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Abstract
Imitation learning is used massively in autonomous driving

for training networks to predict steering commands from frames
using annotated data collected by an expert driver. Believing that
the frames taken from a front-facing camera are completely mim-
icking the driver’s eyes raises the question of how eyes and the
complex human vision system attention mechanisms perceive the
scene. This paper proposes the idea of incorporating eye gaze
information with the frames into an end-to-end deep neural net-
work in the lane-following task. The proposed novel architecture,
GG-Net, is composed of a spatial transformer network (STN), and
a multitask network to predict steering angle as well as the gaze
map for the input frame. The experimental results of this archi-
tecture show a great improvement in steering angle prediction
accuracy of 36% over the baseline with inference time of 0.015
seconds per frame (66 fps) using NVIDIA K80 GPU enabling the
proposed model to operate in real-time. We argue that incorpo-
rating gaze maps enhances the model generalization capability
to the unseen environments. Additionally, a novel course-steering
angle conversion algorithm with a complementing mathematical
proof is proposed.

Introduction
Nearly 1.25 million people die in road crashes each year, on

average 3,424 deaths a day. Up to 90% of accidents are due to
human factor [14]. As a result, Self-driving vehicles have taken a
huge interest worldwide [9]. The problem of self-driving cars can
be approached by a modular approach or an end-to-end approach.

Imitation learning is mimicking the behavior of an expert
which in the case of self-driving cars is the human driver. Hu-
mans learn to drive by watching other people drive and then try
to observe, learn, and replicate their actions in similar situations
faced by the expert. Practically, the end-to-end systems have been
widely used in this technique as it optimizes all process steps si-
multaneously without the need for dividing it into sub-problems
[3].

Behavioral cloning is the simplest way to conduct imitation
learning where an expert provides trajectories in terms of state-
action pairs, and imitation learning can be conducted through su-
pervised learning. Consequently, this powerful end-to-end ap-
proach has been used in tasks such as lane and road following.
By using a small amount of training data labeled with steering
commands, the system learned the entire task of lane and road fol-

lowing without manual decomposition into road or lane marking
detection, semantic abstraction, path planning, and control [3].

Moreover, while a beginner human driver learns from an
expert, the beginner not only observes the expert’s steering
actions but also observes his full-body actions, including head
and eye movements, the field of attention in different situations,
emotional status, besides the verbal instructions which are given.
It is interesting to experiment giving the end-to-end model access
to more information about the human driver status during driving
and observe the improvement in the learning process.

Furthermore, among the human senses, the eye is the most
human attention and intent-expressing unit [16]. While humans
are able to perceive the environment mainly by visual cues, com-
puter vision based on camera perception alone is not as efficient
[18]. We argue that incorporating the human gaze behavior as an
additional source of information during the training process helps
the model to better recognize the task critical objects to focus on
them, which helps “humanizing” the self-driving cars.

In this paper, the gaze information is incorporated with the
front-facing camera frames in a multitasking deep neural network
with an attention mechanism -which is STN- added, to improve
steering angle estimation and fulfilling the real-time autonomous
cars system requirements. The rest of the paper is organized as
follows: The second section presents the studies that are closely
related to that topic. The third section discusses and analyzes the
dataset. The fourth section shows the details of multiple exper-
iments done to optimize gaze information utilization. The fifth
section discusses the results of the experiments. And the last
section shows the ability of the model to generalize to different
unseen environments through a real-time on-road test demonstra-
tion.

Related Work
Imitation learning, in theory, can leverage data from large

fleets of human-driven cars. Behavioral cloning, in particular, has
been successfully used to learn simple visuomotor policies end-
to-end, but it fails when scaling to the full spectrum of driving
behaviors. Some well-known limitations of behavioral cloning
are dataset bias, over-fitting, and generalization issues [7].

When intelligent agents learn visuomotor behaviors from hu-
man demonstrations, they may benefit from knowing where the
human is allocating visual attention, which can be inferred from
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the eye gaze. Consequently, modeling human visual attention and
guiding the learning agent by a learned attention model could lead
to significant improvement in task performance. The paper [22]
proves this idea by collecting high-quality human action and gaze
data while playing Atari games, training a network to predict the
human visual attention, and feeding the network’s output to an-
other network that predicts the human actions. Furthermore, an-
other work used the idea of attention mechanism to make an at-
tention guided convolution neural network (CNN) to localize the
important region in an input image which improved the accuracy
in the field of disease classification on chest X-ray images [10].

Incorporating gaze information in self-driving cars is mostly
used in advanced driver assistant systems (ADAS) [11][15]. Two
papers published in late 2019 discussed the incorporation of gaze
information into an end-to-end self-driving model [12][6]. They
used two different approaches to incorporate eye gaze into the
training process. In particular, their work used generative adver-
sarial network (GAN) [12] to estimate gaze maps, then fed the
estimated gaze map stacked with the front-facing camera frame
to a deep neural network (DNN). The work described in [6] used
the generated gaze map -by the GAN- as a mask to give weighted
dropout probability with spatial dependence to each region in the
frame. Both of these experiments showed an improvement in the
system performance. However, GAN is known to be computa-
tionally expensive, making it challenging to be used in real-time
self-driving car applications. Moreover, these experiments were
only conducted in simulation and the performance was not tested
on a dataset containing real driving frames.

Dataset
In this section, the dataset used for training, gaze-map gen-

eration, and a novel course-steering angle conversion algorithm
used for labeling the dataset are presented.

Dataset Selection
In this work, a dataset containing front-facing camera frames

labeled with the driver’s gaze position information and the steer-
ing angle is needed. ”DR(eye)VE” dataset [1] is currently the
largest public driving dataset including gaze information in au-
tomotive settings. It consists of 74 video sequences with a total
of 555,000 frames, covering different weather conditions (sunny,
cloudy, and rainy), different lighting, and different scenarios
(countryside, highway, and downtown). Each frame is labeled
with: speed, course angle, and x-y eye gaze position. Videos were
recorded with a roof-mounted camera (1080p, 25fps).
The following experiments are based on the lane-following task
at a constant speed. As a result, the chosen videos from the
DR(eye)VE dataset are from the countryside and highway con-
texts, as there are no pedestrians crossing roads, no crossroads,
and no multi-paths in these contexts. For this work, 12 videos
were chosen to contain about 85,000 frames covering all weather
conditions. These videos were split into 80% for training and 20%
for testing.

Gaze-map Generation
The work in [17] introduced a computer vision model that is

able to replicate the human attention behavior during the driving
task using DR(eye)VE dataset. The paper argues that the act of
driving combines complex attention mechanisms guided by the

driver’s past experience, short reactive times, and strong contex-
tual constraints. Therefore, very little information is needed to
drive if guided by a strong focus of attention (FoA) on a limited
set of targets and purposes. In addition, the work of [17] intro-
duced a multi-branch deep neural network (DNN) model that aims
at predicting these targets ”Gaze-maps”.

This multi-branch model was used to generate the corre-
sponding gaze maps for the selected dataset frames. However,
this multi-branch DNN has a relatively large inference time as
it is composed of three different branches, each of which has its
own set of parameters. Afterward, the predictions from the three
branches are summed to obtain the final gaze map. In particular,
the three branches are RGB Image, optical flow, and semantic
segmentation branches. The semantic segmentation branch uses
the network in [21], which is accurate but too large with 134
million parameters taking approximately 23 sec./frame to make
a prediction. (All the experiments in this paper are conducted on
NVIDIA K80 GPU).

In order to accelerate gaze-maps generation, the semantic
segmentation network was replaced by [23] after modifying its
output to be as close as possible to the output of [21]. Con-
sequently, this modification reduced the inference time required
to obtain semantic segmentation frames from 23 sec./frame to 3
sec./frame.
To speed up the generation of the gaze maps from the multi-
branch DNN, and due to the fact that eye-gaze movements across
frames are slow relative to the high frame rate of the videos in
the dataset (25 fps), pixel-wise linear interpolation across frames
in time was used. Only one frame every 7 frames was obtained
using the multi-branch DNN, while the frames in between were
obtained using interpolation. The obtained frames using interpo-
lation had less than 1% error from the ground truth gaze-maps
generated by the multi-branch network. Using this approach, the
time to generate gaze-map was reduced by 10X of the author’s
original setup inference time.

Course-Steering Angle Conversion
There is only one drawback in the DR(eye)VE dataset, which

is the absence of the steering angle labels. Instead, the dataset is
labeled with “course angle”, which is the angle between the head
of the car and the North direction. There is no direct approach for
the conversion between steering and course angles. Accordingly,
a conversion method is developed and mathematically proved:

Θs = SR× tan−1(
(θ 1

c −θ 2
c )×L

v× t
) (1)

where θs is steering wheel angle, t is the inverse of the frame
rate of the dataset = 1/25, v is the car’s velocity at each frame, L
is wheelbase length ≈ 2.6, SR is steering ratio ≈ 17, and θc is
course angle.

Using discrete derivative and motion equations, a relation
presented in 1 which relates every two consecutive coarse an-
gles to the corresponding approximated steering angle was de-
rived mathematically. For detailed mathematical proof, please re-
fer to the appendix. Using 1, the steering angles for the chosen
dataset frames were generated.
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Experimentation
In this section, the baseline architecture used as well as mul-

tiple experiments utilizing different approaches and architectures
are described, analyzed, and compared. As described in the in-
troduction, the work presented by [3] is replicated and the Pilot-
Net model is set as a baseline for the experiments. Pilot-Net was
trained on the dataset discussed in the ”Dataset” section, with the
camera frame and steering angle only without the gaze informa-
tion to compare the results and the improvement achieved after
adding the gaze information.

Fusion Architecture
Fusion techniques include middle and late fusion. In fusion

networks, there are multiple inputs. Features are extracted from
each input, then fused to make a prediction. The point at which
fusion takes place defines the type of fusion. In particular, if the
fusion occurs directly after extracting features, then it is a middle
fusion. And, if fusion between features occurs after passing the
extracted features through more than one fully connected layer,
it is called late fusion. Middle fusion was conducted after 5 lay-
ers of Pilot-Net as shown in Fig.1 to give the network a chance
to extract features from the input. Due to the presence of two in-
puts: the RGB frame and the gaze map, the network consisted of
two branches for each one. We started by using the convolution
layers (first 5 layers) in Pilot-Net as feature extractors for both
the RGB frame and the gaze map. Afterward, we decreased the
number of layers and filters in the gaze map branch. Because we
used the 1D grayscale gaze heat map, which contains much fewer
features to be extracted than the RGB frame. Then, the extracted
features are fused to one feature vector and go through a series of
fully-connected (FC) layers ending with the final prediction. This
architecture achieved an improvement of 30% over the baseline.
Consequently, this proved that gaze map incorporation improved
the steering angle prediction accuracy. However, the inference
time was too large as it had the Gaze Net inference time added.

Figure 1. Fusion Network Architecture

STN-based Architecture
Spatial Transformer Network (STN) was introduced by

Google DeepMind [20]. It was mainly directed to image clas-
sification problems. And to our knowledge, this is the first time
to use the STN in a regression problem in the self-driving cars
(SDC) field. STN is added to the neural network model to enable
it to transform the input image using 6 transformations: cropping,
isotropic scaling, rotation, etc. The STN structure consists of 3

main parts: localization net, grid generator, and sampler. The
localization net takes the input frame then outputs the transforma-
tion parameters to be applied to the input frame by the two other
components, which make the output transformed frame much bet-
ter and easier for the rest of the network to deal with. In particu-
lar, the transformations focus on the important parts of the frame.
Therefore, we thought that adding the STN to the SDC end-to-
end model with the help of the information extracted from the
gaze maps will make the network able to treat the frame the same
way a human does. In other words, it will make the network focus
on the important regions only which is a form of ”attention.” The
localization network final design in our architecture is made of a
series of alternating max-pooling and convolution layers (Max
pooling 3@100× 33, Conv. layer 24@96× 29, Max pooling
24@48×10, Conv. layer 36@44×10, Max pooling 36@21×5,
Conv. layer 48@10× 2). The input of the localization network
was used to inject the gaze information by inputting the gaze map
frame, then using the output of the localization network which
is reduced to have 3 transformations only (cropping, translation,
and isotropic scaling) to transform the main frame. Afterward, the
output is resized to be (200×66) then fed to Pilot-Net as shown in
Fig.2. The whole network was trained end-to-end. As expected,
the STN learned to focus on and crop the street, and specifically
on the lanes. It tends to shift right a little bit to get the right lane
as it is more important than the left lane, nearer, and more clear in
most cases in the dataset. This architecture achieved an improve-
ment of 20.8% over the baseline. However, the inference time
was too large as it had the Gaze Net inference time added like the
previous architecture.

Figure 2. STN-based Architecture

MTL Architecture
The Multi-task learning (MTL) approach is a successful

approach in the field of natural language processing (NLP) [8]
and speech recognition [19], but most importantly computer
vision [13] which is the main use of interest in this work and
many more applications.
In MTL, more than one loss function for various tasks can
be effectively optimized, as long as these tasks are somehow
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correlated. In addition, the chance of getting an auxiliary task will
help to improve the optimization process and hence, improving
the primary task performance [5].
In this work, two tasks are used: predicting steering angle and
predicting gaze map. In the MTL, the hard parameter sharing
technique is used in this approach [4], which means some
features are extracted by shared layers between all tasks, which
is the backbone of the network. Afterward, we feed the extracted
features to the heads of the network which represent task-specific
layers. This kind of sharing reduces the risk of over-fitting as [2]
concludes.

The proposed multi-task architecture idea is to use Pilot-Net
as the main block -making steering angle prediction is the pri-
mary task- and, another branch emerges after the first 4 layers of
Pilot-Net to form a decoder-like network to predict and construct
the gaze map (Deconv. 36@47× 14, Conv. 36@47× 14, De-
conv. 24@98× 31, Conv. 24@98× 31, Deconv. 3@200× 66,
Conv. 3@200 × 66). Furthermore, each task has its own de-
fined loss function: steering branch loss function is the root mean
squared error (RMSE) and the gaze map branch is the pixel-wise
root mean squared error (RMSE) between the ground truth gaze
map and the predicted gaze map. Consequently, the overall sys-
tem loss function is a weighted sum of losses with the steering
branch having full weight, and the gaze branch multiplied by 0.1
to give the steering angle task a higher loss value to force the sys-
tem to focus on this task more than the other auxiliary task. The
MTL architecture is illustrated in Fig.3.

Figure 3. Multi-task Network Architecture

GG-Net (STN + MTL) Architecture
In the proposed architecture shown in Fig.4, the strengths of

the two previously discussed architectures are combined together
in one architecture: STN with its ability to focus on specific re-
gions of the frame, and the MTL with its very small delay as it
does not need to have Gaze Net before it to predict the gaze map.
Furthermore, three forms are experimented: the STN is set to in-
clude 1, 2, and 3 parallel transformer layers on the input frame in
3 different experiments. In particular, it can be regarded as stack-
ing 3 STN in parallel with the same input frame and 3 different
output frames which gives the network more degrees of freedom.
Afterward, the output images are stacked into a single frame, then
resized to (200× 60). Resizing is done so that the STN output
image is in the same input size as the MTL network discussed in
the ”MTL Architecture” section as shown in Fig.4. After training,

in the 1-transformer STN trial with multitask added, it was hard
for the network to focus only on one region in the input frame
because each one of the 2 tasks pushed the STN to focus on a dif-
ferent region of the frame, the steering branch pushed the STN to
focus on the right lane as discussed before, but the gaze branch
pushed it to focus on the far end of the road to get the gaze po-
sition as it is mostly at the far end of the road. Consequently, 1
transformer is not enough, paving the way for the 2-transformer
branches trial which gave the network one more degree of free-
dom. It is noticeable that each task of the two tasks guide one of
the 2 transformer branches to focus on its preferred region of in-
terest, so the network learned to focus on the right lane and the far
end of the street. Using the same idea of increasing the degrees of
freedom, the 3-transformer branches STN was conducted. After
training, the network learned to focus on the right lane and the far
end of the street like the 2-transformers network, in addition to
the third transformation which focused on the left lane which is
less important than the right lane. The different transformations
for each experiment are illustrated in Fig.5.

Results Analysis
From the previous analysis, it is clear that the GG-Net makes

very satisfying predictions and interesting behavior. Moreover, it
learned to detect the far end of the street like what a human driver
does which increased the accuracy of the steering angle prediction
and improved the generalization ability.

Besides the very high accuracy improvement, the inference
time was very reasonable which is counted as another advantage
of the GG-Net final architecture. The previous architectures like
the one in [12] have the network that generates the gaze maps
put in series before the model, which takes the input frame and
generates the gaze map which is used by the network as an in-
put. Because the inference time of the DR(eye)VE Gaze Net
is very large as discussed in the ”Gaze-map Generation” sub-
section -approximately 21 seconds/frame-, the presence of the
Gaze Net was a problem eliminating the ability to operate in real-
time. However, the MTL architecture replaces the Gaze Net com-
pletely, and its inference time is 0.0028 seconds/frame. For visu-
alization of the model output, please refer to the video demo at
https://youtu.be/2I1rOys-Cc0.

The proposed approach that incorporates gaze information
and camera frames by combining STN and MTL makes an im-
provement of 32.37% over the baseline for the 2-transformers
network and makes an improvement of 36.18% over the base-
line for the 3-transformers network. Moreover, it also has infer-
ence time of 0.015 seconds/frame which makes a frame rate of
66 frames/sec. Thus, this enables the model to be used in real-life
systems. The results of the discussed architecture are summarized
in Table 1.

On-Road Test
To ensure the ability of the GG-Net to generalize well in real

unseen environments, a real-time road-test in Cairo, Egypt was
conducted by fixing a front-facing camera on the rooftop of the
car, then sending the frames to a laptop inside the car having the
final trained model running on its GPU. We used an online visu-
alization of the predicted steering angle running on the laptop’s
screen and visually compared it with the real steering angle made
by an expert driver.
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Figure 4. GG-Net (STN+MTL) Architecture. The main frame is fed to the localization network to acquire the transformation parameters to be applied to it. The

main frame and the transformation parameters from the localization network are fed to the transformer. The transformed output image is fed to Pilot-Net and

Multitask Network to predict the steering commands and the gaze maps respectively.

Figure 5. From top: Input frame with boundary boxes indicating the region of interest selected by STN, stacked and resized image/s generated by STN, and

the input frame overlaid with the gaze map output prediction of the gaze-branch of the MTL network.

The results were very good as the predicted steering angle
was almost the same as that of the driver. Moreover, the predicted
steering angles did keep the car inside the lane for nearly 5 min
of testing at a speed of 50 Km/hr. This experiment indicates the
model capability of following the lane in a different distribution
and unseen real environment without any further training or fine-
tuning.

All the prepossessing needed was “histogram matching”
which is a technique used to match the color distribution of the
new testing frames to that of the training frames. The STN made it
possible to use the histogram matching technique in this problem
because the STN output frame which is a zoomed and cropped
part of the original frame is always focused on the road and the
lanes. Consequently, there are nearly two main colors in the frame
which are: a degree of the black color of the road, and another de-

gree of the white color of the lanes, and no more objects with dif-
ferent colors exist, which can vastly change the color components
of each frame making it hard to compensate for the differences
between the training data and testing data as shown in Fig.6.

Conclusions and Future Work
Inspired by how humans learn to drive, in this paper, the gaze

information is incorporated with the front-facing camera frames
in a multitasking deep neural network to improve steering angle
estimation and fulfilling the real-time autonomous cars system re-
quirements.

Furthermore, this work shows that autonomous driving is
enhanced by 36.18% by incorporating eye gaze information en-
abling generalization and operation in different unseen environ-
ments without being explicitly trained in them.
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Table 1. Results Summary
Architecture RMSE Improvement

(%)
Inference
time (sec.)

Baseline
(PilotNet)

0.0105 - 0.0028

Middle-
fusion

0.007113 30.45% 27.008

STN-based 0.008312 20.83% 27.005
Multi-task 0.008250 21.42% 0.0028
STN+MTL
(2 trans.)

0.007101 32.37% 0.01

GG-Net
STN+MTL
(3 trans.)

0.006701 36.18% 0.015

Figure 6. Histogram matching.from top: a sample frame from the train-

ing dataset, input frame from the new environment, and the final histogram

matching output, which is the same as the input frame but with the color

distribution of the training dataset frames

This paper made use of a Spatial Transformer Network
(STN) for the first time in SDC which enabled the model to fo-
cus on the important features in the road such as the lanes and
eliminate unnecessary elements. Moreover, this work enhances
the idea of using a multitask learning approach to improve steer-
ing angle predictions and generate gaze maps as an auxiliary task
in addition to decreasing the inference time greatly. Due to the
nature of this specific problem, being able to operate in real-time
is a must. Consequently, the inference time is optimized to reach
0.015 sec/frame on NVIDIA K80 GPU.

Moreover, the GG-Net is tested on a recorded dataset from
Egypt and the model was able to predict accurate steering com-
mands without any fine-tuning which is proof of its ability to gen-
eralize to unseen environments. For future work, this technique
and architecture can be implemented in more complex environ-
ments like urban cities. Also, the multitask network can have
more than two auxiliary tasks that are expected to improve the
performance further.
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Appendix
A car with a certain constant steering angle will move on a circular

path as shown in Fig.7. Each one of the front wheels will move on a circle
with a different radius and each wheel will have a slightly different angle
to get a smooth motion on the circular path. For the model simplicity

Figure 7. Car steering geometry.

and without losing generality, only the circle with the small radius “the

one drawn by the wheel nearer to the center of the turning circle” is used.
The point O is the intersection of 2 lines drawn perpendicular to the front
and the back wheels and it’s the center of the motion circle. Its position
changes with steering angle, consequently, changing the center and the
radius of the circle. The AD side length is l which is the “wheelbase
length.” It’s the distance between the front and the back wheels and it
differs from one car to another. From the trigonometry of the right-angle-
triangle ODA with the “left wheel steering angle” = δi = SA,

SA = tan−1(
L
R
) . (2)

Figure 8. Course angle

This view was in a specific time instance “static form.” As the car is
moving, we should consider the dynamic form as follows: In Fig.8, it is
assumed that the car was at point A at time Zero and the course angle in
this case will be θ 1

c = Zero, after time t with a constant steering angle SA
the car will move on the arc “AB” and reach point B the course angle will
be θ 2

c , from the circular motion equations:

v =
2πr

t
(3)

From the geometry, it is concluded that θ = θc, so:

θ
1
c −θ

2
c =

t v
R

(4)

From 2, 3, and 4, the final relation between steering and course angles
becomes:

Θs = SR× tan−1(
(θ 1

c −θ 2
c )×L

v× t
) (5)

SR indicates the steering ratio which is the ratio of the steering
wheel angle to that of the car wheels steering angle. As the type of car
used in the dataset is not specified, an average number for all the con-
stants of the car types in 5 for steering ratio and the wheelbase length is
used, t is the time between two frames of the dataset (25 fps), the velocity
(v) at each frame is given in the dataset, leading to mathematical proof to
the course-steering conversion algorithm.
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