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Abstract
Full driving automation imposes to date unmet performance

requirements on camera and computer vision systems, in order
to replace the visual system of a human driver in any conditions.
So far, the individual components of an automotive camera have
mostly been optimized independently, or without taking into ac-
count the effect on the computer vision applications. We propose
an end-to-end optimization of the imaging system in software,
from generation of radiometric input data over physically based
camera component models to the output of a computer vision sys-
tem. Specifically, we present an optimization framework which
extends the ISETCam and ISET3d toolboxes to create synthetic
spectral data of high dynamic range, and which models a state-
of-the-art automotive camera in more detail. It includes a state-
of-the-art object detection system as benchmark application. We
highlight in which way the framework approximates the physical
image formation process. As a result, we provide guidelines for
optimization experiments involving modification of the model pa-
rameters, and show how these apply to a first experiment on high
dynamic range imaging.

Introduction
Despite continued effort invested into driving automation by

the research community as well as the industry, there still is no
system available that pushes for the highest level of driving au-
tomation on public roads. To reach full driving automation (level
5, as defined in [1]) at the reliability expected by customers and
the general public, advanced sensor setups will be required: Un-
conditional operation of the automated system requires shifting
the sensor setup’s operational design domain (ODD) limits, and
fail-safe operation requires redundancy within the sensor setup.

The ODD limits as well as the physical operating principles
that can be exploited for redundant sensing are always defined by
the application. In the context of cameras as sensors and com-
puter vision (CV) as their application in driving automation, an
important ODD limit is a low-light threshold for reliable perfor-
mance. A redundancy that can be used is object appearance in
multiple spectral bands. Neither a shift of the low-light threshold
(ultra low-light imaging) nor imaging outside the visible spec-
trum (spectrally extended imaging) are typical camera design ob-
jectives focused on human vision applications. These examples
make clear that the specialization of cameras for driving automa-
tion needs to be guided by optimization for the CV systems that
process the camera output data.

This specialization has several implications on the camera
development and design process. Firstly, there are only few qual-

ity metrics available, for the overall imaging pipeline as well as
camera component interfaces, that have proven to be descriptive
of quality for CV applications. The IEEE P2020 working group
is currently working towards a first standard to define such met-
rics [2]. At the same time, setting full driving automation as the
goal of camera design imposes very high and so far unmet per-
formance requirements. The best way to manage these challenges
is to pursue an end-to-end optimization of the imaging system,
which allows use of performance metrics of the target application
for the objective function and to reach a globally optimal solu-
tion. Equally, state-of-the art CV systems are based on machine
learning (ML) and hence require a data-driven development pro-
cess. In each iteration of a camera optimization for CV, the tested
camera must produce a large enough dataset to train and test the
CV. At the same time, as indicated by the example of spectrally
extended imaging, redefining imaging systems as sensors for an
automated system instead of as devices that mimic human vision
opens a very large design space. The best way to cope with this
design complexity is to use a simulation system that scales well.
This has also been called “soft prototyping” [3]. In this work, we
present a camera optimization framework that accounts for these
implications. It integrates a large scale data generation, detailed
automotive camera model and benchmark CV system as end-to-
end pipeline in a simulation environment.

The framework is based on the ISETCam [4, 5] camera simu-
lation toolbox and ISET3d [6] toolbox for synthetic scene genera-
tion. These toolboxes have been used in the context of driving au-
tomation before [7, 8, 3, 9], implementing an open source frame-
work for automotive camera simulation which we use as template
for our framework. The recent survey by Tsirikoglou et al. [10]
gives an extensive overview of similar approaches that use syn-
thetic data for ML applications. The survey also puts forward two
of the main arguments for using synthetic data for ML: First, it of-
fers the flexibility to generate datasets that are not only large, but
also follow a given data distribution, i.e. dataset statistics such as
class distribution. Second, training and testing on synthetic data
allows a detailed performance analysis for benchmarking, using
comprehensive scene metadata. Further approaches to camera op-
timization for CV focus on ISP optimization [11, 12, 13].

We present several extensions to the existing camera sim-
ulation and optimization framework required to more accurately
model automotive imaging systems. The main contributions are
methods for camera placement as part of an ego vehicle within
scene generation, and a toolset for simulation of generic high dy-
namic range (HDR) camera models. We compare the framework’s
data flow to the physical image formation process and highlight
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benefits, but also limitations of our framework’s approach. As the
primary result of this comparison, we give guidelines for system-
atic end-to-end optimization using our framework: We identify
the paths for iterative optimization involving modification of the
model parameters. We also demonstrate how these apply to a first
experiment on HDR imaging.

Optimization framework
The framework we propose uses the same building blocks as

its basis presented in [7, 8, 3]: A module for large scale synthetic
scene generation; physically based camera simulation consisting,
fundamentally, of sensor and image signal processor (ISP) mod-
els; and a ML based CV model as benchmark application. The
camera lens model is included within synthetic scene generation.
Fig. 1 gives an overview of the framework’s building blocks.

synthetic
scene

generation
sensor image processing

camera simulation
benchmark
computer
vision

spectral irradiance Ee output data I

scene metadata

Figure 1. Framework overview: End-to-end optimization is enabled by em-

bedding the camera simulation between modules for synthetic scene gener-

ation and benchmark computer vision.

Physical image formation process
In order for the optimization results to be transferable to

hardware implementation, we define as aim of our camera sim-
ulation to approximate the physical image formation process with
respect to all its elements that affect the camera output data.
The physical image formation processes can be depicted as the
pipeline in Fig. 2. It is described in more details in [5].

pixels ADC
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Figure 2. The physical image formation process as data pipeline.

Input to the process is the spectral irradiance Ee(λ ,xxx, t) of wave-
length λ that hits the sensor surface at location xxx and time t.
Within the sensor’s pixel circuitry, this radiometric quantity is
translated to an analog voltage Va(k, l) at pixel position (k, l).
The voltage signal is quantized to a digital number representation
DN(k, l), which we also call the raw sensor data. Using image
processing, the raw sensor data can be transformed to a data for-
mat that can be interpreted as a natural image I(k, l) by human
vision. Image processing transformations can also be used as pre-
processing steps for CV applications. We thus more generally
refer to I(k, l) as camera output data.

Not considering noise sources, the translation from irradi-
ance to noise-free analog voltage Ṽa can be formalized as

Ṽa(k, l) = gc

∫∫∫
D

H(λ ,xxx)Ee(λ ,xxx, t)dλ dxxxdt, (1)

where we denote D = {(λ ,xxx, t)|λ ∈ Λ,xxx ∈ Sp, t0 < t < t1} the
domain defined by the sensor’s sensitive spectral range Λ, the ef-
fective pixel surface Sp, and the exposure start time and end time
t0 and t1; H(λ ,xxx) the sensor quantum efficiency, i.e. the effec-
tive spectral charge generation efficiency defined by global filters,
color filter array (CFA), and pixel quantum efficiency; and gc the
conversion gain.

Importantly for the adaptation in our framework, eq. (1)
shows that the input irradiance is integrated in the spectral, spatial,
and temporal dimensions within the pixel: The pixel accumulates
charge generated by any photons of a wavelength within Λ, that
hit the pixel surface during the exposure time interval. The pixel
circuit converts this charge to a voltage, at a factor defined by the
conversion gain.

Synthetic scene data
As the first module of the framework, the synthetic scene

generation produces the irradiance data that is required to stimu-
late the physically based camera simulation. Its core is the physi-
cally based rendering module based on [14, 15], shown in Fig. 3.
It simulates the physical light transport through a scene modeled
by the spectral radiance Le(λ ,ωωωo,xxx, t) that light sources distribute
from locations xxx into direction ωωωo, and the bidirectional scattering
distribution functions (BSDFs) of the objects in the scene.

physically
based renderer

BSDFs

Le(λ,ωo,x, t) Ee(λ, k, l)

Figure 3. The core of synthetic scene generation: Physically based render-

ing based on [14, 15] as source of spectral irradiance data.

The rendering implicitly includes a spatial and temporal integra-
tion, since sensor surface grid as well as object positions and their
dynamic transformations during the exposure time interval have
to be defined for the light transport simulation by ray tracing al-
gorithms. An additional constraint for the ray tracing is the grid of
wavelengths λ on which it is evaluated. Hence, other than in the
physical image formation process, the output spectral irradiance
Ee(λ ,k, l) is defined for fixed pixel surfaces at locations (k, l), a
fixed exposure time as well as a fixed spectral grid. We also refer
to it as optical image (OI), using ISETCam naming.

ISET3d includes a large set of tools to automatically generate
the description files of realistic automotive scenes that are input
to the renderer. We extend these tools in our framework, first, to
include a more detailed model of the camera mount. We replace
one of the car objects in the scene by our ego vehicle model and
position the camera at the ego vehicle’s camera mount behind the
windshield. This is the typical automotive front camera position
to date. An RGB visualization of an examplary OI, of a scene
including our ego vehicle model, is shown in Fig. 4.
Using this extension, the ego vehicle follows ISET3d’s realistic
traffic flows and the camera’s optical path is completed by stray
light cover and windshield. As future work, we plan to refine and
validate the windshield geometry and material models, in order to
realistically reproduce its impact on camera performance.

We extend the tools, second, to generate an arbitrary number
of scene descriptions from the same scene configuration, i.e. de-
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Figure 4. OI of a scene including our ego vehicle model. A part of the stray

light cover as well as some distortions caused by the windshield are visible

in the lower periphery of the image.

scriptions which use the same lighting, object and material com-
position, but differ in their [t0, t1] exposure timing. We determine
the correct positions and dynamic transformations of camera and
dynamic objects for each exposure, interpolating object position
and motion information from the scene’s traffic flow. As will be
shown in the following, we generate the exposure timing informa-
tion in the camera simulation model. This extension is an impor-
tant prerequisite for HDR imaging simulation, since it allows to
realistically produce HDR camera output data including dynamic
image artifacts.

Third, we extend the abilities to use ISET3d’s scene config-
uration as an abstract model of the scene, allowing us to tailor
the scene statistics. We create criteria for ego vehicle placement,
e.g. such that the ego vehicle faces a portion of the scene popu-
lated by other objects. We modify object dynamics based on the
objects’ class membership to alter the speed limits of all traffic
participants, and rotate the skymap for challenging natural light-
ing conditions such as glare by direct sunlight.

Physically based camera simulation
The core module of our framework is the physically based

camera simulation. It includes sensor and image processing mod-
els as shown in Fig. 1. Within the sensor simulation, the noise-free
analog voltage signal is calculated as

Ṽa(k, l) = gc ·Ap · texp

∫
Λ

H(λ ,k, l)Ee(λ ,k, l)dλ . (2)

Due to the implicit spatial and temporal irradiance integration
within scene generation, the effective pixel surface area Ap and
exposure time texp = t1− t0 become simple factors compared to
eq. (1).

Of particular interest in this equation is the spectral integra-
tion. In photometry, the amount of light incident on a surface as
seen by a human observer is measured by the illuminance

Ev =
∫

Λv

V (λ )Ee(λ )dλ , (3)

where V (λ ) denotes the “CIE spectral luminous efficiency func-
tion for photopic vision” [16] defined over the visible spectrum
Λv. Equivalently, as a measure of the amount of light incident on
the sensor surface, we can use the current density j generated in
the pixel’s photodiode,

j(k, l) =
∫

Λ

H(λ ,k, l)Ee(λ ,k, l)dλ . (4)

It directly links to the sensor’s analog output dynamic range
DRa and SNR by

Va( j) = Ṽa( j)+Vn( j) = gc ·Ap · texp · j+Vn( j), (5)

DRa =
Va,max

Va,min
=

Va( jmax)

Va( jmin)
, SNR =

Ṽa( j)
Vn( j)

, (6)

where Vn denotes the noise component of Va summarized as ad-
ditive term and jmax marks output saturation. jmin is commonly
defined by SNRdB = 0dB⇔ SNR = 1. As reference for dynamic
range (DR) definitions and contributions to Vn( j), see [17]. Con-
sequently, we can can define an input DR as

DR j =
jmax

jmin
. (7)

We extend the camera simulation by a toolset for HDR imag-
ing, first presented in [18]. Traditionally, HDR imaging refers to
DRs of photometric input quantities. In contrast, our toolset is
based on DR j. It is not subjective to human vision, and there-
fore does not introduce a bias when used in the context of camera
optimization for CV.

Since j depends on the pixel position within the CFA pattern,
we use the current density of a clear pixel,

jc(k, l) =
∫

Λ

Hc(λ )Ee(λ ,k, l)dλ , (8)

to calculate the histogram and DR of an OI. Hc(λ ) denotes the
sensor quantum efficiency of a clear pixel, i.e. a pixel without
CFA impact. As single dynamic range (SDR) sensor, we use the
SDR model of a state-of-the-art automotive 8 Mpx imager with
RYYCy CFA presented in [19]. Our HDR camera models are
based on the SDR model, and suitable as template for any HDR
imaging concepts in which the final image is constructed by com-
bining a set of separate exposures of the same scene. These expo-
sures can correspond to very different HDR imaging approaches.
Our models include temporally sequential exposures of differ-
ent duration (multi-exposure), temporally parallel exposure of
different photodiodes (split-pixel), exposure readout by multiple
pixel circuit configurations (dual conversion gain) and temporally
shifted exposures caused by pixel resets (multiple slopes) [18].
The common property of these exposures is that they allow an
HDR camera to concurrently operate at several sensitivity levels.
From this starting point, our HDR toolset enables to

• generate a histogram of an OI based on jc, and the OI DR
which we constrain by the percentage of outliers. As outliers
we denote a small number of pixels that we neglect at both
DR ends for a more robust DR estimation.

• generate the SNR curve, i.e. SNR( j) for jmin < j < jmax for
our SDR model.

• generate an optimized HDR SNR curve for a given HDR
camera model, for a target DR and / or a minimum SNR at
the transition point between exposures. This sets the ratios
of the exposures’ sensitivities for this camera model.

• for an HDR camera model with known sensitivity ratios and
an OI histogram of a scene rendered for a frame’s maximum
exposure time texp,max, perform a temporal auto-exposure.
The auto-exposure goal is to align the upper DR limits of
OI and camera, i.e. only allow the outliers to saturate. The
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overall exposure time is constrained by texp,max. This deter-
mines the exposure settings for the given camera and scene.

• regenerate the given synthetic scene for each exposure of the
HDR camera.

• generate the HDR camera output data, re-combining the
sensor responses to the individual exposures.

Fig. 5 shows the OI of an exemplary scene, as well as auto-
exposure results of two camera models for this scene. The SDR-
Cam model implements our SDR sensor model, the MEDCGCam
model comprises four temporally sequential exposures and dual
conversion gain to further increase the maximum sensitivity of the
most sensitive exposure. Fig. 6 shows alternative auto-exposure
results for a tighter bound on the OI DR. Fig. 7 shows the result-
ing camera output data for the scene and auto-exposures shown
in Fig. 5, with detections of the experiment described in the re-
sults section. The lower DR of the SDR camera results in missing
details and visible noise in the scene’s low-light regions.

For exposure recombination, we use the most sensitive expo-
sure as starting point and replace saturated pixels using less sen-
sitive exposures. We use a simple ISP model that can process raw
sensor data from sensors with RYYCy CFA, but which is visibly
limited in terms of color reproduction. The ISP model does also
not include data pre-processing for CV such as region-of-interest
cropping. More advanced models for ISP and recombination, as
well as auto-exposure including sensor gain settings remain future
work.

Benchmark computer vision
The concluding module of our end-to-end optimization

framework is the CV model that serves as benchmark application,
i.e. the output performance metrics of which we use as objec-
tive functions for the camera design. The CV module operates
on camera output data I and additionally receives scene metadata
from the scene generation module as shown in Fig. 1. The meta-
data is required for CV model training (supervised learning) and
output metric calculation during normal operation (inference). We
choose object detection as first benchmark application, given its
importance for detection of traffic signs and traffic lights, other
traffic participants, obstacles and other traffic-related objects in
driving automation. The CV model we implement is CenterNet
with DLA-34 backbone [20]. It can be used for 2D and 3D object
detection.

Following KITTI notation [21], we extract bounding box la-
bels from ISET3d’s scene metadata. The available metadata in-
cludes object class, depth, and world coordinates for each pixel
of a rendered scene and hence is sufficient for 2D and 3D bound-
ing boxes. As future work we plan to extend the scene metadata
generation beyond pixel-level annotations, in order to be able to
include e.g. object occlusion, truncation and orientation.

Results
The primary result of this work is a set of guidelines that

determine how the proposed framework can be used for end-to-
end optimization of imaging systems.

End-to-end optimization diagram
Within the framework, there are three main interfaces at

which pre-computed data can be reused in optimization iterations,

(a) OI of a scene with large DR caused by sun glare and deep shadows.
Compressed and transformed to RGB for visualization.
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Figure 5. Proposed HDR toolset: Visualization of an auto-exposure of our

SDR model and a derived HDR model for an examplary OI. The cameras’

SNR curves SNRCAM overlaid the OI histogram visualize to what extent the

camera models cover the scene’s DR. This is also expressed as DRMATCH,

i.e. the overlap of the camera’s dynamic range DRCAM with the OI’s DR. Npixel

denotes the number of pixels in the histogram bins.

given only parameters of following modules are modified. These
are the synthetic scene irradiance data Ee, the raw sensor data DN
and the camera output data in image format I. The latter is com-
plemented by the corresponding scene metadata. It is important to
use these interfaces in order to cope with the large computational
effort associated with physically based rendering and physically
based camera simulation, especially in the context of large dataset
generation for CV training and testing.

At the same time, it is inevitable that for parameter modifi-
cations that affect the data at these interfaces, the data must be
recomputed. This is especially noteworthy since as we have de-
scribed in the previous section, the framework’s data pipeline dif-
fers from the physical image formation process. These differences
can be summed up as follows:

• All camera components that affect the camera’s optical path,
particularly the camera lens and camera mount, are modeled
within the synthetic scene generation.

• All parameters that modify the simulation’s spectral or spa-
tial grid or its temporal boundaries, affect synthetic scene
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(a) SDRCam SNR curve for OI in Fig. 5a and 0.01% outliers
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Figure 6. Alternative auto-exposure for the scene and camera models in

Fig. 5, allowing more outliers to create a tighter bound for the OI DR. This

way, SDRCam covers a part of the OI DR that contains a larger fraction of

the image pixels. The MEDCGCam auto-exposure is limited by texp,max.

generation.

Fig. 8 summarizes the resulting paths for iterative imaging
system optimization.

First optimization experiment
As first experiment for camera optimization, we compare the

two camera models SDRCam and MEDCGCam with their DR
and SNR characteristics as shown in Fig. 5. Following Fig. 8,
from a set of scene configurations we generate separate synthetic
scene datasets for each model. We generate the camera output
data as shows in Fig. 7 and 2D bounding box labeling data for
the objects of car and pedestrian classes. In this first experiment,
we directly observe the CV model performance, using a version
of our model that is pre-trained for the KITTI 3D object detection
dataset [21] and the 2D (image plane) bounding box component of
the detections as output. As the detection overlays in Fig. 7 show
for that exemplary scene, the extended DR of the MEDCGCam
model directly enables detection of vehicles which for the SDR-
Cam model are covered by noise in the low-light shadows. This
is an extreme example due to the auto-exposure settings shown
in Fig. 5, which especially for the SDRCam lead to very limited
low-light performance. A quantitative evaluation based on large
enough HDR datasets that allow CV training remain future work.

Conclusion
In this work, we present a framework for end-to-end imag-

ing system optimization in the context of driving automation, i.e.
a framework suitable for optimization of the complete camera sys-
tem used as sensor for a CV application. We introduce the build-
ing blocks of the framework, focusing on our extensions including
a toolset for detailed simulation of HDR imaging and methods for
camera placement as part of an ego vehicle. We also compare
the framework’s data pipeline to the physical image formation
process. This comparison results in guidelines for usage of the
framework in camera optimization experiments. Finally, we in-
clude results for a first experiment on HDR imaging which shows

(a) SDRCam

(b) MEDCGCam

Figure 7. HDR camera simulation: Output data of SDRCam and MEDCG-

Cam for scene and auto-exposures shown in Fig. 5, and overlaid detections

of a first experiment using a pre-trained CV model.

that the camera output data depends on the camera’s DR both in
terms of visual quality and CV performance as expected.

As future work, we want to use the presented framework
for quantitative evaluation and optimization of the camera’s HDR
concept, its spectral range and its front camera mount. We also
want to extend the camera simulation by more advanced models
for image signal processing and pre-processing for CV, and the
synthetic scene generation for extended data distribution control
and scene metadata.
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