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Abstract—In this paper, we propose an automated adaptive
focus pipeline for creating synthetic extended depth of field
images using a reflectance transformation imaging (RTI) system.
The pipeline proposed detects object regions at different depth
levels relative to the camera’s depth of field and collects a most
focused image for each. These images are then run through a
focus stacking algorithm to create an image where the focus of
each pixel has been maximized for the given camera parameters,
lighting conditions, and glare. As RTI is used for many cultural
heritage imaging projects, automating this process provides high
quality data by removing the need for many separate images
focused on different regions of interest on the object. It also
lowers the skill floor for this image collection process by reducing
the amount of manual adjustments that need to be made for
focus. Furthermore, this can help to minimize the amount of
time that a sensitive cultural heritage object is outside of its
ideal preservation environment.

Index Terms—Adaptive focus, K-means clustering, Reflectance
transformation imaging (RTI), Cultural heritage

I. INTRODUCTION

Reflectance transformation imaging (RTI) is a method of
imaging that is used to better understand the surface structure
of an object through the analysis of computed surface normals.
The system concept used for RTI incorporates a stationary
birds-eye view camera and an illumination method that lights
the subject from a variety of angles. A maximum resolution
of each pixel is desired to better understand the reflective
properties at each pixel for RTI. This also has the added benefit
of providing a high quality image that can be used with the
RTI output for a higher quality visualization of the object that
could lead to greater understanding of the object itself.

The camera’s depth of field can be decreased in order to
increase the camera resolution, but this can introduce issues
if the object being imaged is topographically complex. If this
is the case, then not all points on the object will be in focus,
undermining the attempt to increase resolution. If images are
captured that are found to be focused at varying depth levels
in the image, then they can be composited together to form a
single image with an extended depth of field that possesses the
high resolution benefits of a shallow depth of field acquisition.

Following this introduction, we present some of the related
works that we are building off of. Then we will outline the
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algorithm that is used to drive to the image acquisition process
as well as some results on both general focus variation and
RTI imagery.

II. RELATED WORKS

Estimating focus in an image as well as using multi-focus
image fusion are well-defined and explored problems. How-
ever, these papers seem to have used curated sets of images,
requiring the system operator to choose what input images
are used. By combining these two processes, an automated
image acquisition pipeline can be developed to remove this
requirement.

The task of estimating focus can be re-framed as estimating
the “sharpness” of an image. It’s generally accepted in the
field of image processing that “the condition of defocus results
in attenuation of high spatial frequencies” [1]. Following
this, a strong presence of high spatial frequencies implies a
high level of focus. Edge analysis provides information on
the presence of spatial frequencies in an image and thus
an estimation of the level of focus. In the cited paper by
Aslantas and Kurban, it was found that a computation of the
sum-modified Laplacian was most effective for determining
focus when attempting to fuse noise multi-focus images using
discrete wavelet transforms when the fusion output image was
compared to a “ground-truth” image with a wider depth of field
than the fusion input images.

Yeo et al. [8] proposed a similar, yet different, autofocusing
methodology for tissue microscopy and color imagery. They
found that certain focus measures are more sensitive than oth-
ers and that this could be used to create a two-stage focusing
system. The system first performs a coarse search to locate the
likely region of the best focused image which was followed
by a finer search with the more sensitive focus measure.
Furthermore, they proposed processing either a single color
band, the first principal component, or a linear combination
of the color bands of the image. We process grayscale input
imagery that has been modified only by convolving with it a
Gaussian blurring kernel that is of similar size to the focus
operator window.

Huang and Jing [3] performed a methods survey concerning
focus measures and how they can be used to fuse a multi-
focus image dataset. The focus measures they tested were
the variance of image gray levels, the energy of the image
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gradient, the Tenengrad method, the energy of the Laplacian of
the image, the sum-modified Laplacian (SML), and an analysis
of spatial frequency. When comparing the performance of
these focus measures on input imagery, the images were split
into smaller image blocks that were compared against one
another before being used for the single output image.

Throughout the field, many variations and studies can be
found on focus operators [7] and autofocusing methods, with
many still concerned primarily with imagery from microscopes
[2], [5]. One could surmise that a reason for this is due to the
fact that more natural scenes are more complex than when
images are captured in a controlled environment. Therefore,
these approaches can still function as building blocks for our
proposed pipeline since RTI systems also rely on a controlled
environment. Factors that would normally need to be taken
into account, such as lighting and backgrounds, are already
parameters that need to be carefully considered for RTI.

III. METHODS

The proposed pipeline consists of four main processes:
• a maximally focused image search,
• depth level segmentation,
• depth level focus optimization,
• and multi-focus image fusion.

The point of the first two processes is to investigate and
enhance understanding of the “focus space” available for
imaging. The term “focus space” is used to describe the range
that the focus can be varied through the system, accomplished
by moving the camera along the optical axis in this case. The
latter two processes are run for each depth level detected by
the segmentation process.

The first process takes the entire focus space and performs
a search similar to a binary search, but splits the space into
quadrants instead of halves. The reasoning behind this modifi-
cation is not to increase precision, but to gather more imagery
to better describe the space in the segmentation process. This
search process takes in the entire focus space with the goal
of finding a single point that results in a maximally focused
image. The process of focus estimation consists of finding
the mean of an image that has been processed with a focus
measure operator, for which we chose to use the Laplacian
operator.

While the system has captured all the input images while
focusing on different planes of the object, it has perhaps not
yet found images that can be used to best focus the various
depth levels on the object. To get a better understanding of
the object’s structure, each pixel in the scene can be treated
as a feature in K-means clustering, with the same pixel in
each image being a new sample. K-means clustering is used
to cluster similar features together and therefore can be used to
group together pixels that behave similarly across the sampled
focus space.

K-means clustering typically initializes the center points for
the clusters randomly, so K-means++ is used to select center
points that are more informed by the present data and that are
also reproducible. To choose these centers, K-means clustering

still requires the desired number of clusters as an input. Since
this is unknown, the elbow method can be used to analyze
the within-cluster sum of squares, a measure of variability for
each resulting cluster. This technique is used in data science
to manually identify when an increase in clusters is no longer
going to provide a significant increase in information. This
method can be further augmented with the Kneedle method
[6]. This method is capable of automatically traversing a set
of data to determine the location of any elbows. This allows
for the selection of an optimal number of clusters to use for
K-means after a certain number of iterations has been reached.

The output regions from the K-means algorithm are repre-
sentative of the depth levels on the object that hold important
information. These regions are passed into a process similar to
the original maximally focused image search, except that now
we are optimizing just for the region of interest. This allows
us to obtain images that are maximally focused for each depth
level. These images are then passed into the multi-focus image
fusion process, where all the images are combined into one
with an artificially extended depth of field. This is achieved
by comparing all the processed images with each other and
selecting at each pixel the image that has the highest estimated
focus value. The relevant image’s pixel value is placed at the
appropriate coordinates in the output image.

After going through this process and collecting a number
of images, it might seem reasonable to use all the acquired
images as an input into the compositing process. Since this
pipeline is developed with an RTI system in mind, however,
this would then amount to a large number of images collected
at what are typically numerous light positions. Since one can
work under the assumption that the surface geometry does not
change relative to the camera in a photometric stereo system,
the list of determined best focus positions can be used to task
the camera at all subsequent light positions. Therefore while
the proposed pipeline may introduce a greater computational
cost upfront, it can help save time and increase efficiency
throughout the rest of the RTI acquisition.

IV. PROOF OF CONCEPT WITH PRE-CAPTURED IMAGES

A. Experiments

Before implementation into the system, the proposed
pipeline was tested on a pre-captured set of images at various
camera positions. The primary differences between this proof
of concept and the implementation with the imaging system
is that the former uses a large discrete image space while the
latter is tasked with traversing a continuous image space until
a threshold of precision is passed. The image sets used with
this proof of concept were captured using our RTI system.

The image sets used varied between smaller sets (≈ 25 im-
ages) or larger sets (≈ 100 images) to test how the search
would behave with different levels of simulated movement
precision.

Despite this discrete space, the focus optimization search
acts in much the same way as proposed for the continuous
space, just with a preset level of precision.
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(a) Image index 3/10 (b) Image index 6/10

(c) Image index 8/10 (d) Image index 10/10

(e) Image index 10/10

Fig. 1: Chosen images from focus stack and resulting composited image with extended depth of field
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B. Results

As part of the validation of the proposed algorithm, a large
number of sample datasets was sought. A dataset generated
by Li et al. [4] was used for the wide variety of subjects
and scenes collected with a varying focus. A single chosen
example is presented here.

The images that were input into the focus stack can be seen
in Figures 1 (a-d) as an example of the depth of field. Figure
1e is the output composite image created after traversing the
input image set and choosing a set of images to composite.
Visually, the image is focused at the different depth levels
compared to any single input image. There are halo artifacts
present around some edges, but the presence of this could be
contributed to some combination of the relatively low image
resolution and the kernel size used when evaluating the focus
measure.

V. REAL-TIME ACQUISITION WITH RTI SYSTEM

A. Experiments

The RTI system used for testing and applying this pipeline
was developed in-house. It consists of a monochromatic Allied
Vision Manta camera (model G1236) and a Qioptic Optem
FUSION micro-imaging system. The latter item is a modular
system that allows the user to adjust the focus using a motor
or by interfacing with it programmatically. This allows one
to quickly swap out various optical components while also
providing a method of easily controlling the imaging system
during a series of acquisitions.

B. Results

Possibly the most unique characteristic of an RTI acquisition
is the variation of the angle of illumination while being able
to leverage the consistency of a single viewpoint. With this in
mind, it is important to look at the behavior of the proposed
adaptive focus pipeline at a variety of illumination angles.

One of the subjects used for testing was a 1000 Colombian
peso coin. While it does not have significant differences in
surface height, it possesses both surface textures that can be
detected by the proposed algorithm and reflective properties
that are of interest in RTI applications. These adaptive focus
acquisitions were compared against an alternative single image
acquisition with a wider depth of field.

When utilized in the context of RTI, the shallow depth
of field can provide a significant increase in image detail
even on seemingly less complex objects such as this coin.
The grazing angle illumination seen in Figure 4b provides no
visual clues about the object when using a wide depth of field.
When performing the same acquisition with a shallow depth
of field, as seen in Figure 4c, and using the proposed pipeline
to generate a composite image, some structure of the coin is
revealed. This might not be a visually interesting image on
its own, but taken in the context of RTI this can increase the
range of possible information that can be used to augment the
resulting reflectance understanding.

It can be seen in Figures 2 and 3 that the algorithm behaves
as expected. As the elevation angle of the light changes from

Fig. 2: Focus measure with respect to elevation angle

Fig. 3: Focus measure with respect to azimuth angle

a minimum of 0° to a maximum of 90°, we would expect the
increase in focus to reach a maximum at the halfway mark
because most of the surface geometry is more perpendicular to
the optical axis. This means that a point near the halfway point
of the available range, there should be a minimal amount of
glare while the illumination of the image features is maximized
as the light is not at a grazing angle.

VI. LIMITATIONS AND SOURCES OF ERROR

Spatial correlation is an important consideration for this
pipeline. When making adjustments to the imaging system,
it is possible to alter the object distance, which can cause the
alignment of two images to be offset. This algorithm relies
on the assumption that pixel neighborhoods are consistent
across the image stack, and this misalignment can break this
assumption. To this end, an attempt to align the imagery is
made. For image stacks with significant blurring however,
it can be difficult to accurately compute the homography
between the two views. This means that to overcome this issue,
either the difference between the two views must be already
known and used to help compute the homography or that there
has to be some ground truth map that can be used to correlate
the images that are focused differently, such as an image taken
with a wide depth of field. The current implementation seems
to experience some issues with alignment as can be seen in
the comparison in Figures 4d and 4e. This could also be due
to the current compositing process because a relatively simple
image compositing method is applied. Further analysis needs
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(a) Wide depth of field, at (θ = 120°, φ = 37.5°)

(b) Wide depth of field image with light position of (θ = 0°, φ = 0°) (c) Composite image with light position of (θ = 0°, φ = 0°)

(d) Single focus stack input image with light position of (θ = 120°,
φ = 37.5°)

(e) Composite image zoom with light position of (θ = 120°, φ =
37.5°)

Fig. 4: Chosen images from focus stack and resulting composited image with extended depth of field
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to be conducted to determine the source(s) of these image
artifacts. While this paper has not proposed an improvement
on any methods of image compositing, this current limitation
in the system must be discussed as there is the possibility that
it introduces a not insignificant level of error. With the current
results seen in Figures 2 and 3, it can be hypothesized that
the error introduced isn’t reliant on the amount of detail in an
image but instead is a more consistent noise level found in the
image compositing process. However, it is most likely that this
noise can be contributed primarily to the captured dataset, as
Figure 1 shows no evidence of this level of error. Nonetheless,
the results are still promising due to the consistent behavior
seen in Figures 2 and 3.

VII. CONCLUSION

In this paper, we have proposed an acquisition pipeline that
seeks to adaptively focus on depth levels of significant infor-
mation when imaging topographically complex objects. The
main feature of the pipeline works as intended, determining
different depth levels in a scene that contain high amounts of
spatial frequency information. Given a space within which the
focus of the scene changes, multiple points can be determined
in this space that, when composited together, aim to have
a maximum number of pixels in focus. It has also been
shown that this method of image acquisition can augment
RTI by increasing the range of light positions that generate
usable imagery. Furthermore, the proposed pipeline generally
behaves expectedly and stably as the light position changes
relative to the subject being imaged, increasing the focus
while retaining the relative image detail. Going forward, this
work will seek to incorporate more robust methodology for
multi-focus image compositing to improve output. For further
incorporating this method with RTI, the variables associated
with the light position will be taken into consideration in an
attempt to further understanding of the subject being imaged.
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