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Abstract

Deep neural networks have been utilized in an increasing
number of computer vision tasks, demonstrating superior perfor-
mance. Much research has been focused on making deep net-
works more suitable for efficient hardware implementation, for
low-power and low-latency real-time applications. In [1], Isikdo-
gan et al. introduced a deep neural network design that provides
an effective trade-off between flexibility and hardware efficiency.
The proposed solution consists of fixed-topology hardware blocks,
with partially frozen/partially trainable weights, that can be con-
figured into a full network. Initial results in a few computer vision
tasks were presented in [1]. In this paper, we further evaluate
this network design by applying it to several additional computer
vision use cases and comparing it to other hardware-friendly net-
works. The experimental results presented here show that the pro-
posed semi-fixed semi-frozen design achieves competitive perfor-
mance on a variety of benchmarks, while maintaining very high
hardware efficiency.

Introduction

Rapid progress in computing technology has led to break-
throughs in numerous computer vision tasks via convolutional
neural networks (CNN) in recent years. As the trend continues,
deeper and heavier networks are being developed in order to pur-
sue superior performance. At the same time, there is a need to de-
ploy neural network inference on edge devices. However, unlike
cloud servers, edge devices usually do not have sufficient compu-
tational resources to run massive networks, or would suffer from
high latency and overwhelming power consumption. To over-
come those obstacles, much research has been conducted on how
to efficiently utilize deep networks on edge devices, like various
consumer electronics products. Such research includes methods
to prune weights in neural networks to reduce the size, as well as
innovative topologies or data flows of convolution layers to make
the network more efficient. In addition, hardware accelerators are
being developed in industry, improving the power-performance
trade-off significantly.

The authors in [1] proposed a fixed-topology neural network
with partially frozen weights, named SemifreddoNets, that is op-
timized for hardware with respect to silicon area, memory re-
quirements and power consumption. The basic SemifreddoNets
topology is illustrated in Figure 1. While the proposed semi-fixed
design is very different from generic neural net accelerators, it
is intended to be applicable to a variety of computer vision tasks
and applications. In particular, the hardware-efficient design is in-
tended to be a good fit for the automated driving application (in-
cluding front, rear and in-cabin camera use cases), where multiple
vision tasks need to be executed simultaneously and in real-time.
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Figure 1: The illustration of basic SemifreddoNets

Therefore, in this work, we intend to evaluate the accuracy perfor-
mance of this network and to demonstrate whether it indeed can
reach satisfying performance in multiple important tasks, includ-
ing pedestrian detection, pedestrian action recognition, semantic
segmentation, drivable road area segmentation, and facial land-
mark detection. In the next section, we provide an overview of
the SemifreddoNets design, as well as its configurations for spe-
cific use cases.

SemifreddoNets Overview

SemifreddoNets are fixed-topology networks composed with
several building blocks. Each building block is a sub-net con-
structed from two kinds of subblocks as shown in Figure 2. The
basic subblock is used to extract more abstract features but main-
tain the same feature dimensions while the downscaling subblock
doubles the number of channels and downscales the activations
by two in both dimensions. The detailed design of these building
blocks are listed in Table 1.

Most weights in frozen blocks, except the parameters for
batch normalization, are hard-wired in the silicon in order to save
die size and computational complexity. The weights in frozen
blocks are pre-trained for image classification using the ImageNet
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dataset [2], such that the frozen blocks can provide general el-
ementary features to other use cases. On the other hand, the
weights of trainable blocks are fully flexible and can be loaded
dynamically, based on offline training results for different com-
puter vision tasks. As indicated by the arrows in Figure 1, fea-
tures from frozen blocks can be passed on to trainable blocks,
but not the other way around. In other words, trainable blocks
benefit from the computation performed in frozen blocks, while
features computed by trainable blocks will not impact the com-
putation in frozen blocks. With the objective of controlling the
contribution of the features from frozen blocks, there is a set of
trainable per-channel parameters that determine the blending fac-
tor between activations from trainable blocks and activations from
frozen blocks. Hence, if the frozen blocks are not beneficial to a
specific use case, the network can solely use the features from
trainable blocks. The property gives SemifreddoNets more flexi-
bility in adapting to manifold computer vision tasks.
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(a) Basic subblock (b) Downscaling subblock
Figure 2: Layer components in SemifreddoNets building sub-
blocks

In general, SemifreddoNets itself is mainly used as the fea-
ture extraction backbone, and it is concatenated with a task-
specific head to tailor it to specific classification or regression
tasks. Even though the topology uses fixed-function sub-nets, the
system can still be configured to create a deeper or wider net-
work, depending on the requirements and the characteristics of
the application. This adaptation is achieved by conceptually re-
peating trainable block 1 from the basic network multiple times
and defining an optimal flow over the repeated blocks. Two ex-
amples of this concept are shown in Figure 3. It should be noted
that additional iterations over such blocks may increase the over-
all latency and reduce the hardware efficiency. In hardware, the
repetition is done by storing the output activations and re-running
the same fixed-function block loaded with different weights.

In addition to utilizing the last output activation as the feature
map, all intermediate output activations from each iteration can
optionally be concatenated and used as multiscale feature maps.
That is an important capability when multiscale feature maps are
required in several use cases to boost the performance, such as the
object detection network in the Single Shot MultiBox Detector
(SSD) [3].

The extracted features should be decoded into meaningful
task-specific information, and this is implemented by the head
network. In some applications, this can be done using a simple
1 x 1 convolution layer and implemented by the hardware head
block. For others, a more complicated decoder head network is
essential to reach optimal performance. For instance, a Pyramid
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Figure 3: SemifreddoNets topology configuration options
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Table 1: Components of SemifreddoNets building blocks

. # in Frozen # in Trainable

Block Layer / Subblock Input Size Block Block
3 x 3 Convolution 640 x 480 x 3 1 1
Downscaling subblock 320 x 240 x 32 1 1
Block 0 Basic subblock 160 x 120 x 64 3 0
Downscaling subblock 160 x 120 x 64 1 1
Basic subblock 80 x 60 x 128 3 0
Basic subblock 80 x 60 x 128 4 1
Block 1 Downscaling subblock 80 x 60 x 128 1 1
Basic subblock 40 x 30 x 256 3 0
Head 1 x 1 Convolution (+ Optional pooling) 40 x 30 x 256 0 1

Scene Parsing (PSP) head [4] can be used with SemifreddoNets
for semantic segmentation. In this case, the hardware-based net-
work would communicate with a CPU or a DSP to complete the
full flow.

Use Case Evaluations

Using the SemifreddoNets semi-frozen semi-fixed neural
network, promising accuracy performance for image classifica-
tion and face identification was shown in [1]. In this work, the
same topology concept is applied to additional computer vision
tasks. We intend to demonstrate the potential of SemifreddoNets
used in a wide range of applications in terms of both accuracy
performance metrics and hardware efficiency.

Pedestrian detection

We first report results on the pedestrian detection applica-
tion. In this experiment, the JAAD dataset [5] is used for both
training and evaluation. Note that pedestrians can be relatively
small in the field of view and become challenging to detect. To
overcome this difficulty, a multiscale approach was taken, where
feature maps from finer resolution layers can be used to detect
smaller pedestrians in the scene, using additional detection heads.
The detection head at each resolution level is a simple 1 x 1 con-
volutional layer, as described in [3].

We found that SemifreddoNets with only 2 iterations can
outperform a much larger VGG16-like backbone network [6] in
terms of log average miss rate. The performance can be further
enhanced using more iterations as suggested by the results in Ta-
ble 2. Detection examples are shown in Figure 4, where blue
boxes are the ground truth and red boxes are the detection results
with detecting confidence scores.

Table 2: Pedestrian detection experimental results on JAAD vali-
dation dataset

Output Log Average
Topology scales Miss Rate
SejmlfreddoNets with 2 iter- x16, x32 0432
ations and 2-scaled outputs
Se?mlfreddoNets with 3 iter- x8. x16. x32 0391
ations and 3-scaled outputs
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Figure 4: Pedestrian detection experimental examples on JAAD
dataset

Pedestrian action recognition

In addition to the pedestrian bounding box annotations, the
JAAD dataset also provides the label of pedestrian actions. In
this experiment, we trained the network to classify the pedes-
trian in a video into two action classes: walking/running or stand-
ing/background. Unlike normal recognition tasks, temporal in-
formation is required to identify the motion of pedestrians. To
extract the time-domain features, the gated recurrent unit (GRU)
[7] is used and connected to the end of network. The time-domain
processing can be done using a DSP.

For both training and evaluation, it is assumed that action
recognition occurs after pedestrian detection and tracking, i.e. the
series of bounding box crops corresponding to the same pedes-
trian over time are provided to the network, and the cropped im-
ages are resized to 112 x 80 and fed to the network. The table be-
low shows that, compared with the reference network LT-RCNN
[8], SemifreddoNets can achieve competitive performance using
the basic topology. When switching to a wider configuration,
SemifreddoNets can further exceed the reference network in both
metrics.



Table 3: Pedestrian action recognition experimental results on
JAAD validation dataset

Topolo Sample Viean

pology Accuracy Accuracy
LT-RCNN 0.867 0.641
SemifreddoNets basic 0.855 0.675
Semlfr.eddoNets wider con- 0.874 0.696
figuration

Semantic segmentation

We utilized the Cityscapes dataset [9] to evaluate the accu-
racy performance of SemifreddoNets on the semantic segmenta-
tion. In this use case, backbone extractor SemifreddoNets outputs
the downscaled feature maps, and the subsequent head network
digests those features and classifies each pixel as belonging to
which object class. Therefore, unlike other use cases, the require-
ment for the segmentation application is to provide per-pixel re-
sults, instead of application metadata. In practice, the network
outputs a segmentation map at a lower resolution than the input
image (due to downscaling in the backbone), and the full resolu-
tion output is achieved by bilinear interpolation.

Based on the experimental results shown in Table 4, the se-
mantic segmentation performance can benefit from the additional
wider layers and a dedicated decoder head network, such as PSP
[4]. Compared with other compact neural networks, such as Skip-
Net [10], SemifreddoNets can provide competitive accuracy with
a much smaller number of weights. Figure 5 shows some segmen-
tation results using SemifreddoNets.

Table 4: Semantic segmentation experimental results on
Cityscapes validation dataset

# Parameters Mean IOU

Topology in Backbone (%)
(Million) v

SkipNet with MobileNet 4.3 61.5
SkipNet with ShuffleNet 1.8 55.5
SemifreddoNets with sim- 091 504
ple head
SemifreddoNets with PSP 091 59 1
head
SemifreddoNets
(5-iteration) with MSP* 1.2 61.1
head

*MSP: multiscale pooling (3 scales)

Drivable road segmentation

The purpose of drivable road segmentation is to identify the
area of the road where automated vehicles can proceed. Different
from normal semantic segmentation of roads, it additionally needs
to detect lanes and to distinguish between the primary lane, i.e.
the lane that the vehicle is currently driving on, and alternative
lanes, i.e. the lane that the vehicle can change into. Also, the lanes
in the opposite direction should be classified as non-drivable. For

Figure 5: Semantic segmentation experimental examples on
Cityscapes dataset

this task, we used BDD100K dataset [11] for both training and
evaluation.

In this use case, the multiple-scale configuration with 5 iter-
ations and 3 scales is chosen, and the multiscale pooling module
with global averaging pooling is used in the segmentation head,
followed by the bilinear upscaling. As shown in Table 5, when
comparing to the reference network, DLA-34 [12], Semifred-
doNets can achieve better accuracy in all metrics with much less
parameters, which translates to higher frame-rate and lower power
consumption. Road segmentation example images are provided in
Figure 6, where the primary drivable lanes are labeled in red and
the alternative drivable lanes are labeled in blue.

Figure 6: Drivable road segmentation experimental examples on
BDD100K dataset

Facial landmark detection

For facial landmark detection, we trained SemifreddoNets to
detect the locations of 5 landmarks, i.e. the centers of the two
eyes, the center of the nose, and the left and right corners of the
mouth, as the red marks depicted in Figure 7. The network was
trained and evaluated on the AFLW dataset [13].

According to the experimental results in Table 6, the basic
single-iteration SemifreddoNets, followed by the detection head
composed of a flatten layer and a dense layer, can provide reason-
able accuracy when compared with the state-of-the-art MTCNN

IS&T Infernational Symposium on Electronic Imaging 2021
Autonomous Vehicles and Machines 2021



Table 5: Drivable road segmentation experimental results on BDD100K validation dataset

# Parameters in Class rpIOU (%) ‘ Mean ToU Mean ToU
Topology Backbone Non- Primary Alternative Drivable (%) | All (%)

(Million) drivable drivable drivable 7 7
DLA-34 15 N/A 73.1 55.4 64.2 N/A
SemifreddoNets 1.2 95.7 76.0 60.5 68.2 77.4

[14] in terms of normalized error percentage.

Table 6: Facial landmark detection experimental results on AFLW
validation dataset

Topology H Normalized Error (%) ‘
MTCNN 6.9
SemifreddoNets 8.6

g R ‘
Figure 7: Illustration of facial landmark labels from AFLW
dataset

Conclusions

In this work, we evaluated SemifreddoNets, proposed in [1]
as a fixed-function neural net for hardware-efficient inference, in
multiple applications related to automated/autonomous driving:
pedestrian detection, pedestrian action recognition, semantic seg-
mentation, drivable road area segmentation, and facial landmark
detection. Serving as a feature extractor, it can be configured
for all aforementioned applications, and achieve acceptable ac-
curacy, and approach or even exceed the accuracy performance of
reference networks of much larger size. Considering the signif-
icant benefits of small network size, low power and low latency,
SemifreddoNets is a highly competitive approach toward achiev-
ing efficient real-time inference.
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