstrate the performance of the feature extractor. Figures 7b
and 7c show that our model can accurately detect most of the fea-
tures seen in the ground truth target image (Figure 7a, even under
large distortions. Quantitative results are shown in Figures 8 and
9, where we compute the mean feature localization error vs dis-
tortion magnitude.

We observe that our feature extractor can localize features
to accuracies greatly smaller than 0.1 pixels even under extreme
image distortions while the traditional corner extractor for the
checkerboard only reached accuracies in minimal distortions con-
ditions of 0.15 pixels with a rapidly degrading localization when
either projective and radial distortions were increased.

Figure 8: Feature localization error (in pixels) as a function of the
image distortion, on our target vs min-eigen feature detector on
checkerboard.

Figure 9: Feature Localization error (in pixels) as a function of
the radial distortion, on our target vs min-eigen feature detector
on checkerboard.
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Figure 10: Sample calibration frames used to evaluate the checkerboard (left) and fractal (center- full, occluded- right) calibration targets.

Real-world Camera Calibration
The second set of experiments evaluated real-world perfor-

mance of the proposed calibration routine. For data capture, we
used dual TRI120S Lucid machine vision cameras (Sony IMX304
sensor) with fixed 12mm Computar lenses (V1226-MPZ), shot
at an aperture of f/5.6. The acquisitions were separated into 3
datasets, each with 50 frames- one with the checkerboard (see
Figure 10a), one with the fractal calibration target fully seen in
all views (see Figure 10b), and one with only a partial/occluded
views of the fractal target (see Figure 10c). The targets were dis-
played using a 65 inch 4k TV with an aspect ratio of 16:9.

For each of the target frames, we extracted the features with
their identifiers and matched them across different views to estab-
lish feature point correspondences. The checkerboard ones lever-
aged the OpenCV pipeline with the findChessboardCorners and
cornerSubPix functions for feature extraction (these use the al-
gorithm proposed by [7]), while the fractal target ones used the
proposed feature extractor from the previous section. Then, using
OpenCV’s calibrateCamera function, we estimated the intrinsic
and extrinsic camera parameters for the cameras.

All evaluations were done with the True Pixel Error (TPE)
metric, which compares the reprojected world points with the 2D
image features given an estimated camera pose. This metric is
used across multi-view bundle adjustment problems such as pho-
togrammetry, and is considered a good measure of consistency for
pose estimation and feature localization [4].

Monocular and Stereo Calibration
The monocular calibration considered the left and right cam-

eras of the stereo captures independently, with the results pre-
sented in Table 1.

We pose the stereo camera calibration as a non-linear opti-
mization of the camera intrinsics, extrinsics, and the relative poses
between the left and right stereo cameras given the 3D world coor-
dinates of the feature points and the 2D image coordinates of the

features seen in each frame by both cameras. For an efficient and
accurate implementation, we first leverage the intrinsic parame-
ters for both the left and right cameras using OpenCV’s calibrate-
Camera previously calculated in a monocular seeting, and utilize
these estimates to optimize for the extrinsics using a Levenberg-
Marquardt based non-linear optimization, using OpenCV’s stere-
oCalibrate function.

Both monocular and stereo calibrations are evaluated using
the checkerboard and fractal targets. The mean reprojection error
is calculated for each 3D world point back projected into image
coordinates from observed views. The statistical distributions of
the mean reprojection errors is summarized in Table 1 and the
errors are plotted over the image coordinates in Figure 11.

We validate the coverage of the respective targets from the
various calibration views in Figure 11. The plots include the im-
age coverage of points across the full dataset of 50 frames for both
the checkerboard and fractal data. The shear difference in number
of points indicates that the fractal target better samples the space,
providing improved data for the calibration. The color magnitude
shows the reprojection error for the estimated points. Despite the
significantly improved coverage with the proposed fractal target,
there remain small areas in the corners that lack points. This is
likely due to the patches in those areas not being fully detected,
eliminating them from being used for the calibration.

Discussion
The previously introduced re-projection error is an important

metric to validate geometric camera calibration. During the cal-
ibration optimization, pose and intrinsic parameters are adjusted
to minimize this error resulting in the camera parameters and the
respective error for them. Across the photogrammetry commu-
nity, this error is widely used to evaluate to global consistency
and quality of the reconstruction [4]- a lower error indicates im-
proved reconstruction and camera localization. In the case of cal-
ibration, we can similarly use it to evaluate the calibration per-

Target Avg points/frame
Monocular

Stereo
Left Right

RMSE µ σ RMSE µ σ RMSE µ σ

Checkerboard 98 0.288 0.255 0.135 0.314 0.279 0.144 0.302 0.267 0.140

Fractal
All points 1017.4 0.242 0.191 0.149 0.255 0.200 0.159 0.249 0.196 0.154

Subset 98 0.059 0.049 0.032 0.059 0.049 0.033 0.059 0.049 0.033

Fractal Occluded
All points 500.0 0.232 0.180 0.146 0.251 0.194 0.159 0.242 0.187 0.153

Subset 98 0.065 0.053 0.036 0.060 0.050 0.032 0.062 0.051 0.034
Table 1: Results table for the mean re-projection error (pixels) of checkerboard and fractal target calibrations in both monocular and
stereo configurations
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Figure 11: Image coverage of points detected from Checkerboard (left) and Fractal target (right) over accumulated 50 frames. Color
magnitude represents the reprojection error (pixels).

formance. Since this error is often on the order of sub-pixel val-
ues, it is necessary to verify both that the localized image features
are accurately localized before evaluating the calibration. The
first set of experiments that tested the effect of projective (Figure
7b) and radial distortions (Figure 7c) on the localization accuracy
highlighted that traditional corner localization techniques only ap-
proach accuracies of around 0.2 pixels at best. The ellipse based
detections from this work are able to reach localization accuracies
nearly an order of magnitude better, localizing centers to around
0.01 pixels. Furthermore, the results suggest that increasing the
magnitude of geometric distortions affects both localization per-
formances of corner points and elliptical features, with the latter
remaining more robust over greater distortions. It is likely that
extreme distortions which would yield worse localizations are re-
jected through the feature quality metric of elliptical fitting, a par-
ticular advantage over corner features that are more difficult to
validate. These results conclude that the localization performance
of elliptical features is greatly superior over corner features.

The second component of calibration evaluation focuses on
the calibration quality which were evaluated separately on monoc-
ular and stereo calibrations in a real-world setting. From the re-
sults, we note that:

• Our feature extractor allows us to set up better feature point
correspondences across different frames, which gives us a
significantly lower mean reprojection error as compared to
the standard checkerboard based calibrator (0.06 pixels vs
0.3 pixels).

• The uniquely identifiable patches allow the target to be par-
tially visible, providing easier sampling of feature points
across corners and edges of the FoV. Figure 11 shows the
feature distribution for the checkerboard and fractal target
respectively.

• Despite the improved and validated feature localization,
there remains larger reprojection errors across corner and
edge segments of the image coordinates, indicative of an
outstanding systematic error in the camera model fitting.
Additional radial parameters and local surface deformations
may be a future improvement to address the calibration per-
formance.

The overall reduction in this error is indicative of improved
overall calibration since there is more local agreement to the so-

lution. While the solution is limited to numerical optimization
methods such as the Levenberg-Marquardt, there may be cases
where the converged minimum is a solution that is not indicative
to ideal geometry.

Conclusion
This paper introduced a fractal calibration target that

uniquely encodes circular features for robust multi-view camera
systems. Elliptical feature detection is used to improve the local-
ization accuracy over traditional corner features. Projective and
radial distortion experiments confirmed the ability of the detector
to localize to 0.01 pixels, improving from around 0.2 pixel local-
ization accuracy in traditional corner detection methods. Monoc-
ular and stereo calibrations were tested using a proposed fractal
target, improving the reprojection errors compared to a checker-
board calibration. Despite the improvements in calibration perfor-
mance, systematic errors indicate the limitation of existing camera
models for geometric calibration.
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