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Abstract 
The detection and recognition of objects is essential for the 

operation of autonomous vehicles and robots. Designing and 

predicting the performance of camera systems intended to supply 

information to neural networks and vision algorithms is non-

trivial. Optimization has to occur across many parameters, such as 

focal length, f-number, pixel and sensor size, exposure regime and 

transmission schemes. As such numerous metrics are being 

explored to assist with these design choices. Detectability index 

(SNRI) is derived from signal detection theory as applied to 

imaging systems and is used to estimate the ability of a system to 

statistically distinguish objects [1], most notably in the medical 

imaging and defense fields [2].  

A new metric is proposed, Contrast Signal to Noise Ratio 

(CSNR), which is calculated simply as mean contrast divided by 

the standard deviation of the contrast. This is distinct from 

contrast to noise ratio which uses the noise of the image as the 

denominator [3,4]. It is shown mathematically that the metric is 

proportional to the idealized observer for a cobblestone target and 

a constant may be calculated to estimate SNRI from CSNR, 

accounting for target size. Results are further compared to 

Contrast Detection Probability (CDP), which is a relatively new 

objective image quality metric proposed within IEEE P2020 to 

rank the performance of camera systems intended for use in 

autonomous vehicles [5]. CSNR is shown to generate information 

in illumination and contrast conditions where CDP saturates and 

further can be modified to provide CDP-like results. 

Introduction 
The design of camera systems is crucial to yielding good 

detection performance for autonomous driving systems. To 

facilitate this, objective metrics are needed that correlate to the 

overall performance of the system and the challenge of creating 

them is non-trivial. Metrics need to work for a wide variety of 

illumination conditions and to account for a large number of 

system parameters. Ideally metrics should also be predictive as to 

avoid unnecessary construction of hardware. The IEEE P2020 

Image Quality for Autonomous Vehicles standard group has 

undertaken the task to adapt existing and develop new metrics for 

such purposes [6]. 

Contrast detection probability (CDP) is an empirical metric 

proposed by Geese et al. [5] as an IEEE P2020 metric to predict 

computer vision performance for autonomous vehicles. It is based 

on the premise that it is the ability of an imaging system to record 

contrast between a target and background and its interaction with 

noise that predominantly determines the ability to detect objects. 

By examining a distribution of contrasts, CDP estimates the spread 

of contrast due to noise in the system and calculates the probability 

that measured contrasts will fall within given bounds [5]. It is 

suggested by Geese et al. that the bounds may be set according to 

the application and desired level of visibility [5].  

This paper introduces another metric, contrast signal to noise 

ratio (CSNR) which may be calculated using the same data as 

CDP. It is demonstrated CSNR may be calculated without prior 

choice of thresholds and that system performance may be derived 

in areas where CDP saturates. CSNR is also shown mathematically 

to be proportional to the idealized observer calculated for a 

cobblestone target. 

Contrast Detection Probability 
Geese et al. define CDP as [5]: 

𝐶𝐷𝑃𝐾𝐼𝑁
= 𝑃(𝐾𝐼𝑁(1 − 𝜀) ≤ 𝐾𝑀 ≤ 𝐾𝐼𝑁(1 + 𝜀)) (1) 

where, KIN, is input contrast, KM, measured contrast, ɛ, contrast 

bounds and P() probability. CDP is the probability that the contrast 

calculated from two randomly selected pixels will fall between 

given bounds. Weber, Michelson, or a simple difference may be 

used to calculate contrast [5]. In this work we use Weber contrast, 

KW, to perform the calculation, defined below: 

𝐾𝑊 =
𝐸𝑀𝐴𝑋

𝐸𝑀𝐼𝑁
− 1 (2) 

where EMAX and EMIN represent the maximum and minimum signal 

respectively. 

Practical calculation of CDP has been investigated by Ebbert 

[7]. Jenkin [8] and Artmann et al. [9] have written on the 

calculation of CDP and interpretation of results. Finally, Jenkin has 

written on fast estimation of CDP [10]. Two uniform tone patches, 

representing the brightest and darkest components of a desired 

contrast level, are recorded in chosen illumination conditions by 

the imaging system under analysis. The patches should be large 

enough that a reasonable statistical sampling of the noise processes 

of the imaging system are captured. Typically, 10×10 pixels in the 

final image for each is sufficient. After transformation of the patch 

data into linear input units via the system tone curve, calculation 

proceeds by evaluating the contrast of every pixel combination 

between the two patches to estimate a distribution of contrasts, 

Figure 1. CDP for the contrast, illumination and system parameters 

used is then yielded by calculating the proportion of the 

distribution within the given limits. This procedure may then be 

repeated to calculate CDP values for different illumination and 

contrast combinations. 

Bounds for the calculation are chosen based on the contrast 

type used and the application for which the CDP calculation is 

intended. As noise increases, the probability that two pixels will 

yield a contrast level within the desired bounds decreases and 

conversely, as noise improves, so the probability of correctly 

recording the contrast also rises. Geese et al. suggest that the 

output from CDP may be correlated to the performance of specific 

imaging tasks [5] and Jenkin has previously compared CDP to 

results from detectivity [8]. 

CDP has a numerical range of zero to one and thus when the 

distribution of the contrasts is completely within the bounds 

specified by thresholds used, the value of the metric will saturate at 

of value of one. The metric indicates that the variation in the 

contrast is low enough to be sufficient for the task at hand. A 

disadvantage of this is that, because the metric saturates, any 

overhead in performance of the imaging system cannot be 
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evaluated. Figure 2, shows CDP calculated for a simulated 8Mp 

f1.6 4 exposure HDR camera system with typical parameters for 

sensitivity and noise. CDP values are plotted against illumination 

level and target contrast. The system was modelled using 

approaches previously detailed by Jenkin and Kane [11,12]. 

 

Figure 1, Distribution of Weber contrasts as calculated from recording bright 
and dark image patches and comparing each combination of pixels. 

Weber contrast was used and the threshold for the CDP 

calculation was set to 10%. It may be seen that the metric saturates 

for a large proportion of the surface. Values of contrast above 

100% are saturated as are values above a luminance of 

approximately 3 cdm-2 as indicated by the horizontal and vertical 

lines. Contrasts above 100% are common in automotive 

applications. For example, a traffic sign may easily have a contrast 

of 500% [5]. The metric is not saturated at the periphery of the 

area, however, given the number of patch comparisons required to 

generate the surface, a relatively small number yield values under 

one. Additionally, any knowledge about the performance of the 

imaging system, aside from its ability to perform the task at hand, 

is masked in the areas where the metric is saturated. It should be 

noted that if there is desire to examine different CDP thresholds, 

the entire surface has to be recomputed. 

 

 

Figure 2, CDP calculated for a simulated 8Mp 2.1μm f1.6 4 exposure HDR 
system plotted against illumination and target contrast. Weber contrast with 
bounds of 10% were used for the CDP calculation. 

Contrast Signal to Noise Ratio 
Contrast to noise ratio has been used previously in medical 

imaging to determine the performance of imaging systems [3,4] 

and may be defined as [4]: 

𝐶𝑁𝑅 =
𝑆𝐴−𝑆𝐵

𝑁𝐵𝐺
 (3) 

where SA is the signal intensity of an area A, SB the signal intensity 

of an area B and NBG the background noise. The background noise, 

NBG, is defined as [4]: 

𝑁𝐵𝐺 = √𝜎𝐴
2+𝜎𝐵

2 (4) 

where σA and σB are the standard deviations of the noise of each 

area respectively [4]. The above is similar to a detection theory 

approach and yields the number of mutual standard deviations 

separating the two signals [2]. 

 Weber and Michelson contrast both have a highly non-linear 

mapping with respect to signal separation. Low dark patch values 

tend to push Weber contrast to a value of infinity quickly and also 

hold Michelson contrast close to unity regardless of bright patch 

values. Therefore, it is possible to produce vastly different contrast 

values with individual patches that have similar signal separations, 

though shifted slightly in intensity. Therefore, CNR will have a 

highly non-linear response if used with Weber or Michelson 

contrast. A way to overcome this issue is to use the standard 

deviation of the contrast distribution to describe the noise and 

define therefore contrast signal to noise ratio, CSNR, as below: 

𝐶𝑆𝑁𝑅 =
𝐶̅

𝜎𝐶
 (5) 

where 𝐶̅ is the expected contrast and σC the standard deviation of 

the contrast. Any variation in the contrast is now effectively 

normalized by the value of the contrast itself. 

Figure 3 shows the result of using the above approach to 

calculate a Weber CSNR surface for the simulation previously 

described. The metric can be seen not to saturate and changes in 

CSNR may be seen at transition regions between the individual 

exposures comprising the combined HDR image from the system. 

Point A in Figure 3 shows a region where slight changes in the 

contrast or illumination of a target may cause large changes in 

CSNR. This would indicate an area in the operational space of the 

sensor that engineers may wish to examine more closely to ensure 

overall system performance. 

Because CSNR does not saturate, it is possible to also assess 

performance overhead in the system providing an idea of the safety 

margin available for a given contrast and illumination condition. If, 

however, the area of the surface that meets a required imaging 

condition is required in a similar manner to CDP, it is possible to 

achieve this by thresholding the CSNR surface, Figure 4. It may be 

seen that the CSNR surface with the threshold applied is a very 

similar shape to that directly calculated using CDP. Applying 

further thresholds to explore alternative tolerances is trivial and 

does not require recomputing the patch combinations. 
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Figure 3, A Weber CSNR surface calculated for the simulated 8Mp system. 
Point A shows a region where image quality changes quickly due to transition 
regions in the HDR exposure scheme. 

 

Figure 4, A proxy CDP surface generated by thresholding the CSNR surface 
at a ratio of 18. The area of acceptable performance is very similar to that 
outlined by the direct CDP calculation. 

Detectivity 
Detection theory is used to describe the ability of a system to 

statistically separate given signals [2]. In the case of an imaging 

system this would be to distinguish a target from a background and 

it is generally expressed in terms of mutual standard deviations of 

noise separation between expected signals from a test to detect the 

target or the background. This is the SNR of the test process. For 

an idealized observer, SNRI may be written [2]: 

𝑆𝑁𝑅𝐼 =  √
(𝑡2−𝑡1)2

1/2(𝛿1
2+𝛿2

2)
 (6) 

where 〈𝑡〉𝑛 is the expected value of the test and σn the standard 

deviation associated with each hypothesis. A summary of the 

idealized observer result derived from statistical decision theory is 

given by Kane [1]. Other treatments of the topic may be found in 

[2,13,14]. 

 It is possible to show that CSNR is proportional to SNRI for a 

cobblestone target for a given area and contrast. The mean of the 

contrast, 𝐶̅, is estimated as: 

𝐶̅ =
𝐸𝑀𝐴𝑋

𝐸𝑀𝐼𝑁
− 1 (7) 

where EMAX and EMIN are the maximum and minimum patch 

signals respectively expressed in quanta. The mean signal, �̅�, 

expressed in quanta is:  

�̅� =
𝐸𝑀𝐴𝑋+𝐸𝑀𝐼𝑁

2
 (8) 

Rewriting 𝐸𝑀𝐴𝑋 and 𝐸𝑀𝐼𝑁 in terms of �̅� and 𝐶̅ using equations (7) 

and (8): 

𝐸𝑀𝐼𝑁 =
2�̅�

𝐶̅+2
 (9) 

𝐸𝑀𝐴𝑋 =
2�̅�𝐶̅+2�̅�

𝐶̅+2
 (10) 

Considering a cobblestone of area A with shot noise, the signal and 

standard deviations of dark and bright patches, t1, t2, σ1 and σ2 are: 

𝑡1 = 𝐸𝑀𝐼𝑁. 𝐴 (11) 

𝑡2 = 𝐸𝑀𝐴𝑋. 𝐴 (12) 

𝜎1 = √𝐸𝑀𝐼𝑁. √𝐴 (13) 

𝜎2 = √𝐸𝑀𝐴𝑋. √𝐴 (14) 

Substituting these into equation (6), the SNRI for a cobblestone 

target ignoring MTF is: 

𝑆𝑁𝑅𝐼 =  √
(𝐴.𝐸𝑀𝐴𝑋−𝐴.𝐸𝑀𝐼𝑁)2

0.5(𝐸𝑀𝐴𝑋.𝐴+𝐸𝑀𝐼𝑁.𝐴)
   (15) 

Substituting (9) and (10) into (15) and simplifying we may rewrite 

SNRI in terms of L and C: 

𝑆𝑁𝑅𝐼 =  √
4𝐶̅2�̅�𝐴

(𝐶̅+2)2
 (16) 

Rearranging (16) to give �̅� we find: 

�̅� =
𝑆𝑁𝑅𝐼2(𝐶̅+2)2

4𝐶̅2𝐴
 (17) 

Via Griffin [15], the variance of Weber Contrast, if considering 

shot noise, VC, may be estimated as [10]: 

𝑉𝑐 =
𝐸𝑀𝐴𝑋

𝐸𝑀𝐼𝑁
2 +

𝐸𝑀𝐴𝑋
2

𝐸𝑀𝐼𝑁
3  (18) 

Additionally: 

𝑉𝑐 = 𝜎𝐶
2 (19) 

Using equations (5), (7), (18) and (19), the Contrast SNR, CSNR, 

may be written: 
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𝐶𝑆𝑁𝑅 =  
𝐶̅

√𝑉𝑐
=

𝐸𝑀𝐴𝑋
𝐸𝑀𝐼𝑁

−1

√
𝐸𝑀𝐴𝑋

𝐸𝑀𝐼𝑁
2+

𝐸𝑀𝐴𝑋
2

𝐸𝑀𝐼𝑁
3

 (20) 

Substituting (9) and (10) into (20) and simplifying we may also 

rewrite CSNR in terms of �̅� and 𝐶̅: 

𝐶𝑆𝑁𝑅 =
√2𝐶̅

√(�̅�+1)(�̅�+2)2

�̅�

 (21) 

Rearranging (21) to give �̅� we find: 

�̅� =
𝐶𝑆𝑁𝑅2(𝐶̅+1)(𝐶̅+2)2

2𝐶̅2
 (22) 

Equations (17) and (22) write �̅� in terms of SNRI, CSNR, A and 𝐶̅. 
By being able to do this we show that SNRI and CSNR are linked 

only by contrast and area for any given luminance. Setting 

equation (17) equal to (22): 

 

𝐶𝑆𝑁𝑅2(𝐶̅+1)(𝐶̅+2)2

2𝐶̅2
=

𝑆𝑁𝑅𝐼
2(𝐶̅+2)2

4𝐶̅2𝐴
 (23) 

 

Multiplying (23) by 4𝐶̅2𝐴, and dividing by 𝐶𝑆𝑁𝑅2(𝐶̅ + 2)2 

yields: 

2(𝐶̅ + 1)𝐴 =
𝑆𝑁𝑅𝐼

2

𝐶𝑆𝑁𝑅2
 (24) 

Taking roots and multiplying by CSNR we find: 

𝑆𝑁𝑅𝐼 = √2(𝐶̅ + 1)𝐴. 𝐶𝑆𝑁𝑅  (25) 

 

Figure 5, Weber CSNR calculated for a 10x10cm 90% reflective object against 
a 10% reflective background for the 8Mp 2.1μm system compared against 
SNRI for the same. The CSNR has been scaled using equation (25) to 
demonstrate the proportionality. 

Therefore, for a cobblestone target, area A, and contrast 𝐶̅, SNRI is 

proportional to CSNR via equation (25) at all luminance levels. 

Figure 5 shows a plot of CSNR calculated for a 10x10cm object 

with 90% reflectance against a 10% reflective background imaged 

using the simulated 8Mp f1.6 system as described previously. It 

can be seen there is good alignment between the SNRI calculated 

for the system versus that derived from the measured and scaled 

CSNR. 

One useful aspect of calculating SNRI is that, once mutual 

standard deviations of separation between a target and background 

have been established, a standard normal distribution table may be 

used to calculate true and false positive rates to yield the detection 

error rates likely to be achieved by the system. 

Summary 
 

Contrast signal to noise ratio (CSNR) was introduced and 

compared to contrast detection probability (CDP). It was shown 

that CSNR may be calculated without pre-determined thresholds 

and does not saturate. This in turn enables performance overhead 

to be evaluated and information to be generated in regions of 

interest of the operational envelope of the imaging system where 

CDP reaches its maximum value. A CDP type surface was shown 

to be generated by applying a threshold to the CSNR result. CSNR 

was further mathematically linked to the idealized observer for a 

cobblestone target enabling the estimation of detection error rates. 
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