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Abstract 

Traditional image signal processors (ISPs) are primarily designed 

and optimized to improve the image quality perceived by humans. 

However, optimal perceptual image quality does not always 

translate into optimal performance for computer vision 

applications. In [1], Wu et al. proposed a set of methods, termed 

VisionISP, to enhance and optimize the ISP for computer vision 

purposes. The blocks in VisionISP are simple, content-aware, and 

trainable using existing machine learning methods.  

VisionISP significantly reduces the data transmission and power 

consumption requirements by reducing image bit-depth and 

resolution, while mitigating the loss of relevant information. In this 

paper, we show that VisionISP boosts the performance of 

subsequent computer vision algorithms in the context of multiple 

tasks, including object detection, face recognition, and stereo 

disparity estimation. The results demonstrate the benefits of 

VisionISP for a variety of computer vision applications, CNN 

model sizes, and benchmark datasets. 

Introduction  

Image Signal Processors (ISPs) convert a raw signal acquired 

from an imaging sensor to a picture suitable for human 

consumption. Traditionally, ISPs have been tuned for optimal 

perceptual image quality for human appreciation.  Many 

applications would benefit from an image processing pipeline that 

optimizes and normalizes the image characteristics for computer 

vision engines instead.  

In practice, it is challenging to transmit high resolution image 

data with a large bit-depth and high frame rates from a sensor or an 

ISP to a computer vision engine, given low power and low latency 

requirements. To reduce the data transmission load, it is common 

to downscale the images or to lower the frame rate; however, this 

can lead to a loss of detail and motion information that is of critical 

importance in automated/autonomous driving applications. 

In [1], Wu et al. proposed to repurpose the ISP for computer 

vision applications, by a) tuning existing ISP blocks for optimal 

denoising for a subsequent computer vision application; and 

b) introducing novel ISP tone mapping and downscaling blocks 

that allow reduction of the spatial image size and number of bits 

per pixel while preserving key image detail information. The 

operations introduced in [1] are content-aware as well as 

differentiable and can be trained using back-propagation 

techniques common in deep learning. This processing sequence, 

which is called VisionISP and shown in Figure 1, preserves the 

information that helps a subsequent neural network learn 

discriminative features even after significant data reduction. The 

proposed blocks are very lightweight image processing blocks that 

do not add a significant processing burden over and above the ISP. 

These methods help reduce data transmission requirements, reduce 

power consumption, and result in an overall better-optimized 

pipeline for computer vision applications. Moreover, the approach 

avoids time intensive and potentially biased manual tuning of the 

camera ISP for computer vision tasks.   

Related recent work in this area includes [2,3,4]. Yahiaoui 

et al. [2], provide an empirical analysis of the impact of ISP 

parameters on the performance of computer vision, in an 

automated driving context. Taylor et al. [3] and Mosleh et al. [4] 

both describe methods for optimization of the ISP for computer 

vision accuracy. Both propose to use general non-linear 

optimization techniques capable of tuning tens or hundreds of ISP 

parameters in a black-box setting. The approach described in Wu 

et al. [1] is different in that novel machine learning-based image 

processing blocks are proposed that allow the use of efficient 

gradient-based end-to-end optimization techniques.  

In Wu et al. [1], experimental results were included showing 

the benefit of VisionISP in the context of object detection.  In this 

paper, we present new experimental results across a wider variety 

of computer vision tasks, multiple CNN backbone models, and a 

wider range of usage configurations. Specifically, we demonstrate 

significant improvements in accuracy when using VisionISP in 

object detection, face recognition, and stereo disparity estimation, 

and across a wide range of data reduction factors and model sizes.  

In the next section, we recap the VisionISP blocks as 

introduced in [1], discuss the automated training of VisionISP, and 

provide some example image outputs. The subsequent section 

describes our experimental results in detail.  

 

 

 
 

Figure 1: VisionISP overview. 

VisionISP Components and Training 

In the following, we will discuss the main VisionISP blocks: 

a) Vision Denoiser, b) Vision Scaler, and c) Vision Tone Mapper.  

Vision Denoiser 

The presence of strong noise in camera image data has a 

tendency to reduce the accuracy of computer vision algorithms.  

On the other hand, application of heavy noise reduction in practice 

results in a loss of detail information, and such detail may be 

critical for the specific application. Hence, properly tuning the 

denoiser in the context of a computer vision task is important, and 
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such vision-optimized tuning likely has a different result from 

tuning to optimize the image quality for human viewers. 

The vision denoiser consists of a combination of spatial and 

motion-compensated temporal filtering blocks. We use a denoiser 

from an existing ISP without algorithm or hardware modifications. 

It has several parameters that can be tuned automatically using the 

optimization approach described in [5]. To optimize the denoiser 

specifically for computer vision tasks, the objective function is 

defined as the L1 norm of the error between CNN feature maps 

resulting from the denoised image and reference CNN feature 

maps. The reference CNN feature maps originate from a set of 

noiseless reference images. Please see [1] and [5] for further detail. 

 

Vision Tone Mapper 

The vision tone mapper (VTM), illustrated in Figure 3,  

consists of a global tone mapping operator followed by a local 

detail boosting operator, and finally, bit-depth reduction. The 

global tone mapping operator is defined by a non-linear function, 

which can be any differentiable function having trainable 

parameters. Here we use a simple gamma function, with a single 

trainable parameter γ. Local detail enhancement is performed by a 

standard unsharp masking technique, using a fixed 5x5 box-filter 

and a trainable parameter α to adjust the enhancement strength. 

Bit-depth reduction is a uniform quantization step and can be 

performed simply by bit-shifting. In practice, the bit-depth 

reduction step is performed after the vision scaler.  

 

Vision Scaler 

The trainable vision scaler (TVS) is illustrated in Figure 2. As 

described in [1], TVS is a small trainable neural net consisting of a 

color space conversion (CSC) layer, a feature extraction layer, and 

a feature fusion layer. The CSC layer is a 1x1x3x3 pointwise 

convolutional neural net layer. The feature extraction layer is 

equivalent to a 7x7x3x30 convolutional layer, but is decomposed 

into a depthwise convolution and pointwise convolution for 

computational efficiency. Downscaling is controlled by the striding 

in the depthwise convolution step. Note that non-integer scaling 

factors can be achieved by non-uniform striding. The final step 

fuses the feature channels back into 3 channels, as expected by 

computer vision algorithms, and is implemented as a 1x1x30x3 

pointwise convolution with grouping of 3, or equivalently, three 

1x1x10x1 pointwise convolutions.  

 

VisionISP Training 

The vision tone mapper and vision scaler can be trained using 

machine learning frameworks such as TensorFlow/Keras/PyTorch, 

as illustrated in Figure 4. These blocks can be simulated using 

trainable layers and pre-pended to any existing computer vision 

model that ingests 3-channel images. Subsequently, these layers 

can be trained together with the computer vision model in an end-

to-end manner, using a task-specific loss.  

In addition, ML frameworks allow training only the computer 

vision model by itself, while freezing the parameters of the 

VisionISP layers, and vice-versa. Such training regimes can be 

useful in practice, to avoid re-training of either the VisionISP 

layers or the computer vision model layers, as might be desired.  

In Figure 5, we show a few examples of output images of 

VisionISP, where TVS and VTM were trained end-to-end with an 

existing object detection model, and processing included 

downsampling and bit-depth reduction. The effect of the trainable 

color space conversion is obvious, while the effects of global and 

local tone mapping can also be seen. Although the images appear 

quite different from natural images for human viewing, the 

accuracy of the subsequent computer vision model improves, as 

will be shown in the next section.  

Figure 2: Trainable Vision Scaler (TVS). 

Figure 3: Vision Tone Mapper (VTM). 

 

Figure 4: Training VisionISP blocks in the context of a computer 
vision task, where a CNN implements the computer vision task. 
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Figure 5: Example VisionISP output images. 

Experimental Results 

We report our results on several computer vision tasks: object 

detection, face authentication/recognition, and stereo disparity 

estimation. In our experiments, we have used well-known 

computer vision networks, as well as publicly available datasets 

and benchmarks, as detailed below.  

We compare our accuracy results to baseline results without 

VisionISP. In the baseline configuration, bilinear image 

downscaling was used instead of TVS. In the baseline 

configuration, the global tone mapping and local enhancement 

blocks of VTM were simply omitted, prior to bit depth reduction. 

In most cases, we report the results of end-to-end training with 

VisionISP. At the end of this section, we also report results for a 

training setup where VisionISP and the computer vision model are 

trained separately.  

 

Computer vision tasks and data sets 

For object detection, we have used the open-source 

TensorFlow implementation of the SqueezeDet+ network [6], with 

a variant of SqueezeNet as its backbone. We used the KITTI data 

set [14] for training and evaluation, following the standard training 

and evaluation procedures and accuracy metrics. The loss function 

and other training settings were adopted from [6].  

For object detection, we have also used our own TensorFlow- 

Keras network implementation with a MobileNetV2 backbone [7] 

and a YOLO detection head [8]. With this pipeline, we report 

results both on the KITTI data set, and on the ‘daytime’ image 

subset of Berkeley Deep Drive (BDD100K) data set [9].  

For face recognition/authentication, we have used an open-

source implementation of FaceNet [10] available from [11]. The 

FaceNet model uses either Inception-ResNet-v1 or SqueezeNet as 

its backbone. The VGGFace2 data set [15] was used for training, 

and the Labeled Faces in the Wild (LFW) data set [16] was used 

for evaluation. Training used the standard softmax cross-entropy 

loss and further training settings adopted from [11].  

For stereo disparity estimation, we have used the MADNet 

[12] and DispNet [13] networks, using the open-source 

implementation available from [12]. Both networks regress dense 

disparity maps using UNet-like network architectures. The 

Middlebury 2014 data set [17] was used for training and 

evaluation, using an 80%-20% train/test split, and training settings 

adopted from [12].  

Results demonstrating the benefits of the proposed enhanced 

ISP are shown in the next subsections.  

 

Object Detection 

In Figure 6, we show the mean average precision (mAP) for 

object detection with and without the use of the vision tone mapper 

(VTM) and vision scaler (TVS), for various networks and data 

sets. Each graph shows mAP for various combinations of bit 

precision (8/4/2) and downscaling factor (1x, 2x, 3x, 4x). The 

reference mAP obtained without downscaling and with 8 bit 

precision is shown on the far left, if available. The results show 

that a higher mAP can be achieved with VisionISP, compared to 

not using VisionISP. A relative improvement in mAP up to ~26% 

can be achieved when large downscaling factors are applied, while 

smaller improvements are obtained for small downscaling factors.  

Furthermore, as shown in Figure 6.a, in some cases it is 

possible for VisionISP to achieve significant data reduction (e.g. 

2x downscaling on each axis as well as bit depth reduction from 8 

to 4) with very little degradation in mAP compared to the reference 

case at full resolution and full bit depth. 

 

Face authentication 

In Figure 7, we show the face validation rates with and 

without the use of the vision tone mapper (VTM) and vision scaler 

(TVS), with two network backbones: Inception-ResNet and 

SqueezeNet. The validation rate is the True Acceptance Rate at a 

False Acceptance Rate of 0.001. Each chart again shows results for 

various combinations of downscaling factor and bit depth 

reduction. The results for both networks show that a higher 

accuracy can be achieved with VisionISP, compared to not using 

VisionISP. In particular, when reducing bit precision from 8 to 2, 

the validation rate is significantly better with VisionISP, compared 

to the baseline.  

The relative improvement in accuracy is higher with 

SqueezeNet, a small backbone of about 1M parameters, than with 

Inception-ResNet, a very large backbone of about 50M parameters. 

Two aspects may explain this: the first is that the baseline accuracy 

with Inception-ResNet is higher in absolute terms and there is less 

room for improvement, and the second is that the impact of the 

additional trainable layers in VisionISP may be significantly more 

helpful for the smaller SqueezeNet backbone.  

Also note that, with VisionISP, it is possible to achieve a 

validation rate that is the same or even better than the baseline at 8 

bits and no downscaling, even with strong downscaling and low bit 

precision.  
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Figure 6: Object detection accuracy with and without the proposed vision scaler and vision tone mapper (higher is better). Red and blue 
bars show the mAP with and without TVS and VTM, and the green points show relative improvement in mAP.  

a) mAP for SqueezeNet with SqueezeDet head on KITTI data set 

b) mAP for MobileNetV2 with YOLOv2 head on KITTI data set 

c) mAP for MobileNetV2 with YOLOv2 head on BDD100K data set 
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Figure 7: Face authentication accuracy with and without the proposed vision scaler and vision tone mapper (higher is better). Red and 
blue bars show the validation rate with and without TVS and VTM, and the green points show relative improvement in validation rate.  

Figure 8: Stereo disparity mean error on the Middlebury 2014 
data set with and without the proposed vision scaler and vision 
tone mapper (lower is better).  

 

Figure 9: Accuracy is retained when training an object 
detection network with pre-trained frozen TVS & VTM 
(instead of end-to-end training). On the left, the object 
detection backbone is the same during pre-training; on the 
right, the backbone is different.  

a) Validation rates for FaceNet with Inception-ResNet backbone trained on VGGFace2 and evaluated on LFW 

b) Validation rates for FaceNet with SqueezeNet backbone trained on VGGFace2 and evaluated on LFW 
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Stereo disparity estimation 

In Figure 8, we show the mean disparity error with and 

without the use of the vision denoiser, vision tone mapper (VTM) 

and vision scaler (TVS), for stereo disparity estimation. We 

include results with a DispNet network backbone and a MADNet 

backbone. Also, we show results with the original images as well 

as an image data set where artificial noise was added. The artificial 

noise was modeled to resemble sensor noise at a analog gain of 

16x, and an SNR of approximately 15.8 dB. The vision denoiser 

was used in the case of the noisy data. In this experiment, 

downscaling was set to 8x and the bit precision was 2. The results 

show that TVS and VTM improve the disparity estimation 

accuracy (lower disparity errors). 

 

End-to-end training versus pre-trained VisionISP 

As mentioned, it is possible to train only the computer vision 

model, using pre-trained VisionISP layers. In this section, we 

compare the accuracy results of the following: 

a) Training TVS/VTM and computer vision model end-to-end in 

a single training session, 

b) Use the resulting TVS and VTM weights from a), then train 

the computer vision model with frozen TVS/VTM weights.  

In Figure 9, on the left, we show results for the case where the 

computer vision model was SqueezeNet in both steps a) and b). On 

the right, we show results for the case where, a SqueezeNet 

backbone was used in step a) but an Inception-ResNet backbone 

was used in step b).  

In both cases, the accuracy obtained by re-training a computer 

vision model with frozen TVS/VTM weights is about the same as 

the accuracy for end-to-end training. Furthermore, this is the case 

even when using another backbone for the computer vision task as 

in the second case. This means that the TVS/VTM trained weights 

generalize to other backbones, and that TVS/VTM can be pre-

trained without access to the backbone chosen by users. This is 

relevant for practical deployment of these techniques, since it 

enables providing sets of pre-trained TVS/VTM weights to users, 

allowing the users to integrate TVS/VTM while only needing to 

train the main computer vision model.  

Conclusions 

In this paper, we built upon the work described in [1].  We 

propose to enhance the camera ISP with a few lightweight, 

machine-trainable, content-aware image processing techniques for 

the purpose of optimizing accuracy of computer vision tasks.  

In particular, we evaluated the proposed VisionISP concepts 

across a variety of computer vision tasks, network backbones, and 

data sets. Our evaluation included object detection, face 

authentication, and stereo disparity estimation. Our evaluation 

results demonstrate that the proposed techniques can significantly 

improve computer vision accuracy when downscaling and/or bit 

depth reduction is required to reduce the data rate or image 

resolution. Also, in some cases, these techniques enable 

downscaling and bit depth reduction while retaining computer 

vision accuracy; hence significantly reducing power consumption 

and bandwidth usage in embedded applications.  
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