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Abstract
FisheyeDistanceNet [1] proposed a self-supervised monoc-

ular depth estimation method for fisheye cameras with a large
field of view (> 180◦). To achieve scale-invariant depth estima-
tion, FisheyeDistanceNet supervises depth map predictions over
multiple scales during training. To overcome this bottleneck,
we incorporate self-attention layers and robust loss function [2]
to FisheyeDistanceNet. A general adaptive robust loss function
helps obtain sharp depth maps without a need to train over mul-
tiple scales and allows us to learn hyperparameters in loss func-
tion to aid in better optimization in terms of convergence speed
and accuracy. We also ablate the importance of Instance Nor-
malization over Batch Normalization in the network architecture.
Finally, we generalize the network to be invariant to camera views
by training multiple perspectives using front, rear, and side cam-
eras. Proposed algorithm improvements, FisheyeDistanceNet++,
result in 30% relative improvement in RMSE while reducing the
training time by 25% on the WoodScape dataset. We also ob-
tain state-of-the-art results on the KITTI dataset, in comparison
to other self-supervised monocular methods.

Introduction
Depth estimation is an important task in autonomous driv-

ing as it is used to avoid obstacles and plan trajectories. Almost
all approaches for depth estimation [3], [4], [5], [6], [7] have pri-
marily focused on traditional pinhole camera images. Surround
view cameras have become a standard sensor in automated driv-
ing and recently there is a lot of progress in various visual per-
ception tasks such as semantic segmentation [8], moving object
detection [9], re-localisation [10], soiling detection [11, 12], etc.
The standard depth estimations methods do not work out of the
box for fisheye or omnidirectional cameras, which have a strong
radial distortion. FisheyeDistanceNet [1] is the first proposed end-
to-end self-supervised monocular scale-aware training framework
for fisheye cameras with a large field of view (> 180◦) to regress a
Euclidean distance map. Other relevant work on depth estimation
include [13, 14, 15].

There is a strong trend of using automated optimization tech-
niques to find the best neural network hyperparameters and archi-
tecture topology [16]. Significant gains have been achieved in
accuracy through these techniques. However, loss function opti-
mization has been relatively less explored. The default and virtu-
ally only choice of photometric loss employed in [4], [3], [17], [1]
is `1. Inspired by the recent work of Barron [2], we explore us-

Figure 1: Distance estimation on a single fisheye image. Our
self-supervised model, FisheyeDistanceNet++, generates supe-
rior quality distance maps.

ing a family of loss functions and find an optimal one for our self
supervised depth estimation task on fisheye images. We improve
upon the baseline FisheyeDistanceNet by making the following
contributions:

• We mainly bring attention to the photometric loss’s design
choice for image restoration in the self-supervision training
regime of depth. The significance of the error metric used to
train neural networks for image processing is demonstrated:
`1 loss is still the de facto standard despite its well-known
drawbacks.

• We study the generalized loss function [2] which is more
robust than the standard `1. This loss function adapts it-
self during training without requiring any manual parameter
tuning. We demonstrate significant improvement in accu-
racy and faster training time without changing the baseline
architecture.

• We introduce a novel distance estimation network architec-
ture using a self-attention based encoder to enhance the fea-
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tures fed to the distance decoder.
• We depict the importance of Instance Normalization over

Batch Normalization in the entire architecture.
• We train out the network on multiple cameras and present a

generalized network invariant to different camera views.

Background
Supervised distance estimation methods [18], [19], [20],

[21] require dense pixel-wise labels often constructed from stereo
maps or sparse LiDAR point-clouds. Supervised distance esti-
mation is a difficult problem in fisheye cameras due to several
challenges. Pixel-wise distance labels generated by projecting Li-
DAR point-clouds to fisheye camera images often contain signif-
icant motion distortions. Moreover, common LiDAR sensors do
not provide coverage in the entire near range of ego vehicle’s to
generate a dense depth map in the fisheye camera view. This is
usually addressed by mounting additional LiDAR sensors or by
approximation of distance in the blind zones.

To overcome this challenge, FisheyeDistanceNet [1] pro-
posed self-supervised methods to estimate distance in fisheye
camera images efficiently. Self-supervised methods [22], [23],
[24] typically supervise photometric loss between a geometrically
consistent target image and the reconstructed image obtained us-
ing monocular depth and ego-motion predictors.

Photometric loss
We incorporate `1 pixel-wise loss and Structural Similarity

(SSIM) [25] loss terms for the photometric error between the tar-
get image It and the reconstructed target image Ît ′→t . The photo-
metric loss Lp is:

L̃p(It , Ît ′→t) = ω
1−SSIM(It , Ît ′→t)

2
+(1−ω)

∥∥(It − Ît ′→t)
∥∥

l1 (1)

where ω = 0.85 is a weighting factor between both loss terms.
The final per-pixel minimum reconstruction loss Lr [3] is then
calculated over all the source images

Lp = min
t ′∈{t+1,t−1}

L̃p(It , Ît ′→t) (2)

Our focus in this paper mainly lies on the `1 loss term and
we use the common regression loss function ξ (.) given by:

argmin
θ

ξ ( fθ (x)− y) (3)

Robust loss function
Recently, a general and more robust loss function is pro-

posed by Barron [2] which is a generalization of many common
losses such as `1 or `2 functions. It can also represent the Geman-
McClure, Welsch/Leclerc, Cauchy/Lorentzian, Welsch/Leclerc
and Charbonnier `1-`2 loss functions. In this loss, robustness
is introduced as a continuous parameter and it can be optimized
within the loss function to improve the performance of regression
tasks. The general form of the loss function is:

frob (ζ ,ρ,c) =
|ρ−2|

ρ

( (ζ/c)2

|ρ−2|
+1

)ρ/2

−1

 (4)

Figure 2 Figure is reproduced from [2]. The negative log-likelihoods (left)
and probability densities (right) of the distribution relating to Barron’s [2]
loss function when it is defined (ρ ≥ 0). A log partition function shifts the
NLLs losses.

The free parameters in this loss function can be automatically
adapted to any particular problem via the data driven optimiza-
tion. To induce ρ as a trainable parameter Barron [2] encapsulates
the loss into a probability density function given by:

p(ζ | µ,ρ,c) = 1
cZ (ρ)

exp(−ρ (ζ −µ,ρ,c)) (5)

Z (ρ) =
∫

∞

−∞

exp(−ρ (ζ ,ρ,1)) (6)

where p(ζ | µ,ρ,c) is only defined if ρ ≥ 0, as Z (ρ) is divergent
when ρ < 0. Then the optimization function reduces to:

argmin
θ ,ρ
−log(p(ζ |ρ) = ρ (ζ ,ρ)+ log(Z(ρ)) (7)

where log(Z(ρ)) is an analytical function which is approximated
with a cubic spline function. Z (ρ) is an important factor in the
loss function as it reduces the cost of outliers. The loss of outliers
decreases with the reduction of ρ . Correspondingly, the loss of
inliers will increase.

The main properties of the robust loss function are summa-
rized below:

1. It is monotonic with respect to its inputs |ζ | and ρ which is
useful for graduated non-convexity.

2. It is smooth respect to its inputs ζ and ρ (i.e in C∞).
3. It has bounded first and second derivatives (no exploding

gradients and easier pre-conditioning).

Network Architecture
A novel self-attention based encoder model coupled with

norm decoder and skip connections is implemented to handle
the view synthesis. Fig. 3 illustrates the proposed FisheyeDis-
tanceNet++ architecture. Multiple camera images from four sides
of the vehicle are used to train a single model to make the network
invariant to the perspective. We have kept the encoder-decoder
architecture simplistic for easy extension to multi-task learning
[26] and fusion with other sensors like ultrasonics [27] and Lidar
[28, 29].

Self-Attention Encoder
Previous depth estimation networks [3, 4] use normal con-

volutions for capturing the local information in an image, but the
convolutions’ receptive field is quite small. Inspired by [30], who

181-2
IS&T International Symposium on Electronic Imaging 2021

Autonomous Vehicles and Machines 2021



Front Camera

ResNet 
Encoder with 
Self Attention 

layers

Pose 
Encoder 

Pose 
Decoder 

Distance 
Decoder 

𝐼t' 

𝐼t

𝐼t+

Concat

Left Camera

Right Camera

Rear Camera

Mutli Camera Input Multi Camera 
Distance Estimates

𝐼t

𝐼t' 

Figure 3 Distance estimation on a multiple fisheye cameras. Our self-supervised model, FisheyeDistanceNet++, generalizes to multiple view-points
and estimates superior quality distance maps.

took self-attention in CNNs even further by using stand-alone
self-attention blocks instead of only enhancing convolutional lay-
ers. The authors present a self-attention layer which may replace
convolution while reducing the number of parameters. Similar
to a convolution, given a pixel xi j ∈ Rdin inside a feature map,
the local region of pixels defined by positions ab ∈Nk(i j) with
spatial extent k centered around xi j are extracted initially which
is referred to as a memory block. For every memory block, the
single-headed attention for computing the pixel output zi j ∈ Rdout

is then calculated by:

zi j = ∑
ab∈Nk(i j)

softmaxab

(
q>i jkab

)
vab (8)

where qi j = WQxi j are the queries, keys kab = WKxab, and val-
ues vab = WV xab are linear transformations of the pixel in po-
sition i j and the neighborhood pixels. The learned transfor-
mations are denoted by the matrices W. softmaxab defines a
softmax applied to all logits computed in the neighborhood of
i j. WQ,WK ,WV ∈ Rdout×din are trainable transformation weights.
There exists an issue in the above-discussed approach, as there is
no positional information encoded in the attention block. Thus the
Eq. is invariant to permutations of the individual pixels. For per-
ception tasks, it is typically helpful to consider spatial information
in the pixel domain. For example, the detection of a pedestrian is
composed of spotting faces and legs in a proper relative localiza-
tion. The main advantage of using self-attention layers in the en-
coder is that it induces a synergy between geometric and semantic
features for distance estimation and semantic segmentation tasks.
In [31] sinusoidal embeddings are used to produce the absolute

positional information. Following [30] instead of attention with
2D relative position embeddings, we incorporate relative atten-
tion due to their better accuracy for computer vision tasks. The
relative distances of the position i j to every neighborhood pixel
(a,b) is calculated to obtain the relative embeddings. The cal-
culated distances are split up into row and column distances ra−i
and rb− j and the embeddings are concatenated to form ra−i,b− j
and multiplied by the query qi j given by:

zi j = ∑
ab∈Nk(i j)

softmaxab

(
q>i jkab +q>i jra−i,b− j

)
vab (9)

It ensures the weights calculated by the softmax function are mod-
ulated by both the relative distance and content of the key from the
query. Instead of focusing on the whole feature map, the attention
layer only focuses on the memory block.

Additional Considerations and Final Objective
Loss

We incorporate the same protocols from FisheyeDis-
tanceNet [1], to perform view synthesis using the polynomial pro-
jection model. We follow the same technique in [1] to recover
the scale of the predicted distance estimates on fisheye and pin-
hole camera models. The photometric loss values are clipped to
improve the process of distance estimation in homogeneous and
occluded areas. We also added the backward sequences to the
view-synthesis to resolve unknown estimates in the border region
of the images. The self-supervised final loss comprises of a photo-
metric term Lp that is computed between the reconstructed Ît ′→t
and original It target images, and an inverse depth or distance
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Method Resolution Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

KITTI

O
ri

gi
na

l[
32

]

SfMLeaner [4] 416 x 128 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Vid2depth [33] 416 x 128 0.163 1.240 6.220 0.250 0.762 0.916 0.968
DDVO [6] 416 x 128 0.151 1.257 5.583 0.228 0.810 0.936 0.974
Struct2Depth [34] 416 x 128 0.141 1.026 5.291 0.215 0.816 0.945 0.979

EPC++ [35] 640 x 192 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Monodepth2 [3] 640 x 192 0.115 0.903 4.863 0.193 0.877 0.959 0.981
FisheyeDistanceNet [1] 640 x 192 0.117 0.867 4.739 0.190 0.869 0.960 0.982
PackNet-SfM [17] 640 x 192 0.111 0.785 4.601 0.189 0.878 0.960 0.982
FisheyeDistanceNet++ 640 x 192 0.107 0.721 4.564 0.178 0.894 0.971 0.986

Monodepth2 [3] 1024 x 320 0.115 0.882 4.701 0.190 0.879 0.961 0.982
FisheyeDistanceNet [1] 1024 x 320 0.109 0.788 4.669 0.185 0.889 0.964 0.982
FisheyeDistanceNet++ 1024 x 320 0.103 0.705 4.386 0.164 0.897 0.980 0.989

Im
pr

ov
ed

[3
6]

SfMLeaner [4] 416 x 128 0.176 1.532 6.129 0.244 0.758 0.921 0.971
Vid2Depth [33] 416 x 128 0.134 0.983 5.501 0.203 0.827 0.944 0.981
DDVO [6] 416 x 128 0.126 0.866 4.932 0.185 0.851 0.958 0.986

EPC++ [35] 640 x 192 0.120 0.789 4.755 0.177 0.856 0.961 0.987
Monodepth2 [3] 640 x 192 0.090 0.545 3.942 0.137 0.914 0.983 0.995
PackNet-SfM [17] 640 x 192 0.078 0.420 3.485 0.121 0.931 0.986 0.996
FisheyeDistanceNet++ 640 x 192 0.081 0.414 3.412 0.117 0.926 0.987 0.996

WoodScape

FisheyeDistanceNet [1] 512 x 256 0.152 0.768 2.723 0.210 0.812 0.954 0.974
FisheyeDistanceNet++ 512 x 256 0.102 0.396 1.869 0.123 0.890 0.988 0.994

Table 1: Quantitative performance comparison of FisheyeDistanceNet++ for depths up to 80 m for KITTI and 40 m for FisheyeDistanceNet++.
Original incorporates raw depth maps from [32] for evaluation, and Improved uses annotated depth maps from [36]. All the methods listed in the
table are self-supervised on monocular video sequences. Excluding FisheyeDistanceNet, FisheyeDistanceNet++ and PackNet-SfM rest of the methods
scale the depth estimates using median ground-truth LiDAR during inference. We generalized the previous model FisheyeDistanceNet in our new training
framework and added additional features which improved results in WoodScape [37].

regularization term Ls introduced in [5] that ensures edge-aware
smoothing in the distance estimates D̂t . Finally, we apply a cross-
sequence distance consistency loss Ldc derived from the chain of
frames in the training sequence from [1]. The final objective loss
Ltot is averaged per pixel, scale and image batch is:

Ltot = Lp(It , Ît ′→t)+β Ls(D̂t)+ γ Ldc(D̂t , D̂t ′) (10)

where β and γ are weight terms between the reconstruction loss
Lr, the distance regularization loss and the cross-sequence dis-
tance consistency loss Ls, respectively.

Implementation Details
We base our model on FisheyeDistanceNet [1], an encoder-

decoder network with skip connections. We prefer ResNet18 [38]
as the encoder since it produces an efficient depth prediction and
enhances in higher complexity encoders is incremental after test-
ing different variants of ResNet family. We could leverage the
usage of a more robust loss function over `1 to reduce training

times on ResNet18 and ResNet50 as shown in Table 2 by carrying
out a single scale image depth prediction instead of multi-scale
in [1]. We incorporate Pytorch [39] and the final training objective
function can be minimized using Ranger (RAdam [40] + LookA-
head [41]) optimizer than the previously employed Adam [42].
To adjust the adaptive momentum of Adam, RAdam leverages
a dynamic rectifier based on the variance and effectively creates
an automated warm-up which ensures a solid start to the training
on the custom dataset. LookAhead “lessens the need for exten-
sive hyperparameter tuning” while accomplishing “faster conver-
gence across different deep learning tasks with minimal compu-
tational overhead”. Breakthroughs can be achieved from RAdam
and LookAhead in various aspects of deep learning optimization,
and the combination is highly synergistic, possibly providing the
best of both improvements for the results.
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Method
Robust

loss
Self
Attn.

Instance
Norm

Batch
Norm

Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

FisheyeDistanceNet [1] 7 7 7 3 0.152 0.768 2.723 0.210 0.812 0.954 0.974

FisheyeDistanceNet++
(ResNet-18)

3 7 7 3 0.147 0.572 2.341 0.176 0.869 0.966 0.980
3 7 7 3 0.147 0.572 2.341 0.176 0.869 0.966 0.980
3 7 3 7 0.119 0.497 2.268 0.156 0.886 0.970 0.984
3 3 7 7 0.111 0.429 2.028 0.155 0.875 0.980 0.990
3 3 3 7 0.109 0.421 1.989 0.147 0.875 0.982 0.990
3 3 3 3 0.102 0.396 1.869 0.123 0.890 0.988 0.994

FisheyeDistanceNet++
(ResNet-50)

3 7 3 7 0.143 0.566 2.310 0.169 0.872 0.969 0.981
3 7 3 7 0.109 0.485 2.197 0.147 0.892 0.974 0.988
3 3 7 7 0.105 0.411 1.978 0.132 0.881 0.984 0.992
3 3 3 7 0.101 0.394 1.918 0.135 0.880 0.984 0.994
3 3 3 3 0.088 0.345 1.785 0.111 0.894 0.991 0.996

Table 2: Ablative analysis showing the effect of each of our contributions using the Fisheye WoodScape dataset [37]. The input resolution is 512×256
pixels and distances are capped at 40m. We start with FisheyeDistanceNet [1] baseline and incrementally add Robust loss, self-attention based encoder,
Instance Normalization and Batch Normalization.

Cams Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Front 0.102 0.396 1.869 0.123 0.890 0.988 0.994
Rear 0.105 0.401 1.885 0.131 0.891 0.986 0.992
Left 0.102 0.398 1.874 0.126 0.886 0.986 0.994
Right 0.107 0.405 1.876 0.128 0.884 0.983 0.990

Table 3 Ablation study on multiple cameras using the Fisheye Wood-
Scape dataset [37].

Evaluation
We evaluate FisheyeDistanceNet++’s depth and distance es-

timation results using the metrics proposed by Eigen et al. [32]
to facilitate comparison. The quantitative shown in the Table 1
illustrate that the improved scale-aware self-supervised approach
outperforms all the state-of-the-art monocular approaches. More
specifically, we improve the baseline FisheyeDistanceNet with the
usage of a general and adaptive loss function [2]. Due to its us-
age, we could leverage a deeper architecture ResNet50 than the
previously used ResNet18. We could not leverage the Cityscapes
dataset into our training regime to benchmark our scale-aware
framework, due to the absence of odometry data. In contrast to
PackNet-SfM [17], which presumably uses a superior architecture
compared to our super-resolution ResNet18, with the capability
of estimating scale-aware depths with their velocity supervision
loss, we could achieve higher accuracy with subtle improvements
to the standard ResNet18 and the training framework. In Fig. 4,
we show a few qualitative results of the failure cases having ar-
tifacts such as holes or merging of thin objects like poles with
the background. Finally, in Fig. 5, we showcase qualitative re-
sults on the KITTI Eigen split. In Table3, we evaluate the results
on multiple cameras mounted around the car. Although the dis-
tortion around the side cameras is significantly high compared to
the front camera, we could obtain similar results, and the model
generalizes well to different viewpoints. Using a single model for
multiple views allows us to perform 3D surround-view tasks and

this information can also be leveraged in SLAM systems.

Fisheye ablation study on variants of robust loss
function strategy

The `1 loss is replaced with different variants of the robust
general loss [2] and showcase that usage of adaptive or annealed
variants of the loss can significantly improve the performance.
The shape parameter ρ is varied, keeping the scale fixed with
a general distribution than a fixed Laplacian distribution. In-
stead of RGB representation, following [2] YUV wavelet rep-
resentations are used to model the images with the robust loss
function. The loss is applied on a YUV wavelet decomposition.
The multi-scale training as the reconstruction loss in FisheyeDis-
tanceNet [1] is dropped which induces the sum of the means of
the losses imposed at each scale in a D-level pyramid of side
prediction since [2] is a D level normalized wavelet decompo-
sition. Compared to [2] we retained the edge smoothness loss
from FisheyeDistanceNet [1] as it gave better results which can
be seen in Table 4. The fixed scale assumption is matched by set-
ting the loss’s scale c fixed to 0.01, which also roughly matches
the shape of its `1 loss. The loss is multiplied by c to avoid explod-
ing gradients which bounds the gradient magnitudes by residual
magnitudes.

For the fixed scale models in Table 4, we used a constant
value for ρ for all wavelet coefficients. We observe that there is
an improvement in the performance, and there is no single value
of ρ , which is optimal. In the adaptive ρ ∈ (0,2) variant, ρ is
made a free parameter and is allowed to be optimized along with
the network weights during training. The adaptive plan of action
outperforms the fixed strategies, which showcases the importance
of allowing the model to regulate the robustness of its loss during
training adaptively. Comparison of the adaptive model’s perfor-
mance with the fixed models indicates that no single setting of ρ

is optimal for all wavelet coefficients.
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Method ρ
Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

FisheyeDistanceNet [1] 7 0.152 0.768 2.723 0.210 0.812 0.954 0.974

FisheyeDistanceNet++

1 0.148 0.721 2.615 0.202 0.837 0.961 0.979
0 0.136 0.648 2.482 0.183 0.854 0.963 0.981
2 0.125 0.549 2.338 0.175 0.855 0.970 0.981

(0,2) 0.119 0.497 2.268 0.156 0.886 0.970 0.984

Table 4: Ablation study on different variants of our FisheyeDistanceNet++ using the Fisheye WoodScape dataset [37]. Distances are capped at 40m.

Figure 4 Failure Cases on the Fisheye WoodScape [37] dataset. For reflective regions, the photometric loss fails to estimate correct distances which can
be seen in the 1st figure. In the following figures shown above, where boundaries are unclear the model fails to predict accurately.
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Figure 5 Qualitative results on the KITTI dataset. Our model resolves the low textured areas such as sky i.e. infinite depth and provides sharper
transition in the boundaries of objects.

Ablation study on different features
We perform an ablation study to understand the significance

of different features used and tabulate in Table 2. By incorporat-

ing a generic parameterized loss function coupled with Instance
Normalization [43] we could achieve significant improvements in
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Method Dataset
Encoder

head
Network

Resolution
Training
time (hrs)

FisheyeDistanceNet [1]
K

ResNet18
640 x 192 11

K 1024 x 320 19
WS 512 x 256 10

FisheyeDistanceNet++

K
ResNet18

640 x 192 08
K 1024 x 320 15

WS 512 x 256 07
WS ResNet50 512 x 256 11

Table 5: Ablation study on training times of FisheyeDistanceNet++ on
the KITTI (K) and WoodScape (WS) dataset.

accuracy over using `1 loss and Batch Normalization [44]. With
our novel, self-attention layers introduced to the encoder could
boost the performance of feature extraction in the ResNet18 head,
which inherently helps the norm decoder to produce accurate dis-
tance estimates. We found that no single setting of normaliza-
tion techniques was optimal. We could achieve state-of-the-art
results with the combination of Instance Normalization layers in
the encoder head and retaining the Batch Normalization in the de-
coder. In Table 5 we ablate the training times of our model with
FisheyeDistanceNet. To provide a fair comparison to FisheyeDis-
tanceNet, training times are reported without the contribution of
self-attention layers in the encoder. All the results are reported by
training on a single Titan RTX GPU. We can see the improvement
by using the robust loss function as described in Section over the
`1 loss.

Conclusion
In this paper, we explore the usage of a generic parame-

terized loss function to improve fisheye depth estimation. We
demonstrate significant improvements in accuracy and training
time using the fisheye dataset WoodScape [37]. We demonstrate
the results on four cameras mounted around the car. We take into
account the variance in the style of an image for view synthesis
and ablate the importance of instance normalization over batch
normalization in the training distribution. When the robust adap-
tive loss is paired with image representations in which variable
degrees of heavy-tailed behavior occurs, such as wavelets, this
adaptive training approach allows us to improve the image syn-
thesis and neural networks self-supervised monocular depth es-
timation. We also test the model on KITTI dataset and obtain
the state of the art results among self-supervised methods. Our
motivation is to show that the loss function has to be chosen in
a data-driven way instead of using the standard `1 loss. In fu-
ture work, we aim to jointly optimize the loss function along with
other training parameters and network topology.
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[11] M. Uřičář, P. Křı́žek, G. Sistu, and S. Yogamani, “Soilingnet: Soil-
ing detection on automotive surround-view cameras,” in 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), pp. 67–72,
IEEE, 2019.

[12] M. Uricár, J. Ulicny, G. Sistu, H. Rashed, P. Krizek, D. Hurych,
A. Vobecky, and S. Yogamani, “Desoiling dataset: Restoring soiled
areas on automotive fisheye cameras,” in Proceedings of the IEEE
International Conference on Computer Vision Workshops, pp. 0–0,
2019.

[13] V. R. Kumar, S. Milz, C. Witt, M. Simon, K. Amende, J. Pet-
zold, S. Yogamani, and T. Pech, “Near-field depth estimation using
monocular fisheye camera: A semi-supervised learning approach us-
ing sparse lidar data,” in CVPR Workshop, vol. 7, 2018.

[14] V. R. Kumar, S. Milz, C. Witt, M. Simon, K. Amende, J. Petzold,
S. Yogamani, and T. Pech, “Monocular fisheye camera depth es-
timation using sparse lidar supervision,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), pp. 2853–
2858, IEEE, 2018.

[15] V. R. Kumar, S. Yogamani, M. Bach, C. Witt, S. Milz, and P. Mader,
“Unrectdepthnet: Self-supervised monocular depth estimation using
a generic framework for handling common camera distortion mod-
els,” arXiv preprint arXiv:2007.06676, 2020.

[16] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine
Learning. Springer, 2019.

[17] V. Guizilini, R. Ambrus, S. Pillai, A. Raventos, and A. Gaidon, “3d
packing for self-supervised monocular depth estimation,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

[18] M. Mancini, G. Costante, P. Valigi, and T. A. Ciarfuglia, “Fast robust

181-8
IS&T International Symposium on Electronic Imaging 2021

Autonomous Vehicles and Machines 2021



monocular depth estimation for obstacle detection with fully convo-
lutional networks,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4296–4303, IEEE, 2016.

[19] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep
ordinal regression network for monocular depth estimation,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2002–2011, 2018.

[20] S. Chennupati, G. Sistu., S. Yogamani., and S. Rawashdeh.,
“Auxnet: Auxiliary tasks enhanced semantic segmentation for auto-
mated driving,” in Proceedings of the 14th International Joint Con-
ference on Computer Vision, Imaging and Computer Graphics The-
ory and Applications - Volume 5: VISAPP,, pp. 645–652, INSTICC,
SciTePress, 2019.

[21] S. Chennupati, G. Sistu, S. Yogamani, and S. A Rawashdeh, “Multi-
net++: Multi-stream feature aggregation and geometric loss strat-
egy for multi-task learning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pp. 0–0,
2019.

[22] H. Zhan, R. Garg, C. Saroj Weerasekera, K. Li, H. Agarwal, and
I. Reid, “Unsupervised learning of monocular depth estimation and
visual odometry with deep feature reconstruction,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 340–349, 2018.

[23] J. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M.-M. Cheng, and
I. Reid, “Unsupervised scale-consistent depth and ego-motion learn-
ing from monocular video,” in Advances in neural information pro-
cessing systems, pp. 35–45, 2019.

[24] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, “Digging
into self-supervised monocular depth estimation,” in Proceedings of
the IEEE international conference on computer vision, pp. 3828–
3838, 2019.

[25] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, et al., “Im-
age quality assessment: from error visibility to structural similarity,”
IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612,
2004.

[26] G. Sistu, I. Leang, S. Chennupati, S. Yogamani, C. Hughes, S. Milz,
and S. Rawashdeh, “Neurall: Towards a unified visual perception
model for automated driving,” in 2019 IEEE Intelligent Transporta-
tion Systems Conference (ITSC), pp. 796–803, IEEE, 2019.
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a Diploma degree in industrial engineering and a Ph.D. degree
(Distinction) in computer science from the Technische Universität
Ilmenau in 2003 and 2009, respectively. He worked as a con-
sultant for the EXTESSY AG, Wolfsburg, as a postdoctoral fellow
at the Institute for Systems Engineering and Automation (SEA) of
the Johannes Kepler University Linz, Austria and as postdoctoral
researcher at the Software and Requirements Engineering Center
at the DePaul University Chicago, USA.

181-10
IS&T International Symposium on Electronic Imaging 2021

Autonomous Vehicles and Machines 2021



• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging 
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . .  Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org


