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Abstract
Nitrate sensors are commonly used to reflect the nitrate lev-

els of soil conditions in agriculture. In a roll-to-roll system, for
manufacturing Thin-Film nitrate sensors, varying characteristics
of the ion-selective membrane on screen-printed electrodes are
inevitable and affect sensor performance. It is essential to mon-
itor the sensor performance in real-time to guarantee the quality
of the products. We applied image processing techniques and off-
line learning to realize the performance assessment. However,
a large variation of the sensor’s data with dynamic manufactur-
ing factors will defeat the accuracy of the prediction system. In
this work, our key contribution is to propose a system for pre-
dicting the sensor performance in on-line scenarios and making
the neural networks efficiently adapt to the new data. We lever-
age residual learning and Hedge Back-Propagation to the on-line
settings and make the predicting network more adaptive for in-
put data coming sequentially. Our results show that our method
achieves a highly accurate prediction performance with compact
time consumption.

Introduction
Solid-contact nitrate sensors have been applied widely in

agriculture. Controlling the quality of sensors is one of the es-
sential steps of the manufacturing process. Due to different ap-
plications or manufacturing purposes, the variety of manufactur-
ing settings makes it difficult for the off-line trained sensor as-
sessment system to adapt to new features. Therefore, a well-
developed sensor assessment system needs to predict the sensor
quality accurately and adapt to the changing manufacturing set-
tings efficiently.

The Scalable Manufacturing of Aware and Responsive Thin
Films (SMART) [1] consortium is developing roll-to-roll (R2R)
processing, which is an advanced scalable manufacturing method
to achieve the goal of high-throughput and low-cost. The Thin-
Film nitrate sensor, one of the products of SMART, is intended
to be an inexpensive potentiometric nitrate sensor. These sen-
sors are fabricated with an ion-selective membrane (ISM) [2] to
realize the function of detecting nitrate levels. Fig. 1 shows the
R2R system and the fabrication of the Thin-Film nitrate sensors.
A physical analysis indicates that the varying roughness of the
fabricated ISM is challenging to quantify and affects sensor per-
formance. To help guide the manufacturing process, we propose
an image-based on-line assessment system to monitor the nitrate
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sensor quality in real-time, and to provide influential information
for further manufacturing.

In our previous work [3], we designed an imaging system to
capture the roughness of the sensor’s active region. We verified
the existing relationship between the sensor performance metrics
and the 2-D images of the ISM regions in nitrate sensors. Ref-
erence [4] developed the automatic systems to predict the sensor
performance based on the captured active-region images. As part
of the development of the deep neural networks, many influen-
tial network structures [5, 6, 7] were adopted in image-based ap-
proaches for classification, regression, and segmentation. Due to
the high-performance optimization techniques [8, 9] and the well-
built datasets [10, 11] that contain extensive, quantitative data, and
high-quality labels, learning-based methods can achieve promis-
ing results on the static datasets. Therefore, [4] also proposed a
Convolutional Neural Networks (CNN) based approach to predict
the large-scale 1-D array of performance curves to better assess
the nitrate sensor’s quality. Although this CNN model achieves
promising results, it is an off-line learning method that trains on a
static dataset and narrows to adapt to new situations, e.g., assess
sensors from new manufacturing settings.

Figure 1. R2R manufacturing process of Thin-Film nitrate sensors: (a).

R2R system; (b). ISM fabrication process; (c). Fabricated Thin-Film nitrate

sensors on PET substrate.

Preparing a sufficient dataset for the various manufacturing
settings is not always feasible in real manufacturing scenarios and
limits the off-line learning method’s practicality. Industry needs a
more adaptive approach to train and inference the data in a timely
manner. However, tuning the deep CNN model in on-line scenar-
ios needs sufficient time for convergence. The shallower layers’
parameters change slowly due to the vanishing gradient problem.
To address this problem, Sahoo et al. [12] proposed Hedge Back-
Propagation (HBP) to embed a concept of dynamic depth and help
the gradients backpropagate to the shallower layers to advance
the on-line learning. However, this implementation was applied
for classification tasks, and the Fully-Connected (FC) network is
not efficient in on-line settings. In this work, we implement the
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HBP with FC network to predict sensor quality. We also apply
the ResNet [6], an influential network structure that can benefit
on-line setting adaptation. Finally, we use the HBP strategy in
ResNet and develop the on-line learning based system to accu-
rately predict the sensor’s quality and adjust efficiently to the new
manufacturing settings.

Sensor Performance Prediction in On-line
Scenarios
Sensor Performance Data

To quantify the sensor performance, we need to record the
temporal potentiometric voltage response in a specific nitrate so-
lutions for around 24 hours. For real-time assessment, our system
is supposed to predict the performance curve as time increases,
which is a large-scale 1-D array and includes around 2k elements.
However, the raw data includes inevitable noise from the manual
measurement. Thus, we apply a curve fitting system to reconstruct
the temporal potentiometric voltage response from the measured
data to avoid the effects of the experimental error. Fig. 2 shows
the curve fitting process. Vm(t) represents the raw data as a func-
tion of time. We apply an average filter with a 30-length sliding
window to Vm(t) to eliminate the data noise. Since the measur-
ing time intervals are different, we downsample the temporal data
to 100 data points to keep a consistent length of the performance
data. The last 80% of the down-sampled data points represent the
potentiometric response in the saturated phase, which indicates
the sensor quality. The 80-point data is labeled as Vd(x) to be the
curve fitting input, and the x equals 20, 21, ..., 99.

Figure 2. Curve-fitting system and an example: the left-bottom figure shows

the voltage response of the original measurement and the smoothed data

as a function of time in saturated phase; the right-bottom figure shows the

downsampled data points and the fitted curve vs. the defined time points.

According to the ion transport equation [13], the potentio-
metric response exhibits logarithmic growth in the ideal case.
Thus, we define the fitting model to be a logarithmic curve, as
shown in Eq. 1. Here, we use the Levenberg-Marquardt algorithm
[14] to optimize the parameters a and b of the fitting model. The
optimized model parameters define the shape of the temporal sen-
sor performance data of the nitrate sensor. The fitted logarithmic
curve V f it will be treated as the system’s prediction target. We
will further apply regression models to predict parameters a and
b based on image features.

V f it(x) = a log(x)+b (1)

Prediction System with On-line Settings
Our previous work [4] generates multiple regression models

to predict the fitted curve with off-line learning. Deep learning
has shown its more powerful ability to represent the distinctive
features from images. The traditional machine learning system is
susceptible to the hyper-parameters that makes the system hard
to update in on-line settings. Thus, we expect to extend the fine-
tuned CNN method to the prediction system in on-line scenar-
ios. Off-line training optimizes the regression model by passing
through the training dataset multiple times. However, in on-line
scenarios, the input data come sequentially. In our task, the newly
fabricated sensors come to the prediction model one by one to
make a prediction and update the model in the same iteration.
Fig. 3 shows the on-line prediction process during nitrate sensor
manufacturing. In each iteration (t), one new sensor data will
be fed to the prediction model. xt is the incoming new sensor’s
active-region image, and Vt with parameters at and bt represents
the corresponding fitted logarithmic curve, which is the ground
truth. The on-line prediction is based on the model generated at
t − 1. After the prediction, the loss between the current predic-
tion and the ground truth will be applied to train the model for
adapting the characteristics to the new input.

Figure 3. On-line system for predicting the nitrate sensor performance

based on 2D images at iteration t.

Proposed Method
In this implementation, we first apply the original Hedge

Back-Propagation (HBP) network [12] for the on-line regression.
We then investigate the backbone network structure and choose
the ResNet, a network based on residual learning that can effi-
ciently adapt to on-line scenarios, for on-line regression learning.
We finally design an on-line learning network that is based on
ResNet and embed the optimizing strategy of HBP.

Fully Connected Network with Hedge Back-
propagation

HBP was proposed by [12]. It provides shortcuts for gradi-
ent backpropagation, and dynamically selects the model’s depth
to improve the on-line classification performance. In this work,
we follow this concept and implement with a 4-layer FC network,
as shown in Fig. 4. The entire backbone network follows the con-
ventional FC network design that all layers are in sequence and
fully connect to the next layer. The non-linear activation func-
tion, ReLU, is placed after each FC layer to learn the high-level
feature representations. The input image will be first resized to
224× 224× 3 and then flattened as a 1-D vector and fed to our
network. All FC layers in our network produce 1,024-dimension
feature vectors. Unlike classical FC networks, the 4 FC layers’
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outputs can be treated as feature maps to directly estimate the re-
sults. To meet the goal of regression task, each of the 4 regression
layers contains two neurons to predict the parameters a and b in
Eq. 1.

Figure 4. The input xinput is a flattened image that is fed to a 4-layer FC

network. All four FC layers output a 1,024 dimension feature vector and

transmit to regression layers for regressions. The final regression result is

a weighted sum of each layer’s regression. The weights βi are trainable

parameters.

The final output is a weighted sum of the 4 layers’ regression
results. βi is a trainable weight of the i-th layer that optimized by
Eq. 2, where t represents the updating iteration and γ is a discount
rate with the value of 0.99. The updated βi is determined by the
i-th layer’s loss, Li. A larger Li will generate a smaller βi. After
each update, we normalize the weights so that ∑βi = 1. There-
fore, based on the current loss of each layer, the system will assign
the βi to optimize the overall performance. For example, suppose
the shallower layer’s regression performance is better than that of
the deeper layers. In that case, the β corresponding to the shal-
lower layer will be larger due to its lower loss value.

The loss of the i-th layer is calculated based on Eqs. 3 and 4.
As shown in Eq. 3, each layer has predicted (ai,p, bi,p) for Eq. 4,
which is compared with the reference ground-truth (agt , bgt ) for
loss calculation. Eq. 4 presents the logarithmic curve based on
our physics-model assumption and x represents 80 sampled time
points. The Root Mean Square Error (RMSE), between the pre-
dicted logarithmic curve and ground-truth curve, will be used for
loss calculation. It is worth mentioning that the shallower lay-
ers commonly converges faster than the deeper layers. Therefore,
based on our βi updating strategy, the βi of the shallower layers
would be much larger than that of the deeper layer at the begin-
ning and cause the network to keep focusing on the shallower lay-
ers’ performance. To alleviate this, we set a minimum boundary
s
L to βi so that βi will not be too small to ignore the correspond-
ing layer during the training process. The parameter L is the total
number of FC layers, which is 4 in our implementation. Follow-
ing the optimal setting in [12], we set s to be 0.2.

β
(t+1)
i = β

(t)
i γ

Li (2)

Li((ai,p,bi,p),(agt ,bgt))=RMSE(F(ai,p,bi,p),F(agt ,bgt))(3)

F(a,b) = a log(x)+b f or x = 20, 21, ..., 99 (4)

ResNet for On-line Learning
The convolutional kernel and the pooling layers in a CNN

can learn both the image’s local features and global features. Due
to their efficiency and strong learning ability, many developed
CNN structures have also been implemented for the on-line tasks.
Although the deeper CNN models commonly outperform shal-
lower models, they suffer from many convergence issues, e.g.,
gradient vanishing and training time consumption. For example,
based on the Chain Rule [15], the loss backpropagates to the first
layer from L-th layer by multiplying L partial derivatives. If all
partial derivatives are smaller than 1, the final gradients return-
ing to the shallower layers will become too small to update the
weights. To overcome this issue, deep neural networks trained on
static datasets usually consume meaningful time for convergence.

On-line learning model, trained on the data in sequence, can-
not provide sufficient time for a deep network, such as VGG [5],
to converge. However, He et al. [6] proposed residual learning,
which inserts a skip connection between each block of convolu-
tional layers. As shown in Fig 5, those connections provide the
shortcuts for gradient propagation to reduce the convergence time
of the shallower layers. Therefore, ResNet is a potential backbone
network for efficient on-line learning. In our work, the ResNet

Figure 5. An example of two basic block in sequence. During the back-

propagation, the gradient in the output layer can directly pass to the shallow

layers.

was first trained on the off-line dataset and then applied under the
on-line settings. In other words, the ResNet will take a single new
sensor image in the sequence and tune itself with this input for
several cycles. We choose a small learning rate during the on-line
training to avoid overshooting. Also, we control the number of
cycles to get optimal performance.

ResNet with Hedge Back-Propagation
Although the residual learning helps the ResNet transmit the

gradient from the deeper layer to the shallower layer, the fixed
depth still limits its on-line learning performance. In this work,
we implement the HBP’s dynamic depth concept and combine
it with the ResNet-34 for on-line sensor image assessment. As
shown in Fig. 6, the conventional ResNet can be split into four
stages; and each stage generates a feature map with different
channels. As shown in Table 1, the ResNet-34 in our implementa-
tion has 256-D,512-D,1024-D, and 2048-D feature maps. A stride
convolutional layer between two stages downsamples the feature
map and increases the receptive area. Therefore, the ResNet can
learn more global features from the image.

To apply those intermediate layers’ feature maps for regres-
sion, we insert a global average pooling layer to summarize the
feature maps at the end of each stage. Regression layers with two
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Figure 6. An image will first be resized to 224 × 224 × 3 and fed to

our network for regression. Each stage outputs different dimension feature

maps. We apply Global Average Pooling (GAP) to transfer the feature maps

to feature vectors and do regression task. The final regression result is a

weighted sum of all 4 regression results.

Table 1: Feature map dimension of 4 stages of ResNet-34.
Dimension

Stage 1 56×56×256
Stage 2 28×28×512
Stage 3 14×14×1024
Stage 4 7×7×2048

neurons will fully connect to each feature vector for assessment
parameter prediction. Our final regression result is a weighted
sum of 4 regression outputs of all the stages. Following Eq. 2, the
weight parameter βi is also a trainable parameter. All the βi will
be normalized after each updating and have a minimum boundary
s
L . Instead of SGD [8], which used in the original implementa-
tion [12], we choose Adam [9] to update all other parameters in
the model.

Experiments
We generate our Thin-Film nitrate sensor dataset with vary-

ing manufacturing factors to evaluate the proposed on-line learn-
ing methods. In the on-line prediction system, the recent data will
be used one by one to train and inference the model. In addition,
the initial weights of the models are fine-tuned from an off-line
dataset. The off-line dataset simulates the data that we have seen
before the manufacturing.

Dataset Preparation
Our nitrate sensor dataset includes the active-region images

of the nitrate sensors and the measured potentiometric response
of each sensor. We follow the imaging system in our previous
work [3] to capture the roughness of the membrane and apply
edge detection to crop the active region and eliminate the effect
of the background. The detecting system is generated in real-time
and can embed into an on-line camera system. In addition, the
corresponding sensor performance is measured in a 0.001 M ni-
trate solution for around 24 hours. The performance metric is the

difference between the potential voltages of the target membrane
and a reference sensor.

Fig. 7 shows the samples of our Thin-Film nitrate sensor
dataset. Since the sensors are manufactured on different dates
with varying manufacturing factors, we group the sensors’ data
by the manufacturing runs. We separate our dataset into an off-
line dataset and an on-line dataset to mimic the manufacturing
process. The off-line dataset includes three earlier groups with a
total of 97 sensors; and the on-line dataset includes two alterna-
tive groups with a total of 45 sensors. Fig. 7(a) shows examples
from each group for the captured active-region images as judged
by visual perception. Fig. 7(b) shows that their potentiometric re-
sponse also grows according to different behaviors. The off-line
dataset will be used to fine-tune the neural networks for the ini-
tialization of on-line learning networks. Subsequently, the on-line
dataset will be fed to prediction systems under the on-line settings.

Figure 7. Nitrate sensor dataset from different manufacturing runs (red

box includes off-line dataset; blue box includs on-line dataset): (a). Ex-

ample active-region images in different groups; (b). Potentiometric voltage

response measured in 0.001 M nitrate solution for sensors in the off-line

dataset; (c). Potentiometric voltage response measured in 0.001 M nitrate

solution for sensors in the on-line dataset.

As we mentioned before, we apply the curve fitting method
to all the measured performance data. The fitted logarithm curve
V f it(x) as a function of increasing time points is the ground
truth or the prediction target. The average RMSE of the fitted
curve V f it(x) and the down-sampled curve Vd(x) across the entire
dataset is 1.39%. We conclude that the fitted curves can depict the
original measurements.

Baseline Experiments
We first apply the proposed architectures: HBP, ResNet, and

ResNet with HBP, to predict the sensor performance curve with
off-line settings. We use the off-line dataset in training and the on-
line dataset in the inference part. In the training process, we ran-
domly select 90 sensors for training and the remaining 7 sensors
for validation to prevent overfitting. In the implementation of the
ResNet-34 model, we use pre-trained weights, which are trained
on ImageNet, as initial values to help provide faster convergence
in training. After 2k epochs with the three models, both train-
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Table 2: Loss in training, validation, and inference in three
methods with off-line settings.

Method Train Loss
[mV]

Validation
Loss [mV]

Test Loss
[mV]

ResNet + BP 1.63 7.98 21.69
FC + HBP 3.34 8.76 30.90
ResNet + HBP 5.14 6.93 23.95

ing loss and validation loss converge. Table 2 shows the results
of training, validation, and inference loss with the three meth-
ods. The varying data distributions among the different manufac-
turing runs limit the model’s generalization performance. Thus,
the testing loss of on-line dataset is much higher than the train-
ing/validation loss.

Evaluation Metrics of On-line Learning
We apply the three methods as described in the section on

the proposed methods. We assume that the prediction models
have seen the off-line dataset, which is from earlier manufacturing
runs. Thus, the initial weights of the three methods are generated
by fine-tuning the networks on the off-line dataset to efficiently
adapt to the new sensor data. In the on-line prediction, the on-line
dataset with 45 sensors comes to the prediction model one by one.
The current prediction’s loss will backpropagate the model and
update the neural network multiple times for higher accuracy in
each iteration. We need to optimize the number of cycles, i.e. the
updating times within each iteration to achieve more accurate and
preventing overfitting. The evaluation system for on-line learning
is placed at the start of each iteration. The RMSE is applied to
quantify the prediction error. Eq. 5 shows the calculation of the
RMSE at the t-th iteration. The total time cost is also an essential
metric to evaluate the efficiency of our prediction model.

RMSEt =

√√√√ 1
N

99

∑
x=20

(
Vt(x)−V̂t(x)

)2 (5)

RMSEAV G =
∑

T
t=1 RMSEt

T
f or T = 45 (6)

Results and Discussion
In the on-line learning experiment, the evaluation and train-

ing processes occur simultaneously. To fairly compare the three
methods’ adaptive abilities, we apply the optimal numbers of cy-
cles to achieve the best performance for each model. Fig. 8 shows
the RMSE of the prediction with new data coming in each iter-
ation. The RMSE suddenly increases when the sensor from an
unseen group coming into the prediction model. Then, the pre-
diction errors descend within one iteration. Table 3 compares
the average RMSE, which is shown in Eq. 6, and the time cost
for each coming new sensor in the on-line training process. Ac-
cording to our results, the FC layers with HBP obtain the small-
est prediction error with the on-line settings. But the HBP opti-
mization method is more suitable under on-line senerios, since the
training process of the FC layers costs much more time than the
ResNet architectures due to the large number of parameters in the
FC layers. Our proposed method of leveraging the ResNet archi-
tecture with HBP optimization also achieves higher accuracy than

Table 3: Results of RMSE and computation time in on-line pre-
diction among three methods.

Method # of cycles
per sensor

RMSEAV G
[mV]

Time cost
[seconds
per sensor]

ResNet + BP 30 11.76 1.20
FC + HBP 35 8.18 77.01
ResNet + HBP 20 10.06 4.91

the method of ResNet with conventional backpropagation. On the
other hand, it also largely reduces the training time compared to
the model of stacking FC layers. The proposed approach lever-
ages residual learning’s efficient architecture to keep updating the
prediction model in real-time. Also, it applies the novel optimiza-
tion method of HBP to achieve higher accuracy during the on-line
task.

Figure 8. Comparison of adaptive abilities for three methods: RMSE be-

tween prediction and ground truth for 45 nitrate sensors in on-line settings

with three developed methods; * represents data with unseen manufacturing

runs coming to the prediction model.

Conclusion
In this paper, we implement three different network struc-

tures for the Thin-Film sensor’s assessment task. The original
FC + HBP achieves the best assessment performance. However,
due to the network structure, the FC + HBP needs expensive time
consumption for tuning. Both ResNet-34 with conventional back-
propagation (ResNet + BP) and ResNet with HBP (ResNet +
HBP) can assess the sensor’s performance in real-time. Due to
the advantages of HBP, the ResNet + HBP can provide better as-
sessment performance than ResNet + BP. Therefore, the ResNet +
HBP not only uses the HBP for better on-line assessment perfor-
mance, but also efficiently adapts to new manufacturing settings
by benefiting from the ResNet’s structure.

Besides the prediction method based on surface roughness
images, we are also investigating more on-line measured data,
such as coating thickness, and electrical properties etc., to help
guide the manufacturing. In the next step, we can also fuse more
additional real-time inputs of fabricated sensors to captured im-
ages and develop a more accurate prediction model.

IS&T International Symposium on Electronic Imaging 2021
Color Imaging XXVI: Displaying, Processing, Hardcopy, and Applications 340-5



References
[1] “SMART Films Consortium,” Brick Nanotechnology Center,

Purdue University, West Lafayette, IN. [Online]. Available:
https://engineering.purdue.edu/SMART-consortium
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