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Abstract
Mercury (Hg) and Arsenic (As) have been recognized as

chemical threats to human health. Still, the detection of lower
contamination levels using traditional image analysis remains
challenging due to the small number of available data samples
and the insufficient utilization of the spatial information contained
in the sensor pad images. To overcome this challenge, we use the
spectra data of the colorimetric response pads and propose two
kinds of classification models for differentiating contaminant lev-
els with high test accuracy. In the first model, we use the SMOTE
method to solve the imbalanced data problem, then apply the se-
quential forward selection algorithm to select optimal wavelength
features in combination with the k-NN classifier to discriminate
five contaminant levels. The second technique comprises princi-
pal component analysis (PCA) used as a dimensionality reduction
technique combined with the random forest (RF) classifier to clas-
sify five contaminant levels. Our proposed system is trained and
evaluated on a limited dataset of 126 spectral responses of five
contamination levels. Our algorithms can yield 77% and 87% av-
erage accuracy, respectively. We will present an overview of the
base model, the pipelines and the comparison of our proposed two
classification models, and the phone-based narrow-band spectral
imaging system that can obtain the camera spectral response for
accurate and precise heavy metals analyses with the aid of narrow
bandpass filters in front of a cell phone’s camera lens.

1. Introduction
Nowadays, the safety of food has become crucial. One of

the main types of threats related to food safety is heavy metals
[1]. Heavy metals, including Mercury (Hg), Arsenic (As), Cop-
per (Cu), and so on, can be enriched in living tissue through food
chains and have been reported to be harmful to human health
at low concentrations. The commonly used methods for detect-
ing heavy metals are mass spectroscopy, atomic emission spec-
troscopy, potentiometric methods, and so on [2]. These methods
are sensitive, but require expensive equipment, trained personnel,
and cannot support on-site detection. Therefore, rapid and low-
cost detection methods for contaminants are more and more in
demand.

To detect multiple targets in one test, our group focuses on
developing a novel paper-based, microfluidic biosensor for colori-
metric detection of two types of heavy metals: As and Hg [3], [4].
Figure 1 shows the proposed detection mechanism of our biosen-
sors and the test interpretation. A cell-phone integrated image
analysis pipeline can determine the detection result of our biosen-

sors. Two kinds of the aptamer-functionalized particles (ssDNA-
PEI-Au-Ps) specific to Hg2+ and As3+ are preloaded on each of
the upper, and lower two circular pads, respectively. These four
pads serve as the colorimetric labels. To detect the analytes in the
test samples, test samples with different concentrations of Hg2+

or As3+ were dropped in the inlet of the biosensors. There is a
colorimetric response in the presence of the target after the test
solution interacts with the colorimetric label deposited on each of
the testing areas. Figure 2 shows the colorimetric signal evolution
versus various concentrations of As3+ and Hg2+ from 0 ppm to
100 ppm. The color of the target testing areas gradually changes
from light pink to deep purple as the concentration increases from
0 ppm to 30 ppm. Then, there is a drastic color change from deep
gray to light gray for a higher concentration test, from 50 ppm to
100 ppm.

Figure 1. The detection mechanism of our biosensors and test interpreta-

tion. (To illustrate the different particles specific for Hg and As, the particles

specific for Hg are labeled blue in the figure; but the actual particles are col-

ored light pink.)

To yield a quantitative and objective color analysis, color
measuring instruments are favored. As digital technologies con-
tinue to develop, cheap, and compact image sensors are widely
used in everyday electronics, like cell phones. A phone-based
imaging system is promising for signal detection due to the above
features emerging in different fields.

In our previous work, our proposed optical system and im-
age analysis pipeline provides consistent data acquisition captured
by a mobile phone camera, and delivers quantitative responses to
correlate the colorimetric change of the biosensors to the concen-
tration of the target substance [4]. We used the grayscale values as
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Figure 2. (a) The colorimetric signal response to As3+, (b) The colorimetric

signal response to Hg2+.

a metric, calculating average CIE ∆E [5], [6] from the white refer-
ence, to characterize the response of the paper-based devices, and
to correlate the response with the concentration of the analytes.
As an example, Figure 3 shows the correlations between the ∆E
values and the increasing concentrations of As3+. According to
the data collected, the variable ∆E and the As3+ concentration is
found to be strongly correlated from 0 to 30 ppm, which can be
fitted as y = 0.52x+ 17.12, with R2 of 0.9238. Nonetheless, the
relationship is not monotonic. In particular, the repsonses to 0
ppm and 4 ppm are too high.

Figure 3. The correlation between ∆E values and the increasing concen-

trations of As3+ for a non-spectral imaging method.

Thus, we aim to find a prediction model with higher accu-
racy for our limited data set. In this study, the colorimetric re-
sponses of 5 contamination levels (As3+) are used as the experi-
mental data. Considering the limited number of samples for each
concentration, we first rearrange the 126 phone captured images
of the samples into five classes: 35 in Class 1 (0, 1, 2 ppm), 32 in
Class 2 (4, 5 ppm), 22 in Class 3 (10 ppm), 15 in Class 4 (20, 30
ppm), and 22 in Class 5 (50 ppm). Then, we divide the original
dataset into a training set, a validation set, and a test set according
to the ratio 5: 2: 3, as shown in Table 1.

Table 1: Overview of the small-scale dataset showing the divi-
sion, respectively, into training, validation, and test sets.

Class Training set Validation set Test set Total
Class 1 17 7 11 35
Class 2 16 6 10 32
Class 3 11 4 7 22
Class 4 7 3 5 15
Class 5 11 4 7 22

In the following sections, we first present an overview of the

base model using grayscale values and its prediction accuracy.
Second, we propose two classification models for discriminating
the spectral responses for the different classes; then, we com-
pare the prediction accuracy. Finally, we present our phone-based
narrow-band spectral imaging system that can obtain the camera
spectral response for accurate and precise heavy metals analyses
with the aid of narrow bandpass filters in front of the cell phone’s
camera lens.

2. Base Model
To evaluate the prediction accuracy of our base model, we

apply the Lloyd-Max scalar quantizer method to find the opti-
mal threshold boundaries, i.e. average deltaE values, for the five
classes [7], [8]. Figure 4 shows the optimal threshold boundaries
for the five classes. The prediction accuracy for the test dataset is
shown in Table 2. The base model shows a relatively high predic-
tion accuracy for Classes 1 and 5, but a relatively low accuracy
for Classes 2 - 4, with an average prediction performance of 41%.

Figure 4. The optimal threshold boundaries for 5 classes detecting As3+

for the base non-spectral imaging method.

Table 2: Performance of the method based on ∆E from the
global background.

Class C 1 C 2 C 3 C 4 C 5
Accuracy 91% 60% 43% 20% 86%

The ∆E from the global background method calculates the
Euclidean distance between the white reference and the response
area. As can be seen in Figure 4, there exist situations where the
∆E values calculated from two different reaction colors are out
of order, which causes low accuracy. The limited dataset and the
insufficient utilization of the spatial information contained in the
sensor pad images also restrict the effectiveness of the base model.

3. Spectral Imaging Classification Models
The main challenges of our project are the insufficient fea-

ture information, the limited number of samples, and the large
intra-class variance of the sensor pad images. To overcome these
challenges, we use the spectra data of the colorimetric response
pads and propose two kinds of classification models for differen-
tiating contaminant levels with higher test accuracy.
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3.1 Non-contact optical measurement system
The spectral radiance in the detection zones is acquired by

our non-contact optical measuring system, illustrated in Figure 5.
The optical system mainly consists of a photo studio booth (Foto-
dioX, purchased from bhphotovideo.com) for providing the con-
trolled illumination environment, and for measuring the visible
wavelength range, a spectroradiometer (PR 705, Photo Research
Inc., CA, USA), and a tripod to provide a 45◦ configuration of the
spectroradiometer. The spectral radiance of the samples and of
a white reflectance standard (Spectralon white diffuse reflectance
standard, model #54-302, Edmund Optics) are obtained from 380
nm to 780 nm with an interval of 2 nm. To evaluate stability of the
illumination light intensity, the measurements of the spectral irra-
diance of the white reflectance standard are taken every 30 min-
utes for 3 hours. Then the spectral reflectance of the colorimetric
response is calculated by dividing the spectral radiance of the ob-
ject by the average reflectance radiance of the perfect reflecting
standard under the same spectral conditions of measurement [9],
[10].

Figure 5. The optical setup for spectral data acquisition.

The light sources used are an LED light (FotodioX, pur-
chased from bhphotovideo.com), fluorescent light (mounted on
the ceiling of the laboratory), and halogen light (Sunlite, pur-
chased from bhphotovideo.com). Figure 6 shows the relative lu-
minous power comparison of these three kinds of illumination
used in our project. Our goal is to find the optimal illumination
source for which the spectral data of the entire set of objects (re-
sponses of As3+ and of Hg2+) are most distant from each differ-
ent concentration. The spectral radiance of each object under the
three illuminations is taken and averaged with respect to wave-
length. Table 3 shows that the LED source is optimal to distin-
guish the different concentrations of the colorimetric response of
both As3+ and Hg2+. Therefore, LED illumination is used as an
optimal light source for spectral acquisition.

3.2 Data description
The spectral radiances of the colorimetric responses to As3+

are used as the experimental data. An example of the measured
spectral radiance curves for all 5 contamination levels is illus-
trated in Figure 7. For each contamination level, the curve is the
mean of all spectral radiance measurements of the training sam-
ples. Although there are visible differences at approximately 460
nm and from 480 nm to 550 nm, the spectral radiance curves have

Figure 6. The relative luminous power comparison of the three kinds of

illumination sources.

Table 3: The relationship between the averaged spectral re-
flectance and the contamination levels under the three differ-
ent illuminations.

Illumination As3+ Hg2+

Fluorescent Light
C1→ C2→ C3
→ C4→ C5

C2→ C1→ C3
→ C4→ C5

5500K LED Light
C1→ C2→ C3
→ C4→ C5

C1→ C2→ C3
→ C4→ C5

Halogen Light
C1→ C2→ C3
→ C4→ C5

C2→ C1→ C3
→ C4→ C5

quite similar shapes on the visible wavelength ranges.

Figure 7. The mean spectral radiance measurements of the training sam-

ples for five contamination levels of As3+.

The data set comprising 126 spectral radiances at 5 contam-
ination levels, are randomly divided into training, validation, and
test data sets, as shown in Table 1. For each sample, the measured
spectral band varies from 380 nm to 780 nm with a sampling in-
terval of 2 nm; this leads to an original vector space of dimension
200. The number of components of the feature vector is much
larger than the small number (less than 40) of samples for each
class in our application. The number of training samples required
for typical machine learning problems increases dramatically with
the dimensionality for such high dimensionality [11]. Therefore,
the first step in preprocessing is to obtain the smaller feature di-
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mensions by dividing the spectral range of the wavelengths into
20 equal parts, then calculating the corresponding average. The
corresponding feature names are ‘390 nm’, ‘410nm’, . . . , ‘770
nm’.

4. Machine Learning Algorithm
The next goal is to develop classification models for differen-

tiating contaminant levels with high test accuracy. The majority of
the existing works prove that k-nearest-neighbor and random for-
est classifiers have powerful classification capabilities [12], [13].
Further, sequential selection and PCA are widely used to extract
a subset of features in higher dimensions to improve computa-
tional efficiency and reduce the generalization error of classifi-
cation [14], [15]. Based on this, we use the spectral data of the
colorimetric response pads and propose two kinds of classifica-
tion models for differentiating contaminant levels with high test
accuracy. The flow chart of the general machine learning pipeline
for these two models is shown in Figure 8.

Figure 8. The flow chart of the general machine learning pipeline for two

proposed classification models.

Here, two kinds of classification models are investigated in
our work to evaluate their classification accuracy and generaliz-
ability to the test data.

4.1 Multiclass classification model I
In the first model, we apply the sequential forward feature

selection (SFS) algorithm [14] to select or extract a subset of
wavelength features in combination with the k-nearest-neighbor
(k-NN) classifier to discriminate five contaminant levels.

A. Sequential forward feature selection
After the first step of preprocessing, we have 20 wavelength

features for each spectral radiance data. To improve the classi-
fication performance and simplicity, we can further reduce the
dimensionalities. The sequential feature selection has been rec-
ognized as a crucial feature selection technique by applying an
iterative procedure. The SFS method takes the following steps:
(1) starts with an empty feature set, (2) generate all possible fea-
ture subsets of size 1, then choose the feature subset that leads
to the best classification accuracy, (3) add another feature from
the remaining available features to generate all possible feature
subsets of size 2, (4) gradually add features until the size of the
subsets is equal to the number of desired features. In this work,
we apply the SFS based on the k-NN classifier to choose a sub-
set of wavelength features that yields the minimum classification

error.

B. k-NN classifier
The k-NN classifier is one of the most widely used classifi-

cation methods based on the majority vote of the neighbors of the
test sample. The k-NN method calculates a distance between the
test sample and all training samples to obtain its nearest neigh-
bors, and then assigns the test sample a label according to the
majority vote of the nearest neighbors [16].

We calculate the standard Euclidean distance to measure the
similarity between the test sample and the training samples. As
is well known, the selection of the value for k is crucial for good
classification performance. In this work, we obtain the appropri-
ate value for k experimentally. With the validation data set, we
evaluate the k-NN classifier with different k values from 1 to 6.
This procedure can be repeated each time by increasing k to in-
clude one more neighbor. Two examples are illustrated in Figure
9. We note that almost all of these 6 models yield 80% validation
accuracy when 4 wavelengths are selected, so the feature subset’s
size is taken as 4. The k value is chosen to be 5 because the val-
idation accuracy stabilizes after a certain point as the number of
feature selections increases. The optimal wavelength features in-
clude 670 nm, 490 nm, 410 nm, and 430 nm.

Figure 9. Validation accuracy of the k-NN classifier models with k = 3 and

k = 5, respectively.

C. Classification result of model I
We perform 4-fold cross-validation to evaluate the perfor-

mance of the k-NN classifier (k = 5) with the SFS algorithm. The
confusion matrix for the test data is reported in Table 4. The clas-
sification performance yields 84.42% average precision, 76.7%
average recall, and 80.4% average F-1 score. We note that the low
classification accuracy for Class 3 might be due to the fact that a
fixed k-NN classifier is applied to all test samples. This leads to
a low prediction rate in real applications in many existing works
because the fixed classifier for all test data does not consider the
distribution of the data [17].

Table 4: Confusion matrix for the multiclass classification
model I (k-NN classifier).

Class C 1 C 2 C 3 C 4 C 5 Precision Recall
C 1 10 1 0 0 0 84.6% 90.9%
C 2 4 5 1 0 0 62.5% 50%
C 3 2 2 3 0 0 75 % 42.9%
C 4 0 0 0 5 0 100% 100%
C 5 0 0 0 0 7 100% 100%
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4.2 Multiclass classification model II
The second classification model comprises principal compo-

nent analysis (PCA) used as a dimensionality reduction technique
in combination with a random forest (RF) classifier to classify five
contaminant levels.

A. PCA
Principle component analysis (PCA) is one of the most

widely used algorithms for reducing redundant and irrelevant fea-
tures. PCA uses singular value decomposition to project the high
feature dimensions into an orthogonal basis set called the princi-
pal components, while preserving as much of the data’s variation
as possible [15], [18]. In our work, PCA is applied to the training
data set to select the principal components that explain the data’s
maximum variance. Figure 10 shows that the first three principal
components can cover the 99% of the variance of the training data
set. Then we reduce the original feature vectors of the testing data
to the same lower dimensional subspace as the training data set.

Figure 10. Variance of the first 20 principal components for the training

data set.

B. Random forest
Random forest (RF) has been successfully applied to multi-

class classification problems [19]. The RF algorithm is an ensem-
ble method of classification based on generating multiple decision
trees. The RF algorithm independently constructs each tree using
bootstrap sample data. Each node in the standard tree is split us-
ing the best decision based on a randomly chosen subset of the
input variables. Each tree in RF predicts its output; then, the RF
makes a final prediction based on the majority vote of all the trees.

C. Classification result of model II
The RF models involve several parameters: depth of trees,

number of features randomly selected, and number of trees in the
forest. We perform 4-fold cross-validation to select the optimal
parameters which yield the lowest classification errors on the val-
idation data set.

After selecting the optimal parameter values, the classifica-
tion model is evaluated on the test data with the lower dimensional
subspace. Table 5 shows the confusion matrix for the test data.
The classification performance yields 86.82% average precision,
86.64% average recall, and 86.73% average F-1 score. It turns
out that the RF model with PCA feature selection performs well
in terms of accuracy compared to the k-NN classifier.

Table 5: Confusion matrix for the multiclass classification
model II (RF classifier).

Class C 1 C 2 C 3 C 4 C 5 Precision Recall
C 1 9 1 1 0 0 90% 81.8%
C 2 1 8 1 0 0 72.7% 80%
C 3 0 2 5 0 0 71.4 % 71.4%
C 4 0 0 0 5 0 100% 100%
C 5 0 0 0 0 7 100% 100%

5. Phone-based Narrow Band Spectral Imag-
ing

In the previous sections, we prove that the spectral data of
the colorimetric response pads can improve classification perfor-
mance. The challenging part is that the spectral data must be
obtained using an expensive and professional optical component,
like a spectroradiometer. As digital technologies continue to de-
velop, cell phones are cheap and widely used globally, so a phone-
based spectral imaging system is promising for differentiating dif-
ferent contaminant levels.

We propose a smartphone-based narrow-band spectral imag-
ing system that is incorporated with a hardware plug-in module
that fixes the bandpass filter in front of the smartphone’s cam-
era lens. In the optical setup, the cell phone (iPhone 8, CA, USA)
with a bandpass filter (center wavelength is 620 nm, and full width
at half maximum is 10 nm, Edmund Optics Inc., Barrington, NJ)
replaced the spectroradiometer on the tripod, as shown in Fig-
ure 5. We also conduct a preliminary evaluation of the proposed
phone-based narrow-band spectral imaging system regarding its
performance and capability to replace the spectroradiometer.

Figure 11. (Left) Box plot of the camera response with a bandpass filter

(620nm) for different As3+ concentrations. (Right) Box plot of the correspond-

ing spectral radiance measured by using PR 705.

We use the average R value of the colorimetric response un-
der the bandpass filter to represent the camera response. Figure
11 shows the camera response for various concentrations of As3+

from 0 ppm to 50 ppm. According to the data collected, it is
found that the variable camera response had a very similar trend
to the spectral radiance at As3+ concentrations from 0 to 50 ppm.
Our preliminary result suggests that the phone-based narrow-band
spectral imaging system can replace the spectroradiometer for dif-
ferentiating different contaminant levels.
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6. Conclusion
In this paper, we investigated how to improve the accuracy

of our previously developed paper-based devices for detecting and
measuring heavy metal contaminants (As3+ and Hg2+) in food or
liquids. Specifically, we considered the use of the spectral re-
flectance of the sensor pad, as opposed to our baseline method
which simply conputes ∆E from a white background, and opti-
mally quantizes these responses into five groups. We described a
laboratory set-up for capturing the spectral reflectances of the de-
tection devices, including an investigation of three possible types
of illumination. Having chosen an LED as the best source of il-
luminantion, we then developed two different machine learning
approaches for classifying the level of contamination by As3+

into one of five categories: k-nearest-neighbor with sequential
forward feature selection to determine the best number of fea-
tures, and random forest with principal component analysis for
feature reduction. We found that the latter yields the best perfor-
mance. Finally, we compared the spectral responses, as a function
of contaminant level, of the sensor pads within the band 610-630
nm measured with our spectroradiometer to the spectral responses
captured by a mobile phone with an inexpensive narrowband filter
attached to the front of the camera lens. Based on the similarity
of the responses between these two capture modalities, we con-
clude that the mobile phone narrowband filter combination could
be used as an inexpensive means of accurately measuring heavy
metal contaminant levels, as indicated by the color change in our
paper-based sensor device.
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