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Abstract
Autonomous driving plays a crucial role to prevent accidents

and modern vehicles are equipped with multimodal sensor sys-
tems and AI-driven perception and sensor fusion. These features
are however not stable during a vehicle’s lifetime due to vari-
ous means of degradation. This introduces an inherent, yet un-
addressed risk: once vehicles are in the field, their individual
exposure to environmental effects lead to unpredictable behav-
ior. The goal of this paper is to raise awareness of automotive
sensor degradation. Various effects exist, which in combination
may have a severe impact on the AI-based processing and ulti-
mately on the customer domain. Failure mode and effects anal-
ysis (FMEA) type approaches are used to structure a complete
coverage of relevant automotive degradation effects. Sensors in-
clude cameras, RADARs, LiDARs and other modalities, both out-
side and in-cabin. Sensor robustness alone is a well-known topic
which is addressed by DV/PV. However, this is not sufficient and
various degradations will be looked at which go significantly be-
yond currently tested environmental stress scenarios. In addition,
the combination of sensor degradation and its impact on AI pro-
cessing is identified as a validation gap. An outlook to future
analysis and ways to detect relevant sensor degradations is also
presented.

Problem Statement and Awareness
Vision Zero

The number of road fatalities remains high. According to [3]
a person dies on public roads every 23s approximately, leading to
around 4000 fatalities every day. In some regions, the numbers
seem to converge, however to a level significantly above zero.
In other regions, the number of fatalities are rising as shown in
Fig. 1. It is fair to say that Vision Zero [6] is still far away.

Innovations
Major ADAS innovations (see [1] over the last decades have

significantly helped reduce road fatalities. These innovations also
include the introduction of advanced chassis and crash tests in
the 1950s, mandatory seat belts in the 1970s, airbags in the 1980s
and so on. Euro NCAP also introduced electronic stability control
(ESC) in 2011 and automatic emergency braking (AEB) in 2014
within the safety ratings. AD challenges are described in [2, 8,
14, 20].

1. sensors The latest generations of sensors with readout noise
below 1 e− and raised Quantum Efficiency (QE) curves within
the infrared spectrum (for actively illuminated applications, e.g.,
in-cabin) are examples where technical limits are almost reached.
Similar effects apply for other modalities (radar, LiDAR, ...). Ad-

Figure 1. Deaths on the road based on WHO 2018 report, from [3]

ditionally, e.g., high resolution solid state LiDAR are introduced.
A comprehensive overview is provided in [17].

2. AI On algorithmic level, AI driven approaches have boosted
detection and classification capabilities, sometimes even leading
to superhuman performances. The tremendous development ef-
fort on component and system level get closer and closer to cur-
rent technological limit.

3. standardization Standardization like IEEE P2020 [7, 13]
activities are crucial in objectively quantifying automotive image
quality performance. Assessing the sensor stream in an algorithm-
and vendor-agnostic way helps in objectively ensuring that the
sensor stream contains appropriate contrast/information so the
subsequent AI units have a chance to perform classification. As
stated in IEEE P2020 context by one of the authors, ”IQ (image
quality) can decide of being dead or alive” [4].

Blind Spots: Sensor Degradation
Despite huge dedication in system design, once a vehicle is

released into the field, it is mainly left to itself, leading to the
following blind spot: ADAS and AD systems fundamentally rely
on the robustness and trustworthiness of the underlying sensor
systems and components. Even with state of the art safety features
found on modern vehicles, the inherent risk of sensor degradation
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remains unaddressed which poses a risk for vehicle passengers
as well as vulnerable road users (VRUs). AI and deep learning
disrupt the severity even more since they are especially receptive
to sensor degradation effects because of their nonlinear nature.

Why is sensor degradation relevant?
Fig. 2 shows a generic ADAS pipeline with sensor space,

feature space and function/action space. Sensor degradations lead
to biased, altered or reduced information which may lead to un-
expected malfunction of the resulting ADAS system(s). For AEB
this can result in increased false negative rate (braking too late /
not at all) and/or increased false positive rate (false alarm brak-
ing).

Figure 2. Generic ADAS/AD system pipeline. Biased input due to degraded

sensors and its propagation leading to system malfunction.

Which sensor degradation effects are relevant?
Not all sensor degradation effects are necessarily relevant in

the customer function domain. Instead of focusing on the sen-
sor domain, we are proposing to concentrate on the resulting cus-
tomer domain. Obviously, this is strongly dependent on the rest of
the pipeline of the imaging system. Similarly to MP3 for audio,
if a certain effect (e.g., color shift of color filter array of a cam-
era) does not impact the resulting ADAS/AD function, it can be
ignored. Some minor degradations however may be surprisingly
relevant to small changes (e.g, certain scratches in a windshield)
if the downstream ADAS/AD processing heavily relies on certain
image quality properties.

Related Work – What is done today and why it is
not enough
Where is PTI for Sensor and ADAS/AD system
degradations?

Periodic technical inspection (PTI) covers major mechani-
cal degradations (e.g., brakes) however it is not addressing sensor
degradations or resulting system level degradations yet.

sensor domain vs. function domain
To the best of our knowledge, existing work focus on the

sensor domain only. The link between the sensor domain and the
function domain can be overlooked. Only when sensor degrada-
tions are seen to have an effect on the function domain, are they
classified as relevant. Further analysis is purely concentrating on
detecting such degradations alone. However, the link back to the
function is not evaluated systematically.

FTA – What sensor degradations can hap-
pen?

In the industry where multi-dimensional and largely complex
systems are used, structured methods were established decades
ago to ensure coverage of the problem (and solution) space. In

this study, we are proposing a structured approach around pos-
sible failure causes. Their effect is only quantifiable in limited
cases. Mapping these potential failure causes together leads to a
structured fault tree analysis (FTA). Fig. 4 generically depicts the
overall fault tree analysis (FTA) of ADAS and AD systems. The
intense current effort in development focuses on the right branch
of this tree – leading to various innovations that improve safety.
Detection/classification systems have been hugely improved by
the rise of AI in automotive for example, leading especially to
lower false negative rates. Sensor modality mismatch has also
benefited from the latest sensor technologies. And so have ex-
tended functional safety (FuSa — ISO26262) and safety of the
intended functionality (SOTIF — ISO21448). The left branch of
the tree in Fig. 4 shows possible identified gaps: if relevant sensor
degradations are present and the onboard self diagnostic system
(e.g., blockage detection, online calibration self-diagnostics) gen-
erates false negatives (i.e., sees sensor stream as fit), degraded
sensor inputs are fed into the ADAS pipeline without recognition.
This can lead to an overall failure of the intended functionality.

FTA for sensor calibration degradation
Fig. 4 shows the fault tree in the context of sensor calibra-

tion. Different calibration factors can impact the overall ADAS
system level performance. Most state of the art systems with high
accuracy requirements (this is the case for all current ADAS and
AD systems) can lead to wrong detection angles or wrong intrin-
sic calibration data. An incorrect (e.g., outdated) intrinsic cali-
bration uses parameters which are fed into the camera model of
the processing pipeline. The intrinsic data can be impacted by
specifics of the sensor (e.g. camera itself) and correspond to ge-
ometric changes inside the sensor path (e.g. optical path). The
extrinsic calibration can be highly impacted if data are either not
up to date or simply incorrect. When a sensor is replaced/removed
following a repair or windshield replacement, the location of the
sensor relative to the vehicle coordinate system is crucial. This is
the main focus of this initial analysis since it can lead to severe
impacts on the ADAS system. Deviations of several degrees (e.g.
±3◦) are possible. Calibration routines are often accompanied by
a self check - the self-diagnostic. However the self-diagnostic has
several limitations and only performs simple plausibility analysis
which can be fooled either intentionally or randomly. If a sen-
sor is changed after a repair event, then it is possible to install
the sensor (and calibration target if applicable) in such a way that
the system believes it is successfully calibrated although it is not.
We call this good versus successful calibration. Successful means
that the sensor is calibrated and all features are enabled but we do
not know how good the ’quality of the calibration’ is, i.e. what
the calibrated values are against real world values. In the case
of a good calibration, the calibrated values correspond to the real
world data (or the error bars are within system acceptable bound-
aries). Typical values are in the range of ±0.2◦ or below.

FMEA approach for sensor degradations
To ensure full coverage of relevant sensor degradations, a

Failure Mode and Effects Analysis (FMEA) like approach is pro-
posed. Different technological modalities are mapped to par-
tially overlapping failure classes. The following table illustrates
a non-exhaustive mapping of relevant key components per sen-
sor modality/system. State of the art ADAS or AD systems use
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Figure 3. Fault Tree Analysis (FTA): Left: Identified gap and focus. Right: Focus of traditional development.

Figure 4. Fault Tree Analysis (FTA) in sensor calibration context: Left:
Identified gap and focus. Right: Traditional development focus.

different sensor modalities, including cameras, RADARs and Li-
DARs. Degradation examples on camera sensor level alone are
described in [10]. Current sensors also have a blockage/soiling
detection [19]. This is similar to self-diagnostics systems and can
be easy to trick and usually only determine severe blockages. In
[18] this is discussed further for a LiDAR sensor.

Vehicle Lifecycle Journey – Sensor degradation
analysis

The industry performs several activities already today to en-
sure sensors perform according to the specification. However, the
main focus remains with the development cycles. The so-called
DV/PV (design validation and process validation) are used to de-
velop robust sensors. During exhaustive tests, the lifetime of a ve-
hicle is simulated for a small number of samples. However, these
tests lack the interaction at system level as well as the interaction
between the software (detectors, path planning) and the sensors.
A true end-to-end analysis cannot be performed this way. More-
over, AI triggers risks since sensors can react non-continuously
to small sensor inputs (”butterfly effect”). This especially holds
if AI is fed with biased sensor data over lifetime while AI train-
ing was performed with new sensors only. Thus, the AI systems
sees sensor data from a different (compromised) area in data do-
main. Real world effects on a large scale (e.g. miscalibration after
sensor removal/replacement) and their impact on the system level
performance are currently not covered systematically.

Sensor Degradation – What could go wrong on
sensor level (input)?

Several faults can happen at sensor-level. An overview of
such faults on camera level and their effects on AD can be found

in Secci et al. [16]. The effects can be categorized into the follow-
ing 2 items:

• sensor geometric degradations (e.g., miscalibration)
• sensor signal degradations (e.g., color shift of CFA)

Miscalibration can be triggered by several effects such as:

• wrongly replaced or installed sensor (e.g. after a windshield
repair)

• change in the vehicle itself (e.g. after an accident or part
movement due to deformation of the vehicle over lifetime)

• aging of sensor holder(s) or bracket(s)
• failures in the storing of new calibration data (e.g. electrical

faults)
• mismatch of online calibration with professionally per-

formed calibration (either at OEM end-of-line or after pro-
fessional replacement of a part/sensor)

• and several more

However the main challenge remains that the real effect on
the system level performance and behavior is unclear. Ultimately
the effect is relevant if (and only if) a degradation or impact on
the final stage (customer or vehicle domain) is noticeable. In the
case of an AEB system, that could manifest as a a false alarm
being triggered or a braking signal generated too late or missed
completely due to a miscalibrated system for example.

AI Sensitivity – Adversarial attacks
Recent publications show that it is possible to trick AI sys-

tems [21, 15, 12] by minor changes in sensor domain. System-
atically we have four cases on risks as shown in 5. Especially
the cases where unknowns are involved (adversarial risk and open
class risk) are specifically challenging to handle.

KPI proposal
Degradation KPIs - macroscopic

A KPI (key performance indicator) driven approach is
proposed. It is crucial to formally define KPIs by which sensor
and system degradation are measurable. In automotive imaging,
IEEE P2020 [13, 7] plays a key role for image quality of camera
systems. At macroscopic level, a degradation can be assessed
within the shift of the receiver operating characteristics (ROC)
curve as depicted in Fig. 6 on macroscopic level. For degradation
D(C) = A−A0 it holds:
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description front view camera RVC / SVS Kamera Lanewatch camera in cabin monitoring nightvision LIDAR Ultrasonics Radar Dashcam inside smart mirror outside smart mirror
extrinsics x x x x x x x x x x x
windshield/backlight x x x
protection flap x x
active illimination x x x
lens x x x x x x x x x
lens holder x x x x x x x x
sensor x x x x x x x x x
ISP x x x x x x x x
pcb x x x x x x x x x x
processing unit x x x x x x x x x
PHY x x x x x x x x x x
connector x x x x x x x x
cable x x x x x x x x
image processing unit x x x x x
display controller x x x x x x
display x x x x x x
cleaning units x x x x x x x x
accoustic warning x x x x x x
overlay or signal lamp x x x x x x

FTA table: How are key ADAS/AD components potentially affected for different AD sensor modalities along the processing pipeline.

Figure 5. The four quadrants of risks from [21]. A biased sensor stream

might lead to areas in feature space with low or no sampling coverage.
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At microscopic level, the impact of degradations is assessed

for a specific working point on the ROC curve. Fundamentally,
this leads to a derivative of function KPIs (e.g., TP/FP rate) wrt.
sensor degradation KPIs (sensor domain).

Figure 6. Receiver Operating Characteristics (ROC) curve and the qualita-

tive impact of sensor system degradation.

Additional degradation KPIs - microscopic
Additional microscopic KPIs are also proposed. They can

help quantify the effect of degradations such as as a camera mis-
calibration. Proposed KPIs:

• number of first detected frame – the first frame where the
detector sees an object - this can be used to compare ground

truth with affected sensor stream
• number of missed frames – how many frames are missed

by the detector between ground truth and affected sensor
data stream

• number of frames with high confidence – sequence of
frames in which the confidence level of the detector input
is above a certain threshold where ground truth and affected
sensor stream is compared

• distance estimation – sensor degradation, especially in the
case of a miscalibrated sensor, can lead to a misinterpreta-
tion of the distance to certain objects. This is especially true
for 2D sensors such as cameras.

• detection confidence delta – delta in detection confidence
for a sequence of frames between ground truth and affected
sensor

Additional KPIs can also be introduced depending on the
scene. This way the real effect of a degradation mechanism
through the entire processing pipeline can be understood.

Degradation analysis setup
Motivation

Intrinsic and extrinsic calibrations are preformed at certain
moments within the vehicle lifecycle. An intrinsic calibration
is executed during the production of the sensor and typically as-
sumed as invariant against environmental changes despite the fact
that the lens map of a camera varies with temperature and thus
the mapping of view ray angles to pixels is not constant. Extrinsic
calibrations are typically performed during the production of the
vehicle at the end-of-line and repeated when relevant components
are replaced (e.g., sensors, windshield). In addition, some sen-
sor systems allow for target-less online calibration mechanisms
to update its extrinsic sensor calibration data. The remaining risk
is that a calibration routine may be conducted successfully, but
the actual calibration data in itself is not accurate (Fig. 7). For tar-
get based extrinsic calibrations, this could be present for example
when the underlying assumptions of accurate target placements
are not fulfilled (as sensor to vehicle is calibrated transitively by
”sensor to target” and ”target to vehicle”.

In this initial analysis we focus on effects which are linked to
extrinsic calibration challenges. An extrinsic calibration is used to
determine the orientation and position of a sensor into the overall

180-4
IS&T International Symposium on Electronic Imaging 2021

Autonomous Vehicles and Machines 2021180-4
IS&T International Symposium on Electronic Imaging 2021

Autonomous Vehicles and Machines 2021



Figure 7. Calibration matrix – self diagnosis vs. reality. The risk remains

that a succesful calibration is not automatically accurate.

vehicle coordinate system. This is required for every sensor. SAE
level 4+ based systems require re-calibration on a daily basis [11].

Hence, we propose the following setup:

Setup overview
SIL architecture overview

Fig. 8 depicts the proposed software in the loop (SIL) ap-
proach which allows for a structured comparison.

Figure 8. SIL setup. Top: Original pipeline. Bottom: Simulated degrada-

tion pipeline. Right: KPI driven effect analysis.

Realworld automotive sensor capturing setup
To ensure relevance for our automotive analysis, real world

sensor data was essential. To this end, a Tesla Model 3 (MY2020,
FSD3, sensor setup see [5]) was chosen where data from 4 of
its cameras (front, 2x side rear and rear) was captured over a 12
months period. This produced a representative dataset including
all typical environmental changes and combinations thereof (sun-
light, lowlight, rain, snow).

Detectors
Various detectors for object detection were evaluated, in-

cluding YOLO v3 and YOLO v4. YOLO serves as de facto stan-
dard of efficient yet high performance detectors. As shown by
Bochkovskiy et al. [9] and illustrated in Fig. 9, YOLO v4 is seen
as an extremely fast yet accurate state of the art object detector for
automotive embedded processing.

Although our framework is detector-agnostic, we did choose
such a state of the art detector (YOLO v4) as it is not limiting the
end-to-end pipeline. A resulting degradation on system level is
therefore not due to a specific limitation of an imperfect detector
but rather a fundamental result of sensor degradation.

Initial Results
As discussed previously an extrinsic calibration can trigger

several failure modes. In this study, we performed several real
world tests to link possible failures to the relevant classes and
KPIs. The categories we found were:

Figure 9. Average precision (AP) of various object detectors based on

MS COCO. YOLO v4 seen as superior detector that becomes relevant for

real-time automotive embedded computing (from [9])

• distance estimation faults — wrong pitch angle of the cal-
ibrated sensor can lead to errors in time to collision (TTC)
estimation. That’s because the TTC is based on distance
estimation. This is especially true for 2D sensors such as
cameras where a 3D distance estimation is not possible.

• trajectory planning — wrong roll or yaw angle can lead to
possible collision being analyzed/detected too late.

• missed objects – calibration is often combined with ROIs in-
side the image to limit detection areas according to relevant
crash and safety test scenarios. Applying wrong ROIs can
lead to missed objects.

• impact on detector – calibration faults can trigger thresholds
changes and impact the highly complex training approach
on the detectors themselves and can lead to different detec-
tion performances.

In the study different angular errors of up to ±3.0◦ were used for
each Euler-angle analyzed. The following real world data illus-
trate the impact of the angular errors (see Fig. 10, 11, 12, 13, 14).

Figure 10. (left image) Truck as seen by the ego-vehicle front camera

(ground truth). The Truck shown is in the driving path of the ego-vehicle.

(Right image) a wrong camera calibration is applied which is still potentially

seen as ”successful” by the system itself. This could lead to an emergency

braking event triggered too late where an accident cannot be prevented.

Results conclusion
Our preliminary systematic analysis can show expected be-

havior on real world data. A sensitivity driven analysis also shows
that these effects can lead to systematic faults in the active safety
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Figure 11. The corresponding KPI plot shows the y-coordinate of the truck

detected as a function of the frame number. The blue and red curves corre-

spond to the left and right images and show how the y-coordinate is clearly

different for the miscalibrated camera (which corresponds directly to an in-

correct distance estimation).

Figure 12. This is another example of how the Time To Collision (TTC)

could be mislead for a VRU in a real world example.

Figure 13. (left image) Pedestrian detected by the ego-vehicle front cam-

era (ground truth). (Right image) A wrong camera calibration is applied

(yaw and roll angle) which is still seen as ”successful” by the system. The

pedestrian is not detected by the miscalibrated device. Even if detected -

the trajectory itself could be estimated and forecasted such that a possible

collision is detected too late.

Figure 14. Wrong calibration can also exclude objects as can be seen in this

example. Extended ROI (region of interests) which are often used to exclude

certain areas from the detectors can prevent detections from happening.

or autonomous driving system. The framework of a software-in-
the-loop approach enables a systematic analysis which can be then
extended to analyze other more complex effects to create a map-
ping between input (sensor) domain and customer domain (e.g. a
true positive detection or even a braking signal).

Conclusion & Outlook
In this overview paper it has been shown that lifetime effects

can have significant impacts on the overall system level perfor-
mance for ADAS and AD systems. The main challenge is that
these effects are only relevant on the output domain (or customer
domain) which correspond to driving and decision making signals
whereas sensor effects act on the input domain. Artificial intelli-
gence algorithms such as deep learning can also increase the over-
all complexity. As vehicle safety technology becomes ever more
complex, the need for good extrinsic calibration of sensors after
a repair or windshield replacement has grown. The correct func-
tionality of the ADAS is dependent on it. While it is relatively
easy to complete a successful calibration with the right tools, if
not carried out correctly the on-vehicle software can wrongly de-
termine the vehicle related parameters. As shown here with our
sensor-in-the loop approach, a successful calibration could po-
tentially result in the ADAS system not functioning as expected
which could result in collisions with vulnereable road users. Fur-
ther research will be carried out to systematically analyze the im-
pact of sensor signal degradation. In addition, real world tests on
vehicle level are planned to map the effect of sensor degradation
to relevant test scenarios.
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