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Abstract 
 

The demand for object tracking (OT) 
applications has been increasing for the past few 
decades in many areas of interest, including security, 
surveillance, intelligence gathering, and 
reconnaissance. Lately, newly-defined requirements 
for unmanned vehicles have enhanced the interest in 
OT. Advancements in machine learning, data 
analytics, and AI/deep learning have facilitated the 
improved recognition and tracking of objects of 
interest; however, continuous tracking is currently a 
problem of interest in many research projects. [1] In 
our past research, we proposed a system that 
implements the means to continuously track an 
object and predict its trajectory based on its previous 
pathway, even when the object is partially or fully 
concealed for a period of time. The second phase of 
this system proposed developing a common 
knowledge among a mesh of fixed cameras, akin to a 
real-time panorama. This paper discusses the method 
to coordinate the cameras' view to a common frame 
of reference so that the object location is known by 
all participants in the network.   
 
Keywords: Continuous Tracking, Object Tracking, 
Depth Estimation, Stereo Vision, Trajectory 
Prediction, Surveillance.   
 
1. Introduction 
 

Object tracking is an active research area in 
computer vision thanks to the increasing demands in 
the Intelligence, Surveillance and Reconnaissance 
(ISR) applications and the Autonomous Vehicles 
Systems (AVS).  Many algorithms have been 

developed to track the Object of Interest (OOI) across 
the view of the camera, and even predict its position 
when it is obfuscated; however, the tracking system 
doesn’t coordinate its finding about the OOI position 
with nearby cameras [2]. This paper discusses ways to 
resolve this issue, and will introduce a method to unify 
the mesh of cameras to a common coordinate system 
and relay information about the OOI on a common 
grid without prior knowledge of the location and 
orientation of the cameras as shown on Figure 1-1 
below. 

 
Figure 1-1: Proposed System Block Diagram 

 
2. Surveyed Positions Solution 
 

This solution requires to have a priori knowledge 
of the location and orientation of each camera in the 
mesh [11].  

Assuming that latitude and longitude (lat/long) of 
each camera are expressed as 𝜑 𝑎𝑛𝑑 𝜆(radians) 
respectively; then the distance can be calculated using 
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the great-circle between two points, also known as the 
‘haversine’ formula. In the case shown on Figure 2.1 
below, the focal center of the image was chosen to be 
the reference lat/long point of the camera.  The 
distance is calculated as following: 
 

𝑎 = 𝑠𝑖𝑛ଶ(
𝛥𝜑

2
)  + 𝑐𝑜𝑠(𝜑ଵ) 𝑐𝑜𝑠(𝜑ଶ) 𝑠𝑖𝑛ଶ(

𝛥𝜑

2
) 

 

𝑐 = 2 𝑎𝑡𝑎𝑛2(ඥ(𝑎), ඥ(1 − 𝑎)) 
 

𝑑 = 𝑅 𝑐 
 
Where R is the earth mean radius (6,371km), a is the 
square of half the chord length between the points and 
c is the angular distance in radians. To properly 
localize the object of interest (OOI) a stereo vision 
system must be in place. The vector vത pointing to the 
OOI centroid is expressed by an azimuth and 
elevation. Thus, the distance from any camera on the 
network can be calculated by adding these 
aforementioned steps. The advantage of this method is 
its accuracy of defining the mesh parameters; whereas 
the main disadvantage of this method is the amount of 
information needed makes it harder to be autonomous 
and self-calibrating. 
 

 
Figure 2-1: Known Camera Locations 

 

3. Distant Point Calibration 
Solution 

 
Given two stereo camera systems, the general idea 

of a this method to determine where the OOI is with 
respect to a second stereo camera system is to 
determine, via the calibration process, the relative 
alignment of the cameras using the “distant point 
method” explained below and the relative position 
vector connecting the cameras [3]. The relative 

position vector is determined by using the cameras 
relative alignment and their view the same object that 
is close enough for a reasonably accurate position 
determination from the stereo cameras; in other words, 
no external position survey is required. Using the 
results of the aforementioned camera calibration 
which will be discussed later in this section, and the 
first camera system’s position vector measurement of 
the OOI position, the expected position of the OOI 
with respect to the second camera can be calculated. 
The OOI’s expected position with respect to the 
second camera can be far out of its field of view 
because that position can be converted to a fully 
spherical azimuth and elevation to which the second 
camera can be commanded to point. The advantages 
of this method are:  

 The expected azimuth and elevation with 
respect to the second camera can be far out of 
its field of view (e.g. behind or far above 
where the camera is pointing). 

 The mathematics is much simpler, and 
therefore easier to debug than the 
mathematics of determining the camera’s 
relative alignment and relative positions 
using multiple parallax observations of the 
same objects by two non-stereo camera 
systems 

 Trajectory estimation/prediction are not 
required. 

 
Once the camera calibration is completed, the 

equation below provides the OOI expected position 
with respect to the second camera given the 
information from the first camera from which an 
azimuth and elevation can calculated with the 
following equation and as Figure 3-1 shows below. 
 

[𝑅ଶ
ைைூ]ଶ =  [𝑅ଶ

ଵ]ଶ +  𝐶ଵ
ଶ[𝑅ଵ

ைைூ]ଵ 
 
Where,  
 
[𝑅ଶ

ைைூ]ଶ is the position vector of OOI relative to 
camera 2 in camera 2 frame of reference coordinate 
system. 
[𝑅ଶ

ଵ]ଶ is the position vector of camera 1 relative to 
camera 2 in camera 2 frame of reference coordinate 
system. 
𝐶ଵ

ଶ is the direction cosine matrix which transforms 
camera 1 vector to coordinates to vector coordinates of 
camera 2 frame of reference coordinate system. 
Lastly, [𝑅ଵ

ைைூ]ଵ is the position vector of OOI relative 
to camera 1 in camera 1 frame of reference coordinate 
system. 
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Figure 3-1: OOI Position Calculation 

 
When equation described above is solved for the 

“position vector of camera 1 relative to camera 2 in 
camera 2 coordinates” the position measurements 
made by the two stereo cameras provide the 
calibration process’s determination of the relative 
position between the cameras. If a position survey 
were to be used, the camera’s orientation relative to 
the Earth would be needed because survey coordinates 
such as latitude, longitude, and altitude are relative to 
Earth Centered Earth Fixed axis. Obtaining the 
camera’s orientation relative to Earth would be very 
inconvenient. The distant point method of determining 
the camera’s relative alignment will finally be 
discussed. The fundamental principal employed is that 
the directions of position vectors connecting the 
cameras to distance points such as stellar 
constellations do not depend on the camera’s position. 
Thus, if the two cameras measure the directions 
specified by a unit vector or equivalently azimuth and 
elevation of three distant points, two different views of 
the same coordinate system are obtained. The 
coordinates of each camera’s view of the common 
coordinate system is used to determine the direction 
cosine matrix relating the cameras. 

Each distant point of the three will be expressed 
in a different coordinate system for each of the camera. 
We can express these unit vectors to the three points 
with 𝑑ଵ

෢, 𝑑ଶ
෢, 𝑑ଷ

෢. We can orthogonize the system using 
the Gram-Schmidt as the following equations then 
normalize the system. 
 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝐷ଵ
෢ =  𝑑ଵ

෢

𝐷ଶ
෢ =  𝑑ଶ

෢ −  
𝑑ଶ
෢் 𝐷ଵ

෢

𝐷ଵ
෢்  𝐷ଵ

෢
 𝐷ଵ
෢

𝐷ଷ
෢ =  𝑑ଷ

෢ −  
𝑑ଷ
෢் 𝐷ଵ

෢

𝐷ଵ
෢்  𝐷ଵ

෢
 𝐷ଵ
෢ −   

𝑑ଷ
෢் 𝐷ଶ

෢

𝐷ଶ
෢்  𝐷ଶ

෢
 𝐷ଶ
෢

 

 
Where 𝐷෡ the axis system is common to all the cameras 
but different coordinates for each camera; in other 
words, they are different coordinate because each 
camera is pointed differently; however unit vectors 
𝐷ଵ
෢, 𝐷ଶ

෢, 𝐷ଷ
෢ point in the same direction because the 

points are too far away. 

The Direction Cosine Matrix 𝐶௔௫௜௦ ଵ
௔௫௜௦ ଶ transforms 

the axis from system 1 to system 2. It is expressed in 
the following matrix: 
 

𝐶௔௫௜௦ ଵ
௔௫௜௦ ଶ =  ቎

〈𝑥ଶෞ, 𝑥ଵෞ〉 〈𝑥ଶෞ, 𝑦ଵෞ〉 〈𝑥ଶෞ, 𝑧ଵෝ 〉

〈𝑦ଶෞ, 𝑥ଵෞ〉 〈𝑦ଶෞ, 𝑦ଵෞ〉 〈𝑦ଶෞ, 𝑧ଵෝ 〉

〈𝑧ଶෝ , 𝑥ଵෞ〉 〈𝑧ଶෝ , 𝑦ଵෞ〉 〈𝑧ଶෝ , 𝑧ଵෝ 〉
቏ 

 
Where 〈𝑥ଶෞ, 𝑥ଵෞ〉 are the inner product of vectors 
𝑥ଶෞ 𝑎𝑛𝑑 𝑥ଵෞ; where 𝑥ଵෞ, 𝑦ଵෞ 𝑎𝑛𝑑 𝑧ଵෝ  are the basis vector 
coordinates of the two axis systems 
Thus, changing from the old coordinate to the new 
coordinate can be expressed as following:  
 

൥

𝑥ଶ

𝑦ଶ

𝑧ଶ

൩ =  𝑪𝒂𝒙𝒊𝒔 𝟏
𝒂𝒙𝒊𝒔 𝟐  ൥

𝑥ଵ

𝑦ଵ

𝑧ଵ

൩ 

 
The Direction Cosine Matrix 𝐶ଵ

஽, 𝐶஽
ଶ relating the 

two cameras, where 𝐶ଵ
஽transforms a given vector from 

camera 1 axis to D axis described above, and 𝐶஽
ଶ 

transforms a given vector from D axis to camera 2 axis 
can be calculated as following: 
 

 𝐶ଵ
஽ = ቎

𝐷ଵ௫ 𝐷ଵ௬ 𝐷ଵ௭

𝐷ଶ௫ 𝐷ଶ௬ 𝐷ଶ௭

𝐷ଷ௫ 𝐷ଷ௬ 𝐷ଷ௭

቏   , 𝐶஽
ଶ = ቎

𝐷ଵ௫ 𝐷ଶ௫ 𝐷ଷ௫

𝐷ଵ௬ 𝐷ଶ௬ 𝐷ଷ௬

𝐷ଵ௭ 𝐷ଶ௭ 𝐷ଷ௭

቏  

  
Where 𝐷෡ is the new axis coordinate system in the 𝐶ଵ

஽ 
transformation where its components are calculated by 
the Gram-Schmidt above and expressed as the 
following: 
 

𝐷ଵ
෢ =  ቎

𝐷ଵ௫

𝐷ଵ௬

𝐷ଵ௭

቏   ,   𝐷ଶ
෢ =  ቎

𝐷ଶ௫

𝐷ଶ௬

𝐷ଶ௭

቏   ,   𝐷ଷ
෢ =  ቎

𝐷ଷ௫

𝐷ଷ௬

𝐷ଷ௭

቏ 

 
Thus, the transformation from camera 1 to camera 

2 can be calculated as following 𝐶ଵ
ଶ = 𝐶஽

ଶ 𝐶ଵ
஽. 

The main disadvantage of this method is that a stereo 
camera needs to be used for every camera position. 
 

4. Point Correspondence Solution 
 

This method of coordinating and calibrating the 
camera network relies on overlap between the 
cameras. The system is composed of two subsystems. 
The first subsystem extracts the matching features 
between two frames of a video feeds from two 
difference sources. This is done by detecting the edges 
and corner, then it extracts the neighborhood features 
to these corners and edges. Next it finds the matching 
features in the correspondent image. The subsystem is 
shown on Figure 4-1 below. 
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Figure 4-1: Estimate Matching Feature Subsystem 

 
The second subsystem estimates the Fundamental 

Matrix ℱ and estimates the relative pose between the 
two cameras; in other words, it estimates the relative 
rotation and translation between the cameras [8]. 
There are several methods to estimate the 
Fundamental Matrix for example:  

 The Random Sample Consensus algorithm 
(RANSAC) 

 The M-Estimator Sample Consensus 
(MSAC) which converges faster than 
RANSAC. 

 The Least Median Squares algorithm 
(LMedS). 

 Least Trimmed Squares (LTS) which 
converges faster than LMedS. 

 Or by the 8 point correspondent algorithm 
developed by Longuet-Higgins. 

The estimate pose is calculated and it is dependent 
on the camera intrinsic calibration. Figure 4-2 below 
shows the block diagram of the second subsystem. 
 

 

 
 Figure 4-2: Estimate Fundamental Matrix and 

Relative Pose Subsystem 
 

In other words, this method leverages the stereo 
vision concept and applies it to a much higher scale.  

If camera X locates the Object of Interest, All the 
cameras in the network can coordinate their relative 
position to that camera X, by performing the 
cumulative transformation. The next section will 
describe the algorithms used for each subsystem and 
will show the results.  
 

5. Results 
 

5.1. Dataset Gathering 
 

The data was generated by a movie created by 
Google Earth Studio, The cameras were then placed at 
random positions where there was some overlap 
between them. Figure 5-1 shows below the trail of the 
camera where each white dot shows the major 
keyframe that was used as camera placement. 
 

 
Figure 5-1: Synthesized Data Overview 

 

5.2.  Algorithm Detailed 
 

In the first subsystem mentioned above, the 
features of the image are detected using the Harris 
Features detection algorithm. Then the features were 
extracted between the images by a combination of 
algorithms namely Speeded-Up Robust Features 
(SURF) and Fast Retina Keypoint algorithms. Then 
these features gets corresponded between the images. 
Figure 5-2 visualizes the point correspondence 
between the two algorithms. 
 

 
Figure 5-2: Features Correspondence 
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Figure 5-3 below shows the strongest 
corresponding points between the two images after 
removing the outliers. 
 

 
Figure 5-3: Synthesized Data Overview 

 
In the second subsystem, the fundamental matrix 

is generated by the Random Sample Consensus 
(RANSAC) algorithm such that the following 
equation is satisfied. 

 
𝑥ଶ

்𝓕 𝑥ଵ = 0 
 
To estimate the relative location of the cameras, 

the intrinsic properties of the cameras were assumed 
to be ideal for distortion and skew factors since the 
data was synthesized. The focal length is assumed to 
be 3000 millimeters in the x and y directions and the 
optical center of the camera is exactly in the middle. 
The focal length for simulated data is infinite, an 
analysis was performed to achieve a realistic estimate. 
Focal length was tested from 1600 to 5000, beyond 
that 3000 there was insignificant improvement; thus 
focal length of 3000 was chosen. Figure 5-4 below 
shows the result of the relative orientation and relative 
position of the two cameras. Where camera 1 (on left) 
is placed at the origin (0,0,0) and camera two (on the 
right) is relatively placed based on the position 
described by the Rotation and Translation matrices. 
 

 
Figure 5-4: Relative Position and Orientation 

 

5.3. Scene Reconstruction and Testing 
 

To assess the proposed algorithm, the scene has 
been reconstructed by triangulating the matched points 
calculated by the correspondence algorithm that was 
discussed in the previous section. Figure 5-5 below 
shows the scene reconstruction. 
 

 
Figure 5-5: Scene Reconstruction  

 
From the reconstructed scene, several points were 

chosen randomly to remap them into the projected 
space onto the two images, as shown by Figure 5-
6(a,b) and Figure 5-7(a,b) below. These set of images 
show there is an error when comparing the two 
images; for instance, the point chosen shows that it is 
at the corner of the building by the middle of the 
window, whereas the second camera remaps it into the 
corner of the building by the top of the window. 
 

 

 
Figure 5-6: First Example (a - Top) Remap onto 

Camera1, (b - Bottom) Remap onto Camera2. 
  

Similarly, for the second example, there was an 
error when comparing the two images. Thus, the next 
section will discuss the method used to quantify the 
associated error. 
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Figure 5-7: Second Example (a - Top) Remap onto 

Camera1, (b - Bottom) Remap onto Camera2.  
 

5.4. Error Estimation 
 

The error was estimated by performing a 
normalized 2-D cross-correlation between a template 
taken from image one and the a section of image 2. For 
example, Figure 5-8 (a) shows the template to be 
chosen as the 50x50 pixels from the center of the 
remapped point from camera 1; Figure 5-8(b,c) show 
a window around the of 200x200 pixels from the 
centers of the remapped points from camera 1 and 
camera 2 respectively. 

 

 
Figure 5-8: (a – top) Template (b - Left) Remapped 

ROI Camera1, (c – Right ) Remapped ROI 
Camera2.  

 
Figure 5-9 shows the results of the 2-D cross-

correlation as a surface map, where x,y are the pixels 
of the image and the z axis is the correlation coefficient 
magnitude. 

 
Figure 5-9: Cross-Correlation Result 

 
Figure 5-10 below shows the estimated error. (a) 

shows the original location from camera 1 indicated by 
the blue-cross/dark-cross; whereas, (b) shows the 
original mapped location indicated by the red-
cross/dark-cross and the found location with the cross-
correlation indicated by the green-cross/light-cross. 
The error is estimated to be -38 in the Y direction and 
about -2 in the X direction. 

 
distanceY = -38, distanceX = -2 

Figure 5-10: (a – Left) Original Mapped location 
Camera1, (b - Right) Error Estimated On Camera2 

 
Similarly, the same process was done to the 

second random point discussed above. In this case, the 
error was estimated to be -40 in the Y direction and 1 
in the x direction as shown on Figure 5-11. 

 
distanceY = -40, distanceX = 1 

Figure 5-11: (a – Left) Original Mapped location 
Camera1, (b - Right) Error Estimated On Camera2 
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6. Future Development 
 

The first enhancement to the proposed algorithm 
will deal with optimizing the cameras distances and 
pose estimation [10], where the minimum overlap 
between the two images will be estimated. Another 
enhancement is to optimize the execution time; 
currently the execution time for 7 cameras is 
approximately 15.2 seconds. Another enhancement to 
the system is to implement a method that mimics the 
idea of MPEG-2 “I” frame to change the frame of 
reference after N number of cameras to minimize the 
error from accumulating the rotation and translation 
from one camera to another. Lastly, the 
aforementioned system will be integrated with the 
overall system described by the previously published 
paper to locate the Object Of Interest (OOI) [5][6][7]. 
 

7. Conclusion 
 

This paper discussed three different methods to 
correlate a mesh of camera network to a common 
knowledge. The first method had to have a priori 
knowledge of the camera location and orientation. The 
second method correlate the cameras based on several 
non-orthogonal distant points such as stellar 
constellation. The last method proposed a system that 
leverages the idea of stereo vision at a larger scale, and 
the fact that cameras are available everywhere 
nowadays. In the later system, points in the scene are 
corresponded and the scene is reconstructed in three 
dimensions where a common knowledge about the 
object of interest can be inferred.  This paper discussed 
the results from the synthesized data that was created 
to build the algorithm prototype. 
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