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Abstract
Modern computing and imaging technologies have allowed

for many recent advances to be made in the field of 3D range
imaging: range data can now be acquired at speeds much faster
than real-time, with sub-millimeter precision. However, these
benefits come at the cost of an increased quantity of data being
generated by 3D range imaging systems, potentially limiting the
number of applications that can take advantage of this technology.
One common approach to the compression of 3D range data is to
encode it within the three color channels of a traditional 24-bit
RGB image. This paper presents a novel method for the modifi-
cation and compression of 3D range data such that the original
depth information can be stored within, and recovered from, only
two channels of a traditional 2D RGB image. Storage within a
traditional image format allows for further compression to be re-
alized via lossless or lossy image compression techniques. For
example, when JPEG 80 was used to store the encoded output im-
age, this method was able to achieve an 18.2% reduction in file
size when compared to a similar three-channel, image-base com-
pression method, with only a corresponding 0.17% reduction in
global reconstruction accuracy.

Introduction
Modern three-dimensional (3D) scanning devices and tech-

niques allow us to capture high-precision 3D range data at speeds
much faster than real-time. These advances in 3D scanning make
this technology highly desirable in fields such as telemedicine,
autonomous metrology, communications, and security. As reso-
lution and capture speed increase, however, the quantity of data
that must be stored or transmitted also increases.

This 3D data is traditionally stored in a mesh format such
as OBJ or STL. These formats conveniently store 3D coordinate
locations as well as information about how the coordinates must
connect. Additionally, these formats often store auxiliary infor-
mation about surface normals or texture coordinates, which is po-
tentially convenient but comes at the cost of increased file sizes.
As such, alternative methods of 3D range geometry compression
have been explored.

One such approach to 3D range geometry compression is
to store the 3D data within the three color channels of a tradi-
tional lossless (e.g., PNG) 2D RGB image, enabling the use of
modern, well-defined image processing and compression tech-
niques [1, 2, 3, 4]. If greater compression ratios are required, lossy
compression standards such as JPEG may be used when storing
the encoded output images, although care needs to be taken to en-
sure the encoding signals being utilized are robust to the effects

of lossy compression.
In order to further reduce file sizes, several methods have

been explored that aim to reduce the number of encoding signals,
and therefore the number of color channels, required to repre-
sent a 3D range scan within a 2D color image [5, 6]. Although
these methods were successful in using only two color channels
to represent the 3D range data, and subsequently reducing file
sizes when compared to similar three-channel compression meth-
ods, the nature of their encoding signals make them suitable only
for lossless image storage.

To enable the use of lossy image compression standards for
two-channel 3D range data compression, a method was proposed
that utilized encodings robust to the effects of lossy compres-
sion [7]. This allows for high compression ratios to be achieved
when compared to similar lossy three-channel compression ap-
proaches. However, the nature of this method’s encoding signals
forces ambiguity into the phase unwrapping process necessary to
the decoding stage of image-based 3D range geometry compres-
sion, meaning that errors are present at regular intervals through-
out the recovered geometry. Additional steps are needed to re-
move these errors. One approach was to first segment regions
of assumed error, and then to fill these segmented regions with
heavily filtered data. Regardless of the approach taken to correct
the error, this method has a relatively high minimum RMS recon-
struction error.

This paper proposes a novel method for the compression of
3D range geometry within only two of the three color channels
available in a traditional 2D RGB image. The proposed encoding
signals are robust to the effects of lossy compression, enabling
high compression ratios to be achieved through the use of image
standards such as JPEG. Further, this method’s phase unwrapping
process is robust, meaning that no error correction framework is
necessary and a relatively low minimum reconstruction error is
achievable. For example, the proposed method is able to achieve
an 18.2% reduction in file size (compared to modern, robust three-
channel image-based compression methods) for only a 0.17% re-
duction in global reconstruction accuracy when using the JPEG
80 compression standard to store the encoded output image.

Principle
Multiwavelength Depth Encoding

One image-based approach to the compression of 3D range
geometries is the Multiwavelength Depth Encoding (MWD)
method [4]. This method utilizes principles of phase-shifting in
order to encode high-quality depth information within the three
color channels of a traditional 2D RGB image. Mathematically,
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the signals used to encode the depth information, Z, can be de-
scribed as
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2π× Z(i, j)
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I3(i, j) =
Z(i, j)

Range(Z)
, (3)

where P is a user-defined fringe width that determines the fre-
quency of the sinusoidal encodings seen in Eqs. (1)-(2). Equa-
tion (3) is a low-frequency encoding representing the original
depth information, and is used by the MWD decoding process
in order to recover the encoded geometry.

Multiwavelength Depth Decoding
In order to recover the original depth information, the MWD

decoding process first solves for the encoded phase information
within Eqs. (1) and (2) using the inverse tangent function as

φHF (i, j) = tan−1
(

I1(i, j)−0.5
I2(i, j)−0.5

)
. (4)

However, since the inverse tangent function is only defined
in the range [−π,π), φHF (i, j) will have sharp discontinuities at
intervals of 2π . This is because the phase information encoded
into the sinusoids has range greater than 2π , proportional to the
number of encoding periods, nstr, defined as nstr = Range(Z)/P.
As such, φHF is known as wrapped phase and will need to be
unwrapped prior to the recovery of the original geometry.

In order to unwrap φHF , the MWD method first scales I3 into
the range of −π to π via

φLF (i, j) = I3(i, j)×2π−π. (5)

Next, a stair image, K(i, j), can be calculated in order to deter-
mine how many 2π must be added or subtracted to the wrapped
phase, φHF , in order to recover absolute phase. Mathematically,
this stair image can be calculated as

K(i, j) = Round
(

φLF (i, j)×Range(Z)/P−φHF (i, j)
2π

)
. (6)

It is important to note that the generation of this stair image,
K, relies heavily on the representation of the original geometry
stored in I3. Significant degradation of this signal will result in
an incorrect stair image, and a subsequently incorrectly recovered
geometry. The absolute phase, Φ(i, j), can be recovered via

Φ(i, j) = φHF (i, j)+2π×K(i, j). (7)

Finally, the absolute phase can simply be scaled into the original
depth dimensions of the encoded geometry as

Z(i, j) =
Φ(i, j)×P

2π
. (8)

Virtual Plane Encoding
This paper presents a novel method for the encoding of 3D

range geometries within only two of the three available color
channels present in a traditional 2D RGB image. The proposed
method does not require the low-frequency signal commonly used
to unwrap the phase information stored in the high-frequency si-
nusoidal encodings typical of phase-shifting compression meth-
ods. The method’s proposed encodings can be described mathe-
matically as
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where P, as in the MWD method discussed previously, is a user-
defined fringe width that determines the frequency of the sinu-
soidal encodings, and ZModi f ied(i, j) is a modified version of the
original geometry.

ZModi f ied is generated by summing the original geometry
with a virtual plane, and can be described mathematically as

ZModi f ied(i, j) = Z(i, j)+ZPlane(i, j). (11)

If the magnitude of ZPlane is sufficiently large when compared
to the original geometry’s depth range, then ZPlane can be used
to accurately describe the encoded geometry, ZModi f ied . Further,
if ZPlane is a good approximation of ZModi f ied , then the virtual
plane can be used in the phase unwrapping process, eventually
allowing for the recovery of the original depth information. This
means that the need for an additional, low-frequency encoded sig-
nal such as the one seen in Eq. (3) is eliminated, and only the two
high-frequency encoding sinusoids (Eqs. (9) and (10)) must be
stored in the encoded output image. It is important to note that
in order to regenerate the virtual plane, the four floating-point
parameters required to represent a plane must be transmitted or
stored alongside the encoded output image.

Figure 1 illustrates the proposed method applied to an ideal
hemisphere with a depth range of 256 mm. Figure 1a is a 3D ren-
dering of the original geometry to be compressed. Figure 1b is a
512×512 2D depth map, Z, representing the original 3D geome-
try. Figure 1c is the virtual plane, ZPlane. In this case ZPlane has a
depth range of 819.2 mm, which is large enough when compared
to the original, distinctly non-planar geometry to enable correct
phase unwrapping. Figure 1d is a plot showing the cross-section
of the original data (in red), the virtual plane (in dashed black) and
the new, modified geometry to be encoded by Eqs. (9) and (10) (in
blue). This plot further illustrates that the virtual plane (ZPlane) is
very large in magnitude when compared to the original geome-
try (Z), and that the modified geometry (ZModi f ied) is closely ap-
proximated by only the virtual plane. Figure 1e is the modified
geometry, ZModi f ied , with a depth range of 887.3 mm. Figure 1f
and 1g are the sinusoidal equations seen in Eq. (9) and Eq. (10),
respectively. Figure 1h is the encoded output image stored in the
PNG format, with Figs. 1f and 1g stored in the red and green color
channels, respectively. The blue color channel is intentionally left
empty in order to best illustrate the proposed method. This en-
coded output image has a file size of 93.1 KB.
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Figure 1. Encoding an ideal hemisphere with a depth range of 256
mm with the proposed method. (a) 3D rendering of the geometry
to be encoded; (b) a 2D depth map representing the original ge-
ometry; (c) the virtual plane with a depth range of 819.2 mm; (d)
a cross-section plot showing the original geometry in red, the vir-
tual plane in dashed black, and the sum of the two in blue; (e) the
modified geometry, generated by summing the original geometry
with the virtual plane as shown in (d); (f) sinusoidal encoding of
(e) corresponding to Eq. (9); (g) sinusoidal encoding of (e) corre-
sponding to Eq. (10); (h) the encoded output image, in this case
in the PNG format, generated by storing (f) and (g) in the red and
green color channels, respectively.

Virtual Plane Decoding
The proposed method begins to decode the two-channel

2D image by first solving for the phase information contained
within the two sinusoidal encodings, per the previously described
Eq. (4). Next, the virtual plane must be regenerated using the
four plane parameters that are transmitted or stored alongside the
encoded output image.

This virtual plane is then scaled into the range of the wrapped
phase by

φPlane(i, j) =
ZPlane(i, j)

Range(ZPlane)
×2π−π. (12)

Then, φPlane and φHF can be used to calculate the stair image
K, which will be used to unwrap φHF . Mathematically, the stair
image can be described for each pixel (i, j) as

KPlane =Round
(

φPlane×Range(ZModi f ied)/P−φHF

2π

)
. (13)

Next, the stair image is used to unwrap the highly discontin-
uous phase information in φHF via

ΦModi f ied(i, j) = φHF (i, j)+2π×KPlane(i, j). (14)

This unwrapped phase information, ΦModi f ied , is called ab-
solute phase and can be scaled into the dimensions of the modified
geometry via

ZModi f ied(i, j) =
ΦModi f ied(i, j)×P

2π
. (15)

Finally, the original depth information can be recovered by sub-
tracting the virtual plane from this recovered modified geometry

(a) (b) (c)

(d) (e) (f)
Figure 2. Decoding an ideal hemisphere with the proposed
method. (a) The encoded PNG image output by the encoding
process described previously; (b) the virtual plane, regenerated
from the four floating-point parameters stored alongside the en-
coded image; (c) the high-frequency wrapped phase calculated
from the two sinusoidal signals stored in (a); (d) the stair image
generated using (b) and (c); (e) the recovered modified geometry;
(f) a 3D rendering of the recovered original geometry, generated
by removing (b) from (e).

using the following equation:

Z(i, j) = ZModi f ied(i, j)−ZPlane(i, j). (16)

Figure 2 illustrates the proposed method’s decoding process
on the same ideal hemisphere presented previously. Figure 2a is
the encoded output image generated via the proposed encoding
process. Figure 2b is the virtual plane, ZPlane, regenerated using
the four plane parameters that are stored or transmitted alongside
the encoded output image. Figure 2c is the high frequency phase
information, φHF , calculated from the two sinusoidal equations
stored in the red and green color channels of the encoded output
image via Eq. (4). Figure 2d is the stair image, KPlane, gener-
ated through the use of φHF and ZPlane via Eq. (13). Figure 2e
is ZModi f ied , recovered by using the stair image to unwrap the
high frequency, discontinuous phase information and then scaling
into the correct dimensions. Figure 2f is a 3D rendering of the
original geometry, Z, recovered by subtracting the virtual plane
(ZPlane) from the recovered ZModi f ied via Eq. (16). The recovered
geometry has an RMS error of 0.162 mm, which corresponds to
a 99.94% global RMS reconstruction accuracy when compared to
the total depth range of 256 mm.

Generation of Virtual Plane
As discussed in the previous sections, the magnitude of the

virtual plane that is summed with the original geometry must be
large when compared to the original geometry’s depth range, such
that ZModi f ied can be correctly approximated using only ZPlane. In
order to determine whether this relationship is satisfied for some
ZPlane, it is necessary to generate KIdeal , the stair image generated
using ZModi f ied . This can be done for each pixel (i, j) via

KIdeal = Round
(

φIdeal ×Range(ZModi f ied)/P−φHF

2π

)
, (17)

where φIdeal is the low-frequency phase data calculated using the
modified geometry being encoded. Mathematically, this term can
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be defined as

φIdeal(i, j) =
ZModi f ied(i, j)

Range(ZModi f ied)
×2π−π. (18)

In order for the phase unwrapping process to function cor-
rectly, the stair map generated referencing the virtual plane (via
Eq. (13)) must be equal to the stair map generated referencing
the depth map modified by the virtual plane (via Eq. (17)). This
equality, defined mathematically as

KPlane(i, j) = KIdeal(i, j), (19)

must hold for every pixel, (i, j). In practice this simply means
that the virtual plane is large enough that it can serve as a good
approximation of the modified geometry. If this equality is not
true, i.e., KPlane(i, j) 6= KIdeal(i, j), then the magnitude of ZPlane
must be increased.

In general, any virtual plane can be represented with
only four parameters. Practically, for the experiments in this
manuscript, ZPlane(i, j) was generated to be horizontally increas-
ing by setting the value of each column of pixels in ZPlane equal
to the product of the column position, the image width, and some
scaling factor. This scaling factor was modified as necessary in
order to produce correctly unwrapped phase information via the
equality given in Eq. (19). Mathematically, this process can be
described using

ZPlane(i, j) = j× ImageWidth×SF, (20)

where j is the column index, ImageWidth is the depth map’s
width, in pixels, and SF is the user-defined scaling factor.

Experimental Results
The proposed method of two-channel 3D range geometry

compression was evaluated with several experiments. In the first
set of experiments a complex piece of data, in this case a 3D scan
of a bust of George Washington [8] with a depth range of 337.6
mm, was compressed into a 713×632 2D image format, as shown
in Fig 3.

Figure 3a shows Z, the floating-point depth map representing
the original 3D range geometry. Figure 3b is ZPlane, the virtual
plane, with a depth range of 607.7 mm. Figure 3c is ZModi f ied ,
the sum of Z and ZPlane. In this case, ZModi f ied has a depth
range of 792.2 mm. Figure 3d is the 2D image generated by
sinusoidally encoding ZModi f ied according to Eqs. (9) and (10)
and storing these encodings into the red and green color channels
of a PNG image, respectively. These sinusoidal encodings were
generated with two encoding periods, where the number of en-
coding periods (nstr) can be determined according to the formula
nstr = Range(ZModi f ied)/P. For the purposes of this experiment,
the blue color channel was left empty in order to best illustrate
the potential for file size savings. Figure 3e is the wrapped phase
recovered from the two sinusoidal encodings stored in Fig. 3d.
Figure 3f is the stair image, KPlane, which is calculated using the
regenerated virtual plane and the wrapped phase as described in
Eqs. (12) and (13). Figure 3g is the recovered depth information,
generated by first calculating the absolute phase, rescaling it, and
then removing the regenerated virtual plane as described by Eqs.
(14)-(16), respectively. Figure 3h is a 3D rendering of the recov-
ered depth information. This recovered geometry has an RMS

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 3. The proposed method applied to a 3D scan of a bust
of George Washington. (a) 713×632 2D depth map representing
the original 3D geometry; (b) a virtual plane with a depth range of
607.7 mm; (c) the modified geometry, generated by summing (a)
with (b); (d) the encoded output image, stored in the PNG format;
(e) the high-frequency wrapped phase generated by solving the
sinusoidal signals stored in (d); (f) the stair image generated using
(e) and the regenerated virtual plane; (g) the original geometry,
recovered by first unwrapping (e) using (f), and then subtracting
the virtual plane; (h) 3D rendering of the recovered geometry.

error of 0.144 mm, which gives a global RMS reconstruction ac-
curacy of 99.96% when compared to the original depth range of
337.6 mm. The file size associated with the two-channel encoding
of the geometry is 163.1 KB.

In order to illustrate the proposed method’s potential for file
size savings, these numerical results can be compared to the re-
sults obtained when encoding the same original geometry (seen
in Fig. 3a) with the MWD method described in the Principle sec-
tion of this paper. When the same number of encoding periods
(nstr = 2) was utilized and the PNG image format was used to
store the encoded output, the MWD method achieved a global
RMS reconstruction accuracy of 99.98% with an associated file
size of 247.7 KB. It can be seen that the proposed method of
two-channel 3D range geometry compression was able to achieve
a file size reduction of 34.2%, when compared to an equivalent
three-channel compression algorithm, for only a 0.02% reduction
in global RMS reconstruction accuracy.

The next experiment performs a similar comparison between
the proposed method and the MWD method while varying the im-
age storage format in order to demonstrate the proposed method’s
ability to utilize both lossless and lossy image compression stan-
dards in storing its encoded output. Table 1a reports the results
of this comparison when two encoding periods were utilized and
the PNG format was used to store the encoded outputs, the result
of which has already been discussed. Table 1b shows the results
of this comparison when two encoding periods were utilized and
the JPG 100 format was used to store the encoded output images.
As can be seen, the proposed method is able to achieve a 14.0%
reduction in file size when compared to the MWD method, for
only a 0.08% reduction in global RMS reconstruction accuracy.
Table 1c gives the results when two encoding periods were uti-
lized and the JPG 80 format was used to store the encoded output
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Table 1. Performance of the proposed method compared to the
MWD method when encoding a 337.6 mm scan of a bust of
George Washington. (a) the comparison when the PNG image
format was used to store the encoded output images; (b) the com-
parison when the JPG 100 image format was used to store the en-
coded output images; (c) the comparison when the JPG 80 image
format was used to store the encoded output images.

(a)

PNG
Global

Reconstruction
Accuracy

File Size (KB)
Reduction

in
Accuracy

Reduction
in

File Size

MWD 99.98% 247.7 — —
VPE 99.96% 163.1 0.02% 34.2%

(b)

JPG 100
Global

Reconstruction
Accuracy

File Size (KB)
Reduction

in
Accuracy

Reduction
in

File Size

MWD 99.72% 182.4 — —
VPE 99.64% 156.9 0.08% 14.0%

(c)

JPG 80
Global

Reconstruction
Accuracy

File Size (KB)
Reduction

in
Accuracy

Reduction
in

File Size

MWD 99.60% 42.8 — —
VPE 99.43% 35.0 0.17% 18.2%

images. It can be seen that a similar trend holds here, as well:
the proposed method is able to achieve a 18.2% reduction in file
size when compared to the MWD method, for only an associated
0.17% reduction in global RMS reconstruction accuracy. This ex-
periment highlights the ability of the proposed two-channel range
geometry compression method to achieve significant file size re-
duction when compared to equivalent three-channel compression
algorithms, while maintaining very high (above 99%) global RMS
reconstruction accuracy.

The final experiment uses the same 3D scan of a bust of
George Washington, augmented with an additional, disjoint, 3D
scan of a human face in order to illustrate the ability of the pro-
posed method to determine absolute phase. This augmented 3D
range scan is 713×1112 pixels with a depth range of 362.5 mm.
Figure 4 demonstrates the proposed method of two-channel 3D
range geometry compression applied to this disjoint 3D scan. Fig-
ure 4a is Z, the original floating-point depth information to be
compressed. Figure 4b is the virtual plane, ZPlane, in this case
generated with a range of 719.8 mm. Figure 4c is ZModi f ied , the
sum of ZPlane and Z. This modified geometry has a depth range
of 945.8 mm. Figure 4d is the 2D image (in this case, stored in
the PNG format) output by the proposed method after sinusoidally
encoding the modified deph information, ZModi f ied , using Eqs. (9)

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 4. The proposed method applied to a disjoint 3D scan
of a bust of George Washington augmented with a 3D scan of
a human face. This augmented scan is 713× 1112 pixels with
a depth range of 362.5 mm. (a) The original range geometry to
be compressed; (b) the virtual plane, with range 719.8 mm; (c)
the modified geometry generated by summing (a) with (b); (d) the
encoded output image stored in the PNG format; (e) the recovered
high-frequency wrapped phase; (f) the stair image, KPlane; (g) the
recovered original geometry, calculated by unwrapping (e) with
(f) and subtracting the regenerated virtual plane; (h) 3D rendering
of the recovered original geometry.

and (10). Figure 4e is the wrapped phase calculated from the two
sinusoidal signals stored in the encoded output image via Eq. (4).
Figure 4f is the stair image, KPlane, generated via Eq. (13). Fig-
ure 4g is the depth map, Z, recovered by calculating the absolute
phase, rescaling it, and removing the virtual plane as described by
Eqs. (14)-(16), respectively. Finally, Figure 4h is a 3D render-
ing of the recovered geometry, Z. This experiment highlights the
ability of the proposed method to accurately encode and decode
true depth information related to spatially isolated surfaces within
a scene.

Summary
This paper has presented a novel method for the compression

of 3D range geometry into only two of the three available color
channels of a traditional 2D RGB image. The proposed method
is able to achieve significant file size reduction when compared to
similar image-based compression algorithms that require all three
color channels to store the 3D data, and is able to achieve nearly
the same global RMS reconstruction accuracy. Further, the pro-
posed method’s encoding signals are robust to the effects of stor-
age in a lossy image format such as JPEG, allowing further file
size reduction to be achieved, making this method suitable for ap-
plications where very high compression ratios are desired.
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