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Abstract
In one of our previous paper [1] proposed in the last year,

we described the color management pipeline that applied to our
nail inkjet printer. However, the resulting prints are not as vivid
as we would like to have since those prints are not well saturated.
In this paper, we propose a saturation enhancement method based
on the image segmentation and hue angle. This method will not
necessarily give us the closest representation of the colors within
the input image but could give us more saturated prints. The main
idea that we perform our saturation enhancement method is to
keep the lightness and hue constant, while stretching the chroma
component.

Introduction
To evaluate the quality of a print, color is one of the most

important aspects to consider. Whether the color of the print is
close to the original digital image or whether the color of print is
well saturated are usually the factors that we consider to assess
our own prints.

In a previous paper [1], we implemented a color manage-
ment method in our printer, which includes tone correction, gamut
mapping, and an inverse table method. The results of the prints
do satisfy one of our criteria, which maps the output close to
the original digital image. However, the gamut mapping proce-
dure, which is used to compress the source gamut into the desti-
nation/printer gamut [1], results in less saturated prints. The low-
saturation resulting prints are not as vivid as what we would like
to have. Hence, we decided to develop a saturation enhancement
algorithm, which could increase the chroma component while not
shifting the hue value. Since the CMY color space is device-
dependent and perceptually nonuniform, using the YyCxCz color
space [2], which is both device-independent and more perceptu-
ally uniform, is expected to yield better results for saturation en-
hancement.

In this paper, we will introduce our saturation enhancement
method in two sections. The first section is dedicated to illustrate
the basic frame but also with its corresponding problems. The sec-
ond section will mainly focus on two steps that we use to improve
the deficiencies mentioned in the first section. This saturation en-
hancement method will be applied to the input image and then fed
through our previously implemented color management pipeline
[1].
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Method
Basic framework

In this section, we will present our saturation enhancement
algorithm basic framework. As we have emphasized, we would
like to achieve our saturation enhancement in the YyCxCz color
space due to its properties. Hence, given an input image, the first
step is to perform sRGB to YyCxCz color space conversion for
each pixel.

The second step is to stretch the chroma component while
keeping the lightness and hue constant. This is our core idea to
perform our saturation enhancement. But how are our YyCxCz
components related to chroma, hue, and lightness? We use the
following three equations in Eq. 1 - Eq. 2 as an illustration. Ac-
cording to the θ value in Eq. 1, we can calculate the hue an-
gle which range from −180° to 180° according to the sector in
Cx −Cz plane. The hue angle actually represents the angle be-
tween the pixel location in Cx −Cz plane and the Cx axis. We
stretch the chroma as described in Eq. 3, where cnew is our new
chroma value after stretching and c is the original chroma. cmax is
the maximum chroma at the lightness and hue in the sRGB gamut
that will be described in more details in the next section. γ is the
power of stretching. We use Fig. 1 as an example to show the
chroma stretched by three different γ values. As we can see from
the plot, given the same input chrominance, the larger the γ value
the larger the output chrominance.

After stretching the chroma, we finally apply our color man-
agement to the modified image, which maps the color into the
printer gamut, as described in [1].

θ =

∣∣∣∣arctan(Cz/Cx)∗
180
π

∣∣∣∣ (1)

Chroma =
√

C2
x +C2

z = c Lightness = Yy (2)

cnew = cmax · f (
c

cmax
;γ)

f (x;γ) = 1− (1− x)γ ,γ > 1
(3)

Maximum chroma value cmax in sRGB gamut
To enable the basic framework to function, we need to know

the maximum chroma of the sRGB gamut for each hue sector
and lightness bin. We use Fig. 2 and Fig. 3 to illustrate how
we obtain the maximum chroma value. Fig. 2 is the top view
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Figure 1. Proposed chroma stretching curve.

of our gamut in YyCXCZ color space where we project our whole
gamut onto the Cx −Cz plane. We define the origin point to be
(Cx,Cz) = (0,0), and we simply divide the gamut into 72 hue sec-
tors with each sector corresponding to 5 degrees starting from 0.
The small blue region in Fig. 2 is one example hue sector for hue
angle between 60 and 65 degrees. If we inspect our example hue
sector between 60 and 65 degrees in a side view, we obtain the plot
shown in Fig. 3, where the x-axis represents the chroma value and
y-axis represents lightness/Yy value. Since Yy ranges from -16 to
100, we simply divide it into 116 Yy bins and assume that within
each bin the maximum chroma is a constant. Therefore, the Cmax
value of the sRGB gamut can be stored into a two dimension ar-
ray Cmax[72][116], and the specific Cmax value of each pixel can
then be acquired by a given corresponding hue sector and Yy bin
number.

Figure 2. Top view of gamut (projection to CxCz plane).

Result analysis
Basic framework method analysis

After applying our first stretching curve based on Eq. 3 with
γ = 2.5, we obtain our first saturation enhancement test result,
which is shown in Fig. 4. The right image shows an obvious in-
crease in color saturation for the apple. It results in a brighter red
apple compared to the left original image, which makes the colors
more vivid. Meanwhile, since we only stretch the chroma value
and keep the hue unchanged, the saturated color will not shift to
another strange color. We could fine-tune the γ value to acquire
more visually pleasant results if this method worked well for all
test images. However, this first proposed method for saturation
enhancement has two problems. The first one is that some neutral

Figure 3. Hue sector side view for the hue sector shownn in Fig. 2.

colors become visibly non-neutral; and the second one is that hu-
man faces (flesh tone) colors tend to become too yellow. We will
briefly describe each problem and our proposed solution to it in
the next two sections.

a) b)
Figure 4. Comparison between the original input image and the first satura-

tion enhancement result: a) Original input image. b) Saturation enhancement

result.

Neutral color problem and solution
The first problem is correlated to neutral colors such as black

and white. In Fig. 5, we notice that after saturation enhancement
the white background becomes slightly yellowish and the black
suit tends to be blueish. People might not consider this to be a
serious problem since the color is still light but this could cause
very visible noise for a print with a white background. This is
especially true for our nail printer, for which we need to apply a
pure white nail gel at the preparation stage. Hence, we propose a
method, which could keep our neutral colors to be neutral.

To solve this neutral color problem, we decide to modify the
stretching function, which we apply to enhance the chroma value,
so that when the input chroma is below a certain threshold, the
chroma is not changed. We come up with this idea because the
neutral color always corresponds to a small chroma value. Hence,
if we set a threshold to the input chroma, we can filter out the low
chroma-value neutral colors without stretching them. Equation 4,
which is a modification of the second line of Eq. 3 illustrates our
solution and the plots in Fig. 6 show the comparison between the
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a) b)
Figure 5. Comparison between the original input image and the first satu-

ration enhancement result (Eq. 3 line 2) with γ = 2.5: a) Original input image.

b) Saturation enhancement result.

original stretching curve and the new threshold applied stretch-
ing curve. We define a threshold t in the new function, which
keeps the chroma unchanged when the chroma is smaller than
this threshold, and perform the γ stretching only if the chroma
value is larger than the threshold. We consider several test images
to narrow down the threshold value and we find out the threshold
value between 0.2 and 0.25 give us the most reasonable results
even though this decision is slightly subjective. In Fig. 6, we
represent the newly proposed stretching curve compared to our
original stretching curve with threshold t = 0.2. The new stretch-
ing curve above the threshold is basically the squeezed and shifted
form of our original curve.

f (x;γ, t) =

{
x, if x < t
t +(1− t)[1− (1− 1

1−t (x− t))γ ] if x ≥ t
(4)

a) b)
Figure 6. Comparison between the stretching curve: a) Original proposed

stretching curve. b) Newly proposed stretching curve with threshold t = 0.2.

To compare the saturation enhancement result of the origi-
nal stretching and the new stretching that is shown in Fig. 7, we
should focus mostly on two parts - the white background and the
black suit. The right image, which is the new saturation enhanced
result, is obviously more neutral on those two parts compared to
the original stretched image shown on the left. Hence, setting a
threshold value to activate the stretching curve does help us to
keep the neutral colors neutral.

a) b)
Figure 7. Comparison between the original stretch result (Eq. 3 line 2) with

γ = 2.5 and the newly proposed stretch result (Eq. 4) with γ = 2.5 and t = 0.2:

a) Original stretch. b) Newly proposed stretch.

Flesh tone colors mapping problem and solution
Problem and investigation

The second problem we find in our original proposed stretch-
ing is that the flesh tone colors tend to become too yellow. This
could not be solved by simply setting a threshold value. What
we come up with first is to find which hue sectors are likely to
contain human face colors (flesh tone colors), and we can make
smaller changes for colors in those hue sectors. The basic idea is
to segment the input image into two parts according to their hue
values and apply the same stretch function, but with two different
γ values. Hence, the hue range related to the flesh tone colors will
have less change and the color would be closer to original image.

To address the human face mapping issue, we first investi-
gate the hue values of different human faces, including different
type skin colors. We use Fig. 8 as an example to illustrates our in-
vestigation. The left pie circle is a Cx −Cz plane diagram and the
angle between the current pixel position in Cx −Cz plane; and the
Cx axis is the hue angle, which varies from -180 to 180 degrees.
For each human face, we randomly pick several pixel points and
record their hue values. On the right human face image in Fig.
8, we randomly pick two points and locate their Cx −Cz values
on the left pie. In this example, we only pick two sample points
to make this illustration more concise; but we pick many more
points in the real investigation to reduce randomness. For our ex-
ample in Fig. 8, the hue values of these two sample points are
44.92◦ and 45.34◦ based on Eq. 1, and we can observe that the
color around 45◦ on the left pie diagram is similar to the color
of these two sample points. Once we collect all the hue values
from different sample points from different human face images,
we can then determine the hue range corresponding to the flesh
tone colors and apply a smaller change to this hue range.

Hue dependent saturation enhancement
Based on our investigation of flesh tone colors, we find that

the flesh tone colors are mostly in the hue range 20◦ to 70◦.
Hence, we apply a smaller gamma stretching inside this hue
range. According to several experiments with different combina-
tions of γ values, we find that assigning γ = 1.2 to this hue range
for flesh tone colors and γ = 2.5 to all other hue values gives us
the best result. Except for applying different γ values, these two
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Figure 8. Example of flesh tone color investigation.

parts both stretch the chroma value by using Eq. 4.
Comparison of the original saturation enhancement and hue

dependent saturation enhancement result is shown in Fig. 9. The
bottom right image c) is our hue dependent saturation enhance-
ment result; and we can clearly see that the flesh tone/face color
is much closer to the original image shown in the Fig. 9 top image
a).

a) Original Image

b) Original saturation
enhancement

c) Hue dependent saturation
enhancement

Figure 9. Comparison between the original saturation enhancement result

and the newly proposed hue dependent saturation enhancement result.

The comparison in Fig. 9 indicates that our method to ap-
ply a smaller γ stretching to flesh tone colors helps us solve the
over saturation enhancement issue. However, the hue range with
fixed values results in a boundary discontinuity issue, which is
shown in Fig. 10. The left bread image is our hue dependent sat-

uration enhancement result and the right image is the zoom-in of
the red circle region on the left image. By concentrating on the
right image, we observe that the color on the cut bread surface is
not smooth, since some pixels are dark yellow while some other
pixels are bright yellow. To confirm the cause of this discontinu-
ity, we choose two pixels which have very different yellow ap-
pearance after saturation enhancement, and find that their chroma
values before saturation enhancement are very similar. However,
their hue angles are located on the two sides of the boundary hue
angle 70◦, which are around 69◦ and 73◦. These close hue an-
gles located next to the boundary hue value but on different sides
of it result in two different γ value stretches, thus leading to two
dissimilar output chroma values.

Figure 10. Fixed hue range hue dependent saturation enhancement result

illustrating discontinuities at the hue boundaries.

Saturation enhancement by different gamma val-
ues – based on image-dependent hue range

To solve this discontinuity issue, we decide to figure out
a way to make the hue range more flexible, which is image-
dependent instead of using the fixed numbers [20◦,70◦] as the
range. We first attempt to achieve this goal by using a connected
components method but find that it performs poorly in some spe-
cific texture regions. After some discussions, we realize that the
method mentioned in [3] could help us to determine the flexible
flesh tone hue range.

This new approach mainly consists of three steps. We first
follow the method in [3] to obtain a merge image with a given
number of clusters. The basic idea behind this is image segmen-
tation. Secondly, we find the hue range of each cluster. Finally,
among these clusters, we choose that one with hue range clos-
est to the fixed hue range [20◦,70◦] and apply a smaller gamma
value within this range. This new approach inherits the idea of
the hue-dependent method, while varying the hue range image-
dependently to handle the boundary artifacts.

We follow the method in [3] to obtain the merge image by
combining a K-means cluster map and a segmented edge map.
The K-means cluster map is generated follow the standard naive
K-means algorithm [8]. The idea behind using the edge map is
to avoid changing the γ value within a smooth region, where a
chroma change artifact would be most noticeable. To generate
the segmented edge map, we first convert the color space from
sRGB to CIE La∗b∗ and apply a bilateral filter, which is used
to smooth the input image. The bilateral filter is a 3 by 3 fil-
ter with σs = 21.63 and σr = 2, where σs is the standard devia-
tion of spatial smoothing; and σr indicates the range of tolerance
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in color difference. Increasing the spatial parameter σs smooths
larger features, and as the range parameter σr increases, the bi-
lateral filter gradually approximates Gaussian convolution more
closely. Then, we use the Sobel edge detector mentioned in [3],
[4], followed by the hysteresis threshold [5] that improves the per-
formance compared to a simple threshold. We apply the algorithm
in [6] to thin the edge map, and finally acquire the segmented im-
age by connected components and sorting. We sort the connected
components in descending order of segment size; and we merge
all small segments to keep the number of segments to a prede-
fined number S, which in our case is 64. To merge the K-mean
cluster map and the segmented edge map, we count the pixels
that have the maximum cluster number within each segment, and
assign this maximum cluster number to the whole segment. In
addition to the steps in [3], we also try to implement an edge link-
ing algorithm [7] to achieve a better edge map. However, this
method costs much more time, while the result does not exhibit
much difference. So we finally decide not to add the step of edge
linking. The block diagram of the whole procedure is shown in
Fig. 11; and an example of the result of the segmented edge map,
the K-means cluster map and the merge map is shown in Fig. 12.

Figure 11. The block diagram to generate the final merge map.

a) b) c)
Figure 12. a) Sorted segment image. b) K-means cluster image c) Merge

map.

We consider that the noise pixels on the cut bread surfaces
might still affect the result of our hue range selection. Hence, we
decide to apply image morphology [9] and a segment size thresh-
old. Image morphology is a technique to remove the noise pixels
in the binary image by accounting for the form and structure of
the image. There are two basic image morphology operations,
which are image dilation and image erosion; and by combining
these two basic operations, there are also image closing and image

opening. We find that image dilation performs the best to remove
noise pixels; and the result is shown in Fig. 13. By comparing to
the original sorted image in Fig. 12, this new sorted image after
the image morphology operation has many fewer noise pixels. To
remove the leftover small segments, we merge all small segments
into surrounding large segments by thresholding the segment size.
Then we merge the segment image and the K-means image into
our final merge map as shown in the Fig. 13 right image.

a) b)
Figure 13. a) Sorted segment image after image morphology. b) Final

merge map.

After we obtain our merge map, we then acquire the hue
range in each segment and find the hue range closest to hue range
[20◦,70◦]. The final saturation enhancement result is compared to
the result of saturation enhancement with a fixed hue range in Fig.
14. The right image in Fig. 14 is our image-dependent hue range
result, which is much smoother compared to the left fixed hue
range result. By comparing more test images, we conclude that
our image-dependent hue range saturation enhancement method
does solve the boundary issue of discontinuities.

After solving the neutral color and discontinuity problems,
we want to know how does our final saturation enhancement al-
gorithm perform. Hence, we experiment with several test images
and one attractive result is shown in Fig. 15. The left image is the
original image and the right one is our final saturation enhance-
ment result. As we can see, the background grass is shown in a
much brighter color and the back area of the deer tends to be more
brown, which results in a more vivid result. Meanwhile, by focus-
ing on the bottom text region, we notice that the neutral color with
small chroma value is not affected, as we expect. Figure 16 shows
some additional results, including images of two individuals with
darker skin tones. It can be seen that the flesh tones are preserved,
and the saturation of other colors is generally enhanced.

Conclusion
In this paper, we introduce a saturation enhancement algo-

rithm by keeping the lightness and hue as constant while stretch-
ing the chroma component. Our final results improve the vivid-
ness and help us to increase the saturation of images. We intro-
duce three main developments compared to the basic framework
for saturation enhancement. To keep neutral colors neutral, we ap-
ply a threshold to the normalized chroma value. To alleviate the
excess saturation for flesh tone colors, we apply a smaller satura-
tion power (smaller gamma value) to the hue range of flesh tone
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a) b)

c) d)
Figure 14. a) Fixed hue range saturation enhancement result. b) Image-

dependent hue range saturation enhancement result. c) Zoom-in of the red

rectangle region on the image a). d) Zoom-in of the red rectangle region on

the image b).

a) b)
Figure 15. a) Original image. b) Final saturation enhancement result.

colors. And in order to solve the discontinuity problem, we set
the hue range of flesh tone colors in an image-dependent manner,
according to segmentation of the image. However, there are still
some aspects we can improve in the future. First, our K-means
clustering algorithm currently using a fixed number of four clus-
ters. This could be improved by allowing a flexible number of
cluster that is image-dependent. Furthermore, we can find a more
precise method to choose the hue range since there are still some
test images that fail to find a reasonable hue range, which result
in the default hue range.
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a) b)

c) d)

e)
f)

g) h)
Figure 16. a), c), e), g) (left) Original images. b), d), f), h) (right) Final

saturation enhancement result.
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