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Abstract 

To avoid manual collections of a huge amount of labeled image 

data needed for training autonomous driving models, this paper 

proposes a novel automatic method for collecting image data with 

annotation for autonomous driving through a translation network 

that can transform the simulation CG images to real-world images. 

The translation network is designed in an end-to-end structure that 

contains two encoder-decoder networks. The forepart of the 

translation network is designed to represent the structure of the 

original simulation CG image with a semantic segmentation. Then 

the rear part of the network translates the segmentation to a real-

world image by applying cGAN. After the training, the translation 

network can learn a mapping from simulation CG pixels to the real-

world image pixels. To confirm the validity of the proposed system, 

we conducted three experiments under different learning policies by 

evaluating the MSE of the steering angle and vehicle speed. The first 

experiment demonstrates that the L1+cGAN performs best above all 

loss functions in the translation network. As a result of the second 

experiment conducted under different learning policies, it turns out 

that the ResNet architecture works best. The third experiment 

demonstrates that the model trained with the real-world images 

generated by the translation network can still work great in the real 

world. All the experimental results demonstrate the validity of our 

proposed method. 

Introduction  
During the past few years, autonomous self-driving cars 

have become more and more popular because of the 

development of sensor equipment and computer vision 

technology. Many research groups and car manufactures 

have joined this industry, such as Google [1] and General 

Motors [2]. The purpose of autonomous driving is to let the 

vehicle perceive the surrounding environment and cruise 

with no human intervention. Therefore, the most important 

task for the autonomous driving system is to map the 

surrounding environment to the driving control. Recently, 

deep convolutional networks have achieved great success in 

traditional computer vision tasks such as segmentation [3] 

and object detection [4]. Therefore, the autonomous driving 

systems using deep learning have become more and more 

popular in this field. With the trained model, autonomous 

vehicles can deal with more scenarios over the past.  

Some state-of-the-art works divide the autonomous driving 

problem into several small tasks and fuse the results of each 

task to a final control decision. The rest of the state-of-the-art 

works provide an End-to-End solution that allows the  

 
Fig.1. Overview of the system we proposed in this paper. The left part is the 
translation network for autonomous driving data collection. The middle part is 
the autonomous driving model training. The final output is shown in the right 

part that is the steering angle and the speed for the autonomous vehicle. 

autonomous system to learn the mapping from the raw image 

data to the steering control. Therefore, very many labeled 

data are required by the training procedure. However, the data 

collection and annotation for the system training could cost 

too much time and human labor. Besides, real damage could 

happen during the data collection under human manual 

driving in the real world. Some of the state-of-the-art works 

have published their datasets, but the datasets can be only 

applied in the research under similar circumstances. Hence, 

autonomous driving systems that are trained by these datasets 

can only be utilized in similar scenarios. 

Moreover, the learning policy plays an important role in 

the deep learning-based system. Since the most important 

task for the autonomous driving system is to monitor the 

surrounding environment and make the corresponding 

autonomous vehicle movement control decision, different 

learning policies lead to different trained models which could 

influence the autonomous driving system massively. 

Supervised learning requires a large amount of training data 

with the corresponding annotation. On the other hand, 

reinforcement learning requires a whole environment for the 

vehicle to learn how to drive automatically from mistakes and 

trials. Hence, finding a way to collect the data with the 

corresponding information is quite important for the deep 

learning-based autonomous driving system. The dataset 

could have a strong influence on the final movement control. 
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In this paper, we propose a novel way for data collection 

through the translation network. With the translation network, 

we can generate the dataset under a simulator without hard 

labor and any risks. More specifically, as shown in Fig. 1, the 

proposed translation network converts CG images to real 

images. To demonstrate the proposed method, we test 

different autonomous driving movement control systems that 

are trained under different learning policies with the dataset 

acquired from the translation network. The method we 

propose has two main contributions as follows: 

(1) We propose a translation network for data collection. 

The translation network can transform a simulation CG 

image into a real-world image. The translation network 

provides a novel way to collect data for the autonomous 

driving training procedure. 

(2) We generate a dataset with a translation network. The 

dataset includes the speed, the steering angle, and the 

distance information that is used to describe the relative 

position in the surrounding environment. 

The rest of this paper is organized as follows. Section 2 gives 

an overview of the state-of-the-art related work. The 

translation network we propose is explained in Section 3. In 

Section 4, we give the experimental details for data collation 

through the translation network and the evaluation of the 

experiments and the corresponding analysis. The conclusion 

of our work is given in Section 5. 

Related Work 
With the development of deep learning, research groups 

and companies have started to attempt a deep learning-based 

method to solve the autonomous driving problem. We 

analyze the state-of-the-artwork in the past few years and 

simply categorize them into two different learning policies: 

supervised learning and reinforcement learning.  

Supervised Learning 
Supervised learning policy allows autonomous vehicle 

learning from the experience in the past.  

Rule-based methods divide the autonomous driving 

problem into several small tasks, such as interaction with cars, 

lane following [5], pedestrian detection [6], and traffic light 

recognition [7]. Rule-based methods tend to solve all the 

small tasks independently and fuse all the results obtained by 

each task to achieve the final movement control. Although 

the rule-based methods have achieved great success, each 

result gained from the sensors could influence the final 

controls significantly [8]. Even if one of the sensors is 

unfunctional, it may cause a significant problem. Although 

the rule-based system sounds reasonable, it is still used for a 

driver assistant system rather than an autonomous driving 

system.  

Instead of dividing the large task into several small ones, 

the perception-based method simply learns the mapping from 

the images to the steering controls. ALVINN et al. [9] 

proposed an idea first: they used a neural network to make 

the first attempt. Although the network is very simple and 

shallow, it can still be used in several certain situations. With 

the development of convolutional neural networks in recent 

years, some traditional hardware companies have also joined 

this field. Recently, Nvidia [10] collected the training 

datasets with three cameras from the left, right, and center, 

and trained a deep convolutional neural network to map the 

pixels to the steering controls. However, all the methods 

mentioned above aim at processing data properly to achieve 

better performance.  

Reinforcement Learning 
In recent years, deep reinforcement learning has drawn 

many people’s attention and has been applied to many felids 

such as robot automatic system [11], and computer game 

agents [12]. The goal of deep reinforcement learning is to 

make agents interact with the surrounding environment. In 

2014, Koutník et al. developed the TORCS driving simulator 

which is applied in a convolutional neural network with 8 

CPU cores in parallel. In 2015, Nair et al. proposed an idea 

of general reinforcement learning architecture. Their system 

allows asynchronous training of reinforcement learning 

agents in a distributed setting. Also in 2015, deep Q-learning 

[13] and policy gradient [14] have been proposed, which 

drew attention for reinforcement learning. Under deep Q-

learning and policy gradient, the agent has to interact with the 

surrounding environment to learn the movement through the 

mistakes and trials. However, training an autonomous vehicle 

under reinforcement learning in the real world could be 

dangerous, because the interaction could be erroneous and 

cause damage to the real world. 

Translation Network 
Although most of the existing datasets have their unique 

advantages, there are no datasets designed particularly for the 

autonomous vehicle movement control. Therefore, we try to 

establish a dataset for the autonomous vehicle movement 

control.  

Existing Datasets 
The recent state-of-the-art works provide a solution for 

autonomous driving through supervised learning. With 

supervised learning, a large scale of data is required to 

achieve a robust result for autonomous driving. Although 

several datasets have been published, each of them is 

collected for its individual goal. Here, we introduce some 

widely used datasets in this field. 

KITTI [15]. KITTI was collected by [15]. It contains 7481 

training images. Each image is annotated with the 3D 

bounding box. The ground truth is measured by a laser 

scanner and a GPS. The data is collected in both rural areas 

and highways and reveals up to fifteen vehicles and thirty 

people. However, the task of interest of the KITTI dataset is 

3D object detection, 3D tracking, and visual odometry. 

Therefore, it is not designed for the autonomous vehicle 

movement control domain.  

Cityscapes [16]. The cityscapes dataset is published by 

[16]. It contains a sequence of images that are collected in the 
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streets of fifty different cities. By far, it is the dataset with the 

most variation.  However, the cityscapes dataset is designed 

for scene understanding. It mainly focuses on semantic 

segmentation. The annotation of each image frame contains 

dense semantic segmentation results up to thirty classes. Even 

though it has great diversity, it is still not suitable for training 

the autonomous vehicle movement control system. 

Oxford RobotCar Dataset [17]. The Oxford RobotCar 

dataset is collected through the central Oxford street by using 

the Oxford RobotCar platform. The dataset contains 1000km 

of manual driving data. It is captured by six cameras and has 

nearly 20 million images. The data is collected in all the 

weather conditions, including heavy rain, sunlight, and snow. 

However, the annotation of the movement control is missing,  

because the Oxford RobotCar dataset is collected for the task 

of visual odometry. 

Overview of the Translation Network 
In this section, we establish a dataset for autonomous 

driving with the indicators of steering angle, speed, and 

distance data. However, the data collection through manual 

driving in the real world could cost too much time and human 

labor. It could save a lot of work if the simulation CG image 

data can be transformed into real-world image data because 

the simulation data can be easily obtained by the simulator 

with the corresponding annotation. We propose a translation 

network for data collection in this paper. In computer vision, 

many transformation problems can be defined as translating 

one input image into a corresponding output image. The goal 

of image transformation is to map each pixel of the input 

image to the output image. With enough number of image 

pairs in a dataset, the problem can be solved by the training 

procedure. The data collection can be done in the following 

three steps through the translation network:  

1) Data preparation for training translation network.  

2) Translation network architecture.  

3) Data generation through translation network.   

Data Preparation 
The translation network learns a mapping from the 

simulation CG pixels to the real-world image pixels. 

Therefore, it is important to collect the simulation CG image 

data and real-world images data for the network training.  

The simulation CG images are collected under an open-

source game simulator TORCS (The Open Racing Car 

Simulator) [18]. We collected all the simulation image data 

through manual driving. All the images are captured as the 

driver’s perspective. All the tracks used in the simulation data 

collection are one-way street with three lanes without 

intersection. As a total, we collected 121,624 images during 

manual driving. However, most simulation images collected 

in TORCS have similar appearances, because the 

surrounding environment would not change dramatically in a 

short time. To avoid the data overlapping, we use the subset 

of 25000 images which have totally different appearances for 

the training.  

 

 
Fig.2. Overview of the data preparation. The simulation CG images and real-
world images are segmented by the SegNet. Two images with high IOU are 
considered to have a similar structure and set as an image pair. 

The real-world images come from Pan et al. [19] which 

was published in 2016. All the image data are collected in 

sunny daytime so that we do not encounter illumination 

problems. Although there are nearly 45k images in this 

dataset, we only select 25k images as the translation network 

training data to avoid the data overlapping.  

After obtaining the simulation CG image data and real-

world image data, we set them into pairs for translation 

network training in order to let the translation network learn 

a mapping from simulation CG image pixels to real-world 

image pixels. An image pair of a simulation CG image and 

real-world image should share a similar structure. This paper 

uses the semantic segmentation results for the structure. 

Inspired by the SegNet [20], we utilize the semantic 

segmentation results to evaluate the similarity between a 

simulation CG image and real-world image structures. Based 

on this idea, we first output the semantic segmentation of 

each simulation CG image and real-world image. Then, we 

apply the Intersection over Union (IoU) to evaluate the 

similarity between the semantic segmentation results of the 

image pair using IoU.  Here, IoU is the area of the overlap 

between the semantic segmentation of the simulation CG 

images and the semantic segmentation of the real-world 

images. As defined in Eq. (1), it is decided by the area of the 

union between the two segmentation results. 

 

                               𝐼𝑜𝑈 =
targetA ∧ targetB

targetA ∪ targetB
                              (1) 

 

In this paper, the segmentation target A is the simulation 

CG images collected from the TORCS. The segmentation 

target B is the real-world images from the dataset [19]. The 

structure of both target images is represented by the semantic 

segmentation. Eventually, the simulation CG image and the 

real-world image will set into a pair with the highest IOU 

above all. Fig.2 shows the image pair setting procedure. In 

total, we collect 25k image pairs for the training procedure. 

With the image pairs, we now design the translation network 

architecture that can learn the mapping from simulation CG 

image pixels to real-world image pixels. 
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Fig.3. The overview of the image translation network. It is an encoder-decoder 
network that combines the SegNet and a cGAN. 

Translation Network Architecture 
Inspired by Badrinarayanan et al. [20], we design an 

encoder-decoder network to transform simulation CG images 

to real-world images. As shown in Fig.3, the whole 

translation network aims at mapping the simulation CG 

image pixels to real-world image pixels. The translation 

network is an encoder-decoder network which can be divided 

into two parts. The fore part extracts the structure of the 

simulation CG image and outputs the structure as a semantic 

segmentation result. Inspired by [20], we apply the SegNet 

structure as the forepart of the transformation network.  

The rear part of the translation network can be described 

as an Image-to-Image translation network. The rear part 

transforms the semantic segmentation result obtained from 

the forepart into a real-world image. Inspired by Pan et al. 

[11], we apply the generator and discriminator to establish the 

network architectures of the rear part. We implement the 

convolutional layer and a BatchNorm layer in a cascade 

manner and put the sequence of the BatchNorm layer and a 

ReLu layer into a block. This block is used in both generator 

and discriminator. Besides, we apply a U-Net [13] to link the 

two separate layers from the encoder and decoder with a 

simple skip. Previous works usually pass the input data 

directly to the bottleneck layer. However, this direct 

architecture could be considered to be time-consuming, 

because the information has to pass through all the layers to 

the bottleneck. Besides, the low-level information may be 

lost during passing through all the layers, whereas low-level 

information is important and indispensable for high-level 

information reconstruction. Hence, we apply a skip 

connection in the network to directly link the two separate 

layers from both the encoder and decoder sides. We combine 

the forepart and the rear part to one encoder-decoder network. 

Data Generation Through The Translation Network 
Now, the translation network is designed as an encoder-

decoder architecture. The encoder-decoder consists of the 

SegNet, and the cGANs [14].  We apply the U-Net structure 

to cGANs and connect two separate layers from the encoder  

 
Fig.4 Examples of image transformation results. The left side is the simulation 
images from TORCS, and the right side is the real-world images generated by 
the translation network 

and decoder with a simple skip. We also place the 

LeakyReLu layer after each convolutional layer and set the 

slop as 0.2. Also, ReLu layers are placed after each 

deconvolutional layer. Adam optimizer is applied in our 

training. The initial learning rate is set as 0.002 with a 

momentum of 0.5. After the training procedure, we collect 

the dataset for the autonomous driving system. We collect all 

the sequential image data through the simulator TORCS and 

then transform these simulation CG image data to real-world 

image data. In total, we use 10 tracks in TORCS and collect 

nearly 90k images which include nearly 300 times manually 

driving. The data were collected on two separate weather 

conditions, where one day was sunny, and the other was 

overcast. Some examples of image transformation results are 

shown in Fig.4. 

Experimental Results and Discussion 
In this paper, we conducted the following three 

experiments to evaluate our work. 

(1) We conduct experiments for evaluating our translation 

network with four different loss functions: L1, GAN, 

cGan, L1+cGAN. 

(2) We conduct experiments to testify the authenticity of the 

dataset generated by the translation network by applying 

four different learning policies which are DQN, A3C, 

AlexNet, ResNet.   

(3) We conduct experiments to evaluate the model trained 

under the dataset generated by the translation network by 

testing it on the real-world driving scenario.  

The experiments for autonomous driving use the mean 

absolute error defined by Eq.(3) for the steering angle and 

speed for evaluation.  

 

                              𝑀𝑆𝐸 =  
1

𝑛
∑ |𝑝𝑖 − 𝑔𝑖|

𝑛
𝑘=1 .                    (3) 

 

where p stands for the prediction and the g stands for the 

ground truth. In these experiments, the maximal speed of the 

autonomous vehicle is 70km/h. The steering angle of the 

autonomous vehicle ranges [-π/2, π/2]. The range in [-π/2, 0] 

is defined as to go left, and [0, π/2] is defined as go right. The 

angle is in degree, and the speed is in km/h.  

In the experiments, we try to minimize the difference 

between the output and the ground truth. However, we do not 
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need the output to be exactly the same as the ground truth. In 

other words, the system can still perform well if there is only 

a small error between the prediction and the ground truth. 

Therefore, we set this small error as a threshold ts to evaluate 

driving motion. Predictions whose MSE are below the ts 

should be considered as correct driving motions; otherwise, 

wrong driving motions. We set the parameter cdm to 

represent the correct driving motion and wdm to represent the 

wrong driving motion. Then, we define a system performance 

score as PeSc = cdm  / (cdm + wdm). According to [21], we 

set the threshold of the steering angle as 10 degrees, and the 

8 km/h for the speed.  

Evaluation of translation network  
With the translation network, we generate a new image 

dataset for autonomous driving that includes the speed, 

steering angle, and the distance information with other 

vehicles. Compared with the existing dataset, our dataset 

includes the driver’s manual driving decisions that can 

describe the interaction with the surrounding environment. 

Table 1 shows a comparison with the existing dataset. 

Table 1. Comparison of the dataset generated by the translation 

network and other existing datasets.  

Dataset Setting Type Diversity Move-

ments 

KITTI City, 

highway 

Real Road NO 

City-

scape 

City Real Weather NO 

Oxford City Real One city NO 

Ours City, 

highway 

synthesis Road Yes 

  

In order to minimize the difference between the simulation 

CG image and generated real-world images, we apply four 

loss-functions to find the best combination for the translation 

network. We iterate each network for 10k times to make the 

network convergence. IoU is applied to evaluate each loss 

function. The results are shown in Table 2. 

Table 2. IoU performance of different loss functions for the 

translation network. 

Loss IoU 

L1 0.56 

GAN 0.48 

cGAN 0.75 

L1+cGAN 0.83 

 

Apparently, L1+cGAN performs the best above all four loss-

functions. Therefore, we apply the L1+cGAN as the loss 

function for the translation network. Fig.5 shows an example 

of image translation under different loss functions. Compared 

to the original simulation CG images and its segmentation 

result, network with L1 loss is quite blurred. Results with  

 
Fig.5. The image translation results with different loss functions. Compared with 
the original simulation CG image, the L1 + cGAN performs best among all. 

GAN reasonable but still blurred. cGAN turned out an 

acceptable result, but still not as good as cGAN + L1.  

Evaluation of Different Learning Policy  
After obtaining the dataset from the translation network, 

we conduct experiments with four different learning policies 

for autonomous driving: DQN, A3C, AlexNet, and ResNet. 

Table 3 compares the results, where MSE and system 

performance score PeSc for the angle and speed for the four 

architectures are listed. 

Table 3. Performance of different learning policies. 

Learning 

Policy 

Item MSE PeSc 

DQN Angle 15.13 63.5% 

Speed 12.40 66.9% 

A3C Angle 13.71 70.1% 

Speed 11.28 72.3% 

AlexNet Angle 11.56 78.8% 

Speed 10.37 76.4% 

ResNet Angle 9.68 81.1% 

Speed 8.53 78.7% 

 

Obviously, supervised learning with ResNet architecture 

performs the best among all the four learning policies which 

demonstrate that supervised learning would perform better 

with applicable annotation. However, consider that the 

system tolerance, we think that the dataset acquired from the 

translation network can be applied for the autonomous 

driving model training procedure. 

Evaluation of Real-world Diving Scenario 
The above-mentioned experiments prove that supervised 

learning with ResNet is the best learning policy for 

autonomous driving model training. Now we train a model 

under ResNet and test the trained model on the existing 

dataset. We apply the trained model to KITTI dataset to 

demonstrate that the dataset acquired from the translation 

network can achieve great performance in a real-world 

driving scenario. We apply two different training set to 
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generate the model and test the two models on the same 

KITTI test set. Table 4 shows the results of both datasets.  

Table 4. Performance of different datasets. 

Training Set Item MSE PeSc 

KITTI Angle 8.77 83.9% 

Speed 9.31 75.2% 

Ours Angle 9.68 81.1% 

Speed 8.53 78.7% 

     

Table 4 shows that the model trained on KITTI dataset gives 

better performance on the angle. However, the dataset 

acquired from the translation network also achieves better 

results on speed. Considering the acceptable system tolerance, 

we think the dataset acquired from the translation network 

can achieve a great performance in the real-world 

environment. 

Conclusion  
In this paper, we have proposed a novel way to collect data 

for autonomous driving using the translation network. The 

translation network can learn a mapping from the simulation 

CG pixels to the real-world image pixels. Through the 

translation network, we generate a dataset with the 

corresponding annotation for autonomous driving. To 

confirm the validity of the proposed system, we conducted 

three experiments for evaluating the MSE and accuracy of the 

steering angle and speed. The first experiment demonstrates 

that the L1+cGAN performs best among all the loss functions 

for the translation network. The second experiment 

demonstrates the real-world images generates by the 

translation network can work under different learning 

policies, and supervised learning with ResNet performs best 

by far. The third experiment demonstrates that the 

autonomous driving model trained by real-world images can 

work great in a real-world driving scenario. In the future, we 

may expand the working scenarios. Meanwhile, we would 

like to improve the network learning ability and accuracy and 

try to make the system work more stable. 
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