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Abstract

Automating the assessment of sensor quality in the produc-
tion of thin-film nitrate sensors can yield significant advantages.
Currently, the inspection process is extremely time and labor in-
tensive, requiring technicians to manually examine sensors from
each batch to determine their performance. Not only is manu-
ally examining sensors costly, it also takes days to conclude the
results. It is possible to utilize image based learning approach
to entirely automate the quality assessment process by accurately
predicting the performance of every sensor, this allows for in-
stant performance analysis and rapid changes to the fabrication
parameters.

The fabrication parameters will directly control the thickness
of the ion-selective membrane (ISM) of the nitrate sensor. The
thickness of the ISM directly affects the texture on the sensor’s
surface. Because of the reliable correlation between sensor per-
formance and sensor surface texture, it allows us to use learning
methods to predict sensor performance through images instead of
direct measurements.

We propose a method to predict sensor quality using non-
contact sensor images through a series of image processing tech-
niques followed by machine and deep learning.

Introduction

The Scalable Manufacturing of Aware and Responsive Thin
Films (SMART) [1] consortium concentrates on manufacturing
affordable Internet of Things (IoT) sensors that can be produced
at mass volumes and deployed over large areas. One of the ma-
jor challenges is to efficiently and economically monitor the sen-
sor quality during the fabrication process with a roll-to-roll (R2R)
system in real-time. The study of nitrate sensor application has in-
dicated the correlation between sensor performance and the non-
uniform coating of the ISM determined by the process control
parameters [2]. Such thickness variations of the ISM will create
visible texture on the sensor surface. Giving those pieces of ev-
idence, we developed the sensor performance prediction system
based on non-contact sensor images shown in Figure 1.

The R2R sensor manufacturing system is used to fabricate
our nitrate sensor by printing the electrode on a polyethylene
terephthalate (PET) substrate and coating the electrode with the
ISM and the silicon passivation layer as demonstrated in Figure
2.

The active region of the nitrate sensor is the electrode region
coated with the ISM; and it is the region that draws the most atten-
tion. The non-contact sensor images fed into the prediction sys-
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Figure 2. Shape of the Nitrate Sensor.

tem are the sensor active region images captured using an Electro-
Optical System (EOS)? camera with a microscope. During the
sensor performance measurement procedure, the sensor active re-
gion will be immersed in the nitrate solution, while the non-coated
electrode region will be connected with the NI? Module to record
the sensor performance data. The idea that the non-uniform ISM
coating will significantly impact sensor performance and simul-
taneously cause variations in sensor surface appearance provides
mathematical confidence for the prediction system to associate the
sensor performance data with the extracted texture features from
sensor images.

Prior research has shown that the image-based prediction
system can predict the overall potentiometric response of the sen-
sor given sensor active region images [3]. Both machine learn-
ing and deep learning approaches have been considered when
designing the prediction system. The logarithmic function was
proposed based on a physics model to represent the sensor per-
formance. The local binary pattern (LBP)[4] visual descriptor
and pre-trained convolutional neural network (CNN) were used
to extract texture features from the sensor images. Manufacturing
factors are also fused into the system along with image features.

This paper will continue to expand the image-based predic-
tion system by focusing on preprocessing the sensor active region
images to achieve better accuracy on the predicted sensor perfor-
mance curve. A template matching [S] method is implemented
to segment the sensor active region from the non-contact image in
the image data preparation step. The contrast limited adaptive his-
togram equalization (CLAHE) [6] technique is applied to enhance
texture contrast in the sensor active region images. The Gaussian
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pyramid method [7] is investigated as a multiscale approach to
extract texture features from sensor images.

Dataset Preparation

Sensor active region images and their ground truth data are
required for the image-based prediction system. Before we train
the prediction model, we need to generate them separately.

Image Data Preparation

To ensure the consistency of the experiment, we use the same
equipment and following the same procedure to capture the non-
contact sensor images as discussed in previous work [3]. As men-
tioned before, the sensor active region’s texture appearance is re-
lated to the varying sensor performance. Therefore, we need to
crop the sensor active region out of the original non-contact sen-
sor image to avoid distraction to our prediction system. With the
increasing amount of sensors fabricated under varying settings,
separating the sensor active region from its background could be
challenging. In this case, we proposed a more efficient and sta-
ble way to segment the sensor active region using the template
matching method [5] as shown in Figure 3.
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Figure 3. Segment Sensor Active Region Using Template Matching
Method.

The template matching technique is intended for inspecting
the source image and locating the area that best matches the object
presented in the template image by minimizing the mean-squared
error or maximizing the area correlation. In our case, the template
matching algorithm gives us the best performance when we trans-
fer the colored sensor image into the R-channel grayscale image
and use the correlation coefficient method [8].

Ground Truth Data Preparation

We expect our image-based prediction system to predict the
overall potentiometric response of the sensor. Therefore, the
ground truth data should be the parameters that represent the en-
tire sensor performance data. The physics-based model provides a
logarithmic function representing the sensor performance signal,
which simplifies the ground truth data into two parameters. Such
parameters are the named performance parameters.

Figure 4.(a) shows the experimental setup for measuring the
nitrate sensor performance [9]. The working electrode (WE) po-
tential depends on the nitrate ion concentration, and the ISM en-
sures that only the nitrate ions impact the WE potential. The ref-
erence electrode (RE) provides a stable reference electrochemical
potential via the solid electrolyte coating. The sensor performance
data is the potential difference between the WE and the RE.

Figure 4.(b) gives an example of the sensor performance
curve for one sensor set measured in a 0.001 molar nitrate so-
lutions for 22 hours. After around 4.5 hours, the potentiometric

341-2

Sensor Active Region

Sensor ID
—
o

AgIAGCI
‘wires

S

BARGREREBEEUNKELYY

fill g - ~ standard
solution.___ _-solution

porous membrane &

frit

saturated region

BIRGREREBIFIAARANNIE

Emémbrane
indicator
electrode

reference
electrode

) 5 %
sample solution (a, sample) time fhr]

(@) (b)
Figure 4. (a) Sensor Voltage Measurement Experiment Setup; (b) Example
of Measured Sensor Performance Signal.

response will achieve its saturated phase; and this is the phase
where we apply the physics-based model. It is worth mentioning
that the solid line signals are the outliers caused by experimental
error and will be eliminated when training the prediction system.

The physics-based model suggests that the change of poten-
tial voltage over time is a logarithmic growth [3]. Therefore, we
can fit the saturated region of the sensor performance curve to the
following equation. The parameters a and b are the performance
parameters that represent the sensor performance curve after sat-
uration.

Vi (t) = a-log(t) +b (D

The procedure to fit our saturated sensor performance curve
to the logarithmic function and generate the ground truth param-
eters is shown in Figure 5.
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Figure 5. Ground Truth Data Preparation Procedure.

We denote the measured sensor performance signal as V,,
and apply a smoothing filter on V,,. The smoothing filter we use
here is the 5th order Savitzky-Golay filter [10]; and the filter win-
dow length is equal to 100 data points. We then downsample the
smoothed signal from around 1.5k data points to 100 data points
and denote the downsampled signal as V,;. The saturated region
of V; is the last 80 data points. After that, we use the Levenberg-
Marquardt algorithm [11] to find the best fitting logarithmic curve
for the saturated region of V. The fitted logarithmic curve is de-
noted as V.

We use the root-mean-square error (RMSE) to evaluate the
accuracy of the fitted curve. Figure 6 illustrates the difference
between the original measured sensor performance signal V,,, the
downsampled and smoothed signal V;, and the fitted curve Vy;; in
the saturated region.

RMSECF (mV) = \/11/ Z (Vfit ()C) - Vd('x))z (2)

i\ X ) — X 2
RMSEcrp (%) = \/;Z (%) x100%  (3)
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Figure 6. Example of Fitted Logarithmic Curve: V,, is the measured per-
formance signal, V, is the downsampled & smoothed signal, Vy; is the fitted
logarithmic curve.

Here, CF stands for curve fitting process, and N is the total
number of time points.

The dataset we generated contains 108 sensors. The perfor-
mance data of those sensors was measured in a 0.001 molar nitrate
solution for 22 hours. The average RMSE for the curve fitting pro-
cess is around 1.2980 mV or 1.5231%. The result indicates that
the idea of using two performance parameters as ground truth data
to represent the saturated region of the sensor’s potentiometric re-
sponse is reliable.

Image Preprocessing

The connection between the texture feature of the sensor ac-
tive region image and sensor performance data is the cornerstone
for the image-based prediction system. Therefore, we propose an
approach using the contrast limited adaptive histogram equaliza-
tion (CLAHE) [6] method to improve the visibility level of the
texture features of the active region image.

CLAHE is a variant of adaptive histogram equalization
(AHE) [12], which improves local contrast, enhances the edges
in each region of the image, and prevents overamplification of the
noise in the meantime. The RGB color space of the active region
sensor image is nonlinear since gamma correction is applied when
capturing the sensor image. Hence we need to degamma correct
the image and then apply CLAHE on the linear color space. Ex-
periments show that the CLAHE works best on the L* channel.
Two parameters are required for the CLAHE method. ClipLimit
sets the threshold for contrast limiting, and tileGridSize repre-
sents the number of tiles in the row and column. Here, we set
the ClipLimit to be 3 and tileGridSize to be 8 x 8. After the
enhancement, we apply gamma correction to the enhanced image
for display.

Figure 7 demonstrates the changes of the sensor active region
image during the preprocessing step. The input image is the left-
most one, and the output preprocessed image is the rightmost one.
As shown in the example, the texture becomes more noticeable in
the preprocessed image.

Texture Feature Extraction

As mentioned previously, the non-uniform coating of ISM
during the sensor fabrication process causes visual differences in
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Figure 7. Example of Sensor Image During The Preprocessing Procedure:
top row is the color image; bottom row is the L* channel monochrome image.

the sensor active region image. It is necessary to extract mean-
ingful features from the active region sensor image that describe
the texture properties. This section will focus on the local binary
patterns (LBP) [4] method, and the combinational method of LBP
and the Gaussian pyramid [7] method.

LBP, a powerful texture operator, plays a vital role in the
study of pattern classification in computer vision. Various meth-
ods have been developed since the default method [4] of LBP was
first proposed. This paper will focus on the application of the
uniform method [13] and the nri_uniform (Non-rotation invari-
ant uniform) method [14] of LBP. The uniform method of LBP
is grayscale and rotation invariant for uniform patterns, while the
nri_uniform method is only grayscale invariant. The pattern is
called uniform if the binary array contains at most two bitwise
transitions from O to 1, or vice versa.
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Figure 8. Example of LBP Histogram with P =8 and R = 15.
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Two parameters are essential for generating the LBP of an
image. P represents the number of circularly symmetric neighbor
points, and R defines the radius of the neighbor circle around the
target pixel. With the same parameter settings, the generated LBP
histograms are entirely different for the uniform method and the
nri_uniform method as is shown in Figure 8.

The Gaussian pyramid method [7] is often used as a multi-
scale image processing technique. The idea is to apply a Gaussian
filter on the image and then downsample the image, so that the
resolution for each layer will be 1/4 of that of the previous layer.
In our case, the Gaussian pyramid contains three layers (layerO,
layerl, and layer2). And we denote the original sensor active re-
gion image as layer0. The image size for each layer will be 555 x
555 pixels, 278 x 278 pixels, and 139 x 139 pixels, respectively.

The combinational method applies the LBP method on each
layer of the Gaussian pyramid to extract texture features over dif-
ferent scales. Figure 9 shows an example of applying the LBP
method on the Gaussian pyramid with the same parameter setting
for the LBP at each scale.

Sensor Image LBP Image

Layer 1

Figure 9. Example of LBP Method Applied with Gaussian Pyramid: P = 24
and R =3 for LBP in each layer.

Prediction Models

The prediction system is constructed to predict sensor per-
formance based on the active region images. As mentioned, the
performance parameters a and b can represent the potentiomet-
ric response in the saturated region. Following previous work [3],
the support vector regression (SVR) [15] model and a CNN-based
(Convolutional Neural Network) regression model are selected to
be the prediction models. The system takes the generated per-
formance parameters and the texture features extracted from the
sensor image as input during the training process for the SVR
model. To test the accuracy of the prediction model, the system
takes the feature vector as input and outputs the predicted perfor-
mance parameters during the testing process. The structure of the
SVR prediction system is shown in Figure 10.
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Figure 10. Overview of The SVR Prediction System.
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higher dimensions to fit the input data by setting the proper hyper-
parameters. The radial basis function (RBF) [16] kernel is used
in the SVR model because of the non-linear relationship between
the feature vector and the performance parameters.

For the CNN-based regression model, the input for the sys-
tem is the sensor image instead of texture features. The structure
of the CNN prediction system is shown in Figure 11. The deeper
network can learn more complex features from the image in the
convolutional layers, but gradients would become infinitely large
or zero and fail the training if the network contains too many lay-
ers. The residual network provides an idea to overcome the van-
ishing gradient problem by using skip connections. Hence, the
architecture of ResNet-34 [17] is selected for the CNN-based re-
gression model. Two modifications are made here to fit our quest.
The number of neurons in the fully connected output layer is ad-
justed to be two. The loss function is replaced by the L2 loss be-
tween the predicted performance curve and the fitted performance
curve as shown in Figure 11.

.\\\\\\\\\\\\w
i
Sensor !
Sensor Image !
Image . :: Training ONN Testing
| 1 Process i
'\\\\\\\\\\\\\.: Process Pr’a di ;‘“f" Fredml;zld& v:nab\es
Ground (W Ground Truth Variables it lode
Truth i b \
Variables || b 1
R NSNS
Predicted Performance Curve
Te;gfg T'as‘:“”g VAit(x) = a”log(x) + b’

Dataset
Fitted F Curve
Vit = a’log(x) + b RMSE

Figure 11. Overview of The CNN Prediction System.

Experiment Results

The dataset used in this experiment contains 108 sensors, as
mentioned in the dataset preparation section. To get a reliable es-
timate of the system performance, we follow the 5-fold cross vali-
dation procedure to train and evaluate our system. The number of
sensors in each fold is 22, 22, 22, 21, 21. The system will train on
four folds and evaluate the remaining one fold each time. When
all folds have been evaluated exactly once, we take the average
performance across all five folds as the system performance.

The prediction models with which we have experimented are
shown in Table 1.

Table 1. Prediction Methods Implemented in the Image-based
Prediction System

Method Description
M1 Ol + LBP(uniform) + MF + SVR
M2 Ol + LBP(nri_uniform) + MF + SVR
M3 El + GP + LBP(uniform) + MF + SVR
M4 El + GP + LBP(nri_uniform) + MF + SVR
M5 El + Pre-trained CNN + MF + SVR
M6 Ol + Trained CNN

To examine the effect of image preprocessing step, texture
features will be extracted from the original active region image
and the preprocessed sensor image. We denote the enhanced sen-
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sor active region image as EI, and the original sensor image as
OL

In addition to the texture features, the manufacturing factors
(MF) are added to the feature vector as input to the prediction sys-
tem based on the SVR model. The manufacturing factors include
the average measured sensor thickness data and three process con-
trol parameters, which are solid content, line speed, and flow rate.
Each manufacturing factor is a floating-point number, and will be
normalized to the range [0, 1].

The uniform method LBP generates a 10-element 1D feature
array by setting P = 8 and R = 3. The feature array is then nor-
malized such that the sum of the elements in the array will be one.
The nri_uniform method LBP generates a 58-element 1D feature
array under the same setting. The Gaussian pyramid (GP) con-
tains three layers. Hence, applying the LBP method on each GP
layer generates a 1D feature array three times longer.

Another approach is to extract the feature vector learned
from the pre-trained CNN model. The same architecture ResNet-
34 is used here, as we discussed in the previous section. The
feature vector will be a 512-element 1D array that outputs from
the last average pooling layer.

The RMSE is used to evaluate the accuracy of the predicted
sensor performance for each fold. The average RMSE and the
standard deviation of RMSE are used to estimate the performance
of the image-based prediction system.

1 2
RMSEpredict (mV) = \/N Z ( fit (x) - V}j; (x)) 4

Ve (x)— V}‘,‘t (x)

RMSE ,,ciici (%) =
predict ( 0) Vfir (x)

2
> x 100%(5)

x(

Table 2. Prediction Results (five-fold cross-validation)

Method [ RMSE | RMSE | StDev | StDev
(mV) | (%) | (mV) | (%)
M1 6.00 [ 824 [ 131 | 259

M2 5.91 8.06 1.49 2.67
M3 5.69 7.75 0.74 1.45
M4 5.87 7.98 1.53 2.79
M5 5.81 8.12 1.62 3.01
M6 6.22 9.15 0.87 1.68

The accuracy and the robustness of the image-based predic-
tion system can be described by the average RMSE and the stan-
dard deviation shown in Table 2. M1 and M5 are the prediction
models used in the previous work [3]. The texture features ex-
tracted using different LBP methods alone and then fused with
MF cannot make a noticeable difference by comparing M1 and
M2. Texture features extracted using the combinational method
with multiresolution features help improve the accuracy of the
prediction system by comparing M1 with M3 and M2 with M4.
The results show that the preprocessed sensor image and the
Gaussian pyramid method improves the performance of the sys-
tem. M3 achieves the best performance among all six models,
which means applying LBP method on the Gaussian pyramid of
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the preprocessed sensor image will help improve the performance
of the prediction system. The result also verifies the correctness
of the physics-based model.

Conclusion

Image based learning methods are able to accurately predict
sensor quality with RMSE of 7.75 - 9.15% depending on the pro-
cess and model. To monitor the sensor quality during the fabri-
cation process with a R2R system in real-time, the image-based
prediction system is developed to accurately predict the potentio-
metric response of the nitrate sensor given preprocessed sensor
active region images. A novel way of segmenting the active re-
gion from the non-contact sensor image is introduced to prepare
the image dataset for the prediction system. The active region
sensor images will be preprocessed before being fed into the pre-
diction system to enhance the texture features that appear on the
sensor surface. The physics-based model suggests a logarithmic
relationship between time and the potentiometric response in the
saturated phase, which helps us generate the ground truth dataset.
The LBP descriptor, the Gaussian pyramid method, and the pre-
trained CNN model are used to extract texture features from the
preprocessed active region images. The feature vector, one of the
inputs to train the SVR based prediction system, is generated by
appending the extracted image feature with the normalized man-
ufacturing factors. Both machine learning and deep learning ap-
proaches are able to achieve highly accurate predictions of sensor
quality.
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