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Abstract

Banding has been regarded as one of the most severe defects
affecting the overall image quality in the printing industry. There
has been a lot of research on it, but most of them focused on uni-
form pages or specific test images. Aiming at detecting banding
on customer’s content pages, this paper proposes a banding pro-
cessing pipeline that can automatically detect banding, identify
periodic and isolated banding, and estimate the periodic interval.
In addition, based on the detected banding characteristics, the
pipeline predicts the overall quality of printed customer’s con-
tent pages and obtains predictions similar to human perceptual
assessment.

1. Introduction

Banding is one of the most difficult image defects which is
a one dimensional, isolated or periodic, luminance and/or chro-
matic variation induced by the vibration of different printer com-
ponents [1]. This defect was categorized under the macro unifor-
mity image quality attribute in the paper [2], which evaluates the
overall image quality of the printed image and considers banding
as one of the most severe defects that affect the overall perceived
image quality.

Much previous work has been done to study various aspects
of banding defects, including defect stimulation, visual analy-
sis, Fourier domain analysis, and banding reduction. A common
approach to assess the visibility of banding is to conduct psy-
chophysical experiments and collect the subject’s perceptual eval-
uation [3, 4, 5]. Some methods analyzed banding in the Fourier
domain, implemented in one dimension [6] or two dimensions
[7]. Several works have also been done at the printer mechanism
level to reduce banding, and have produced encouraging results
for banding reduction [7, 8].

We draw inspiration from the banding detection work of
Zhang et al. [9, 10, 11]. The algorithm that they developed can
detect banding on printed uniform color pages, and can classify
periodic and aperiodic banding. However, this work cannot de-
tect banding defects on customer’s content pages. We remedy
this with a new design that allows automatic detection of banding
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defects on customer’s content pages. Furthermore, we design a
scheme for predicting the overall quality based on banding fea-
tures and perceptual assessment, which yields promising predic-
tions.

2. Methodology

The overall goal of our work is to automatically detect aperi-
odic and periodic banding on the printed customer’s content pages
and automatically analyze the print quality according to the band-
ing severity.

As shown in Figure 1, the input is the master - test image
pair. The master image is the digital original, and the test image
is the scanned printed customer’s content pages.

Figure 1. Overall pipeline of banding detection and analysis.
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We first pass the master-test image pair into the pre-
processing pipeline, which includes image registration, region of
interest (ROI) extraction, and ROI alignment. Next, we apply
banding profile extraction and banding identification to localize
and identify banding defects. We extract meaningful features of
banding defects, which can indicate the severity of the defects.
Then we use machine learning models to classify these features
into four categories from A to D (A symbolizes almost perfect
print quality and D symbolizes the worst print quality. The ground
truth is labeled by human subjects).

2.1 Pre-processing

Image registration is the first step of pre-processing, which
aligns the test image with its master image, to eliminate the mis-
alignment caused by the scanning process.

For our test images, we assume that the geometric transfor-
mation involves only a small skew angle rotation and a small
translation along the x-axis and the y-axis, so we would like to
find several matched key points to compute the best transforma-
tion. We convert images from RGB to grayscale to reduce the
image dimension, and then resample the image using a 1/3 down-
sampling rate to save computation. Next, we apply histogram
matching to the test image based on the master image to match
the image gray values, and then we use Harris Corner Detection
[12] to extract key points on the master image and test image, re-
spectively. The feature descriptor is constructed using the 31 ×
31 local areas surrounding each key point. By minimizing the
sum of squared differences (SSD) and computing the ratio SSD,
we find the best-matched key point pair. We then use the Maxi-
mum Likelihood Estimation Sample Consensus (MLESAC) [13]
to take advantage of multiple matched point pairs. The transfor-
mation estimated by MLESAC is more robust than by random
sample consensus (RANSAC) [14].

After obtaining the aligned test image, we would like to gen-
erate the object map, and divide the entire image into different
ROIs according to the object map. The details of this part were
explained in our previous work [15].

In this paper, all the following processes are implemented on
the ROI, but they can also be implemented on the entire image.

2.2 Banding defect detection

In this section, we extract the banding profile, and then local-
ize and identify banding based on the profile. Next, we refine and
link the banding result, measuring the amount per unit area. For
each band, we get its height, width, and distance, to describe the
severity of the banding. In addition, periodic banding is identified
and its repetitive interval is estimated.

2.2.1 Banding profile extraction
Figure 2 shows the steps of the banding profile extraction.

First, we de-screen the input image or ROI to remove the halftone

Figure 2. Pipeline of banding profile extraction.

patterns. A previous work [11] used a median filter with a win-
dow size of 0.05 inches (15 × 15 pixels for an image scanned at
300 dpi) to de-screen for uniform color pages and achieved good
performance. But for our customer’s content pages, after several
tests, we found that a Gaussian filter with a size of 0.02 inches (7
× 7 pixels for our pages scanned at 300 dpi) is the best approach
to do de-screening.

Then, we convert the image or ROI from the sRGB color
space to the CIE1931 XYZ color space (hereinafter abbreviated
as CIE XYZ). Next, in the CIE XYZ color space, the one dimen-
sional projection of the image along the scan direction is com-
puted by calculating the mean value of each line in this direction.

Since the banding may fade along the scanning direction, the
1D projection of the banding may become inconspicuous if we
compute it across the entire image. Accordingly, we divide the
image into three parts along the scanning direction and perform
three separate projections, respectively. Independent analysis of
each projection can yield more accurate results. For each part, we
compute 1-D projections of the X , Y , and Z channels using the
following formula:

pro jectioni[m] =
1
N

N

∑
n=1

imagei[m,n] (1)

where M is the number of pixels in the process direction and N is
the number of pixels in the scan direction, which is perpendicu-
lar to the process direction; and [m,n] represents the coordinates
along the process direction and the perpendicular direction, re-
spectively.

Then, the 1-D projections of the X , Y , and Z channels are
converted to the CIE 1976 L∗a∗b∗ color space (with a 2◦ observer
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and D65 illumination). Following this, to make the banding more
distinct from the image texture, we deduct its baseline from each
1-D projection signal. The baselines are obtained by applying a
1-D median filter with a size of 0.02 inches (7 pixels at 300 dpi) to
each 1-D projection, respectively. Then, we compute the CIE ∆E
and signed CIE ∆E using the three baseline-removed projections
in CIE L∗a∗b∗ color space.

The formula for calculating CIE ∆E is:

CIE ∆E =
√

∑
c=L∗,a∗,b∗

(Originalc −Baselinec)2 (2)

Figure 3. 1-D projection signals and baseline-removed signals.

Since the L∗ channel indicates the lightness information, for
the signal of L∗, if it is higher than the baseline, the banding in
this position is a light banding; otherwise, it is a dark banding.

Figure 4. 1-D banding profile in CIE ∆E and signed CIE ∆E units.

CIE ∆E can indicate the color difference in the CIE L∗a∗b∗ color
space, but because it is non-negative, the light/dark information
about the banding is lost. We calculate the signed CIE ∆E by mul-
tiplying CIE ∆E by the sign of the L∗ channel baseline-removed
projection, which makes the color difference also include light-
ness information. Figure 3 shows the 1-D projection signals and
baseline-removed signals in the L∗, a∗, and b∗ channels, respec-
tively. Figure 4 shows the 1-D banding profile in CIE ∆E and
signed CIE ∆E units.

Once we get the CIE ∆E, we need to find local maxima
in CIE ∆E. A local maximum is found by comparing adjacent
values. Once the local maximum is determined, its center point,
height, and width will be calculated, as shown in Figure 5. The
blue curved lines are signed ∆E. The red points signify the center
position of each detected banding, which also is the local maxi-
mum value of the signed ∆E. The green vertical line is the height
for each peak, which is obtained by computing a vertical distance
between the peak and its lowest profile line. The two yellow lines
represent the total width and the width at half the height of each
peak.

Figure 5. The center point, height, and width of peaks.

Then, we customized some thresholds for height, width, and
distance between adjacent bandings according to the properties
of the banding defect, and finally selected local maxima that met
the threshold as bands. We set the threshold for local maxima
according to a previous work [11] and our several experiments.
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The thresholds for height, width and distance are shown in the
table below and Figure 6 shows the peaks refined by the different
thresholds.

Table1: Threshold for local maxima.
Height Meanheight +

1
2 Stddevheight

Width 2 pixels
Inter-band Distance 5 mm (59 pixels at 300 dpi)

Figure 6. Peaks refined by different thresholds.

Image features may also lead to local maxima in the 1D
projection. To distinguish the local maxima caused by banding
defects from those caused by image features, we use the master
image as a reference. Although we have performed a global im-
age registration between the master image and the test image, we
found that for a small ROI, there will still be a slight translation
misalignment. Therefore, we use cross-correlation to locally reg-
ister the test ROI and the master ROI pair, and calculate the signed
offset of the test ROI relative to the master ROI in the process di-
rection, which is denoted by o. Then, we extract banding profiles
to obtain two sets of local maxima (master set and test set). Obvi-
ously, the master sets include all the local maxima caused by the
image features, so we only select the local maxima in the test set
but not in the master set. For each local maximum position ptest [i]
in the test ROI, if it is caused by image features, it must have a
local maximum on the position pmaster[ j] of the master ROI. The
relationship between the two positions is

positiontest [i] = positionmaster[ j]+o (3)

where i indicate i-th peak in the test set and j indicate j-th peak
in the master set

Through this step, we can obtain the local maximum caused
by banding defects, which will not be affected by the image fea-
tures or content.

2.2.2 Repetitive interval calculation
Periodic bandings are an important print defect, which can

help us figure out problems that occurred in an internal printer ro-
tating component. To define periodic bands and estimate their

repetitive interval, we use a search strategy to select periodic
peaks from the isolated peaks detected in the previous section,
estimate an approximate interval, and then optimize it until an ac-
curate result is obtained.

We first compute all intervals between neighboring bands,

intervali = Band Positioni+1 - Band Positioni

and sort them by length. So we obtain a sorted array of lengths
[interval1, interval2, ..., intervali]. If there are periodic bandings
in the test image, at least three isolated bands are identified as
periodic bands. Thus the length of at least two intervals is the
same or similar.

We set an upper bound (interval × 1.1) and a lower bound
(interval × 0.9) for each interval of a different length, then re-
peatedly scan all intervals to find the bounded intervals, group
them, and update their mean value as the new rough repetitive
interval. This step is repeated until there is no change between
the new rough interval and the old rough interval. After that, we
use a new upper bound (interval × 1.05) and a new lower bound
(interval ×0.95) of the updated interval, and re-scan all intervals
to find all bounded intervals and update the mean value as the new
interval. We compute the banding occurrence ratio (BOR) as ex-
pressed by the following formula (4) and select the interval with
the largest BOR as the periodic interval.

BOR =
n× I

h
(4)

where n is number of intervals that fall in this bin, h is the height
of the ROI and I is average value of the intervals in this bin.

Figure 7. A customers’ content page and its banding detection results.

245-4
IS&T International Symposium on Electronic Imaging 2021

Color Imaging XXVI: Displaying, Processing, Hardcopy, and Applications



Figure 7 shows the test image and its banding detection re-
sults. The yellow lines indicate the boundary between the three
areas; the blue lines indicate the center lines of each area; the
white projection around the blue line is the 1D projection of this
area; the red short lines perpendicular to the blue line represent
periodic bandings. We also calculated that the repetitive interval
of the periodic bands of this image is 315.33 pixels (26.67 mm at
300 dpi).

2.3 Banding feature extraction and quality ranking
classification

In the previous section, we detected banding in the image or
ROI. In this section, we describe the extraction of banding fea-
tures, which represent the severity of banding. Then, we develop
classification models that can predict the print quality based on
the severity of banding.

2.3.1 Data preparation and banding feature selection
Our test images are provided by HP Inc. All test images

are scanned pages of printed images, with various print defects
of varying severity. We select 800 images (each image has a size
of 3100 × 2400 pixels and a resolution of 300 dpi), and after the
aforementioned pre-processing, they are aligned with their master
image and cropped into ROIs.

We set four levels from A to D to represent the print qual-
ity. A symbolizes almost perfect print quality, and the subsequent
grades B, C, and D indicate that the banding defects are becoming
more and more obvious and the print quality is getting worse and
worse. Since we would like to use machine learning models to
predict print quality based on perceptual assessment, three of our
laboratory members labeled the ground truth manually. A set of
ground truth samples is shown in Figure 8.

Figure 8. A set of ground truth samples. The reader is advised to zoom in

to see the banding defects.

For the banding defects, our pipeline can automatically de-
tect the total number of bands in each ROI, and the position co-
ordinate, length, width, and prominence of each band. Among
them, the prominence shows the “local protrusion” of each band.
It is defined as follows: let B denote the current peak, A denotes
the peak immediately to the left of B, and C denotes the peak im-
mediately to the right of B. Let hi, i = A,B,C denote the height of

each of these peaks, then the prominence for peak B is defined as

prominenceB = hB −max(hA,hB,hC) (5)

The following table shows the components of the detectable band-
ing feature vector.

Table 2: Components of the detectable banding
feature vector for an ROI.

1. The total number of bands
2. The absolute mean value of signed delta E
3. The standard deviation of signed delta E
4. ROI area
5. The average height
6. The maximum height
7. The average width
8. The maximum width
9. The average prominence

As detailed above, we have calculated various features,
which are sufficient to define the shape and state of the banding.
However, for machine learning models, too many input features
often lead to model overfitting.

The ANOVA F-statistic [16] is a popular feature selection
technique. In [17], researchers found that the traditional ANOVA
F-statistic is proper for selecting features for classification mod-
eling problems where the inputs are numeric and the predictor
outputs are categorical. For our model, all banding features are
numeric, and we would like to obtain four levels (from A to D) of
predictors to show the print quality. Therefore, our classification
modeling problem contains the proper inputs and outputs to use
the ANOVA F-statistic for feature selection.

We use the Python scikit-learn library function f-classif to
implement feature selection. This function computes the ANOVA
F-statistic of the given inputs and returns the feature importance
score based on the F-statistic score and p-value of each feature.
First, we randomly split our images into 60% training images,
20% validation images, and 20% test images, and pass them into
our banding detection pipeline to compute feature vectors. The
validation image set is used for feature selection and model selec-
tion. The test data is used to analyze the performance of the final
model.

Figure 9 shows the feature importance score of each input
feature. This clearly shows that Feature 1 (number of bands),
Feature 5 (the average height), Feature 6 (the maximum height)
and Feature 8 (maximum width) are the most important. In addi-
tion, Feature 2, Feature 4, and Feature 9 also have slightly higher
scores. In order to decide the number of features most suitable
for the model, we use logistic regression with an L1 penalty to
iteratively estimate the accuracy of choosing 3 to 9 features. For
the same validation data, the accuracy of selecting 3 features is
71.43%, the accuracy of selecting 4 features is 76.19%, and the
accuracy of selecting 5 features is as high as 80.95%. The ac-
curacy goes back to about 70% if 6 and subsequent higher num-
bers of features are selected. Therefore, we chose the top 5 fea-
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Figure 9. The ANOVA F-statistic score for each feature.

tures ranked according to the importance score, which are the to-
tal number of bands in an ROI, the absolute mean value of signed
delta E, the average banding height, the maximum banding height,
and the maximum banding width within an ROI.

2.3.2. Classification models
We use four popular machine learning models to build pre-

dictors: logistic regression, support vector machine, KNN and
random forest. There are two heuristics to use binary classifica-
tion for multi-class classification: One-vs-Rest (aka OvR, One-
vs-All or OvA), and One-vs-One (OvO) [18].

OvR means dividing a multi-class classification into multiple
binary classification problems. Then, we train a binary classifier
for each binary classification problem, and for each data sample,
use the most confident model to make the prediction. For our
case, the multi-class classification problem can be divided into
four binary classifications, as shown below:

Binary classification problem 1: A vs [B,C,D]
Binary classification problem 2: B vs [A,C,D]
Binary classification problem 3: C vs [A,B,D]
Binary classification problem 4: D vs [A,B,C]
OvO also splits the multi-class classification into binary clas-

sification problems, but uses a one-to-one strategy. Compared
with the OvR, OvO requires more binary models. The formula
used to calculate the number of binary models is as follows:

# of binary models =
NumClasses(NumClasses–1)

2
(6)

So, our problem with four types: A, B, C, and D, can be
divided into several binary classifications as follows:

Binary classification problem 1: A vs B
Binary classification problem 2: A vs C
Binary classification problem 3: A vs D
Binary classification problem 4: B vs C
Binary classification problem 5: B vs D
Binary classification problem 6: C vs D
Each binary classifier predicts a class label. When we input

the test data into the classifier, we will get the final result based
on the majority count of the outputs of all the binary classifiers.

2.3.3 Results
We mentioned that we use a random splitting tool to ran-

domly split the data sets into 60% training data, 20% validation
data, and 20% test data.

For skewed classes, accuracy cannot sufficiently indicate the
performance of the model. Two supplementary evaluation scores,
balanced accuracy [19], and F1 score [20] are computed based on
the test data, to avoid over-performance estimation of unbalanced
data sets.

Accuracy =
T P+T N

Total samples
(7)

Balanced Accuracy =
1
2
(

T P
T P+FN

+
T N

T N +FP
) (8)

F1 =
T P

T P+ 1
2 (FP+FN)

= 2× Precision×Recall
Precision+Recall

(9)

{
Precision = T P

T P+FP

Recall = T P
T P+FN

(10)

where, TP = number of true positives;
TN = number of true negatives;
FP = number of false positives;
FN = number of false negatives.

The following table shows the models we selected and the
corresponding accuracy, balanced accuracy, and F1 results. The
best decision is made by the random forest. We conclude that ran-
dom forest is based on ensemble learning and introduces random-
ness, so that the model can handle outliers and solve the problem
of data imbalance, thus it better adapts to our data. In addition,
all the prediction results on the test dataset have notable perfor-
mance, which can help us quickly inference to predict the print
quality.

Table 3: Score results for various classifiers.
Model Accuracy Balanced accuracy F1

LR(OVR) 0.81 0.75 0.77
SVM (OVO) (RBF) 0.82 0.78 0.80
SVM (OVR) (RBF) 0.82 0.78 0.80

KNN 0.86 0.83 0.85
Random Forest 0.91 0.85 0.90

3. Conclusion

In this paper, we developed a banding processing pipeline
and print quality classifier to diagnose printer defects and evalu-
ate print quality. Our pipeline includes banding profile extraction,
periodic banding interval estimation, and print quality classifica-
tion. Our results show that banding defects can be automatically
detected, the periodic interval of periodic banding can be esti-
mated, and higher accuracy, balanced accuracy, and F1 score can
be obtained based on the banding feature vectors.
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[2] D. René Rasmussen, Edul N. Dalal and Kristen M. Hoff-
man, “Measurement of macrouniformity: Streaks, bands,
mottle and chromatic variations”, IS&T PICS Conference
Proceedings, 2001.

[3] Peter D. Burns, Jonathan B. Phillips and Don Williams,
“Adapting the ISO 20462 softcopy ruler method for online
image quality studies” IS&T Electronic Imaging, 2013.

[4] Elena A. Fedorovskaya and Huib De Ridder, “Subjective
matters: from image quality to image psychology” IS&T
Electronic Imaging, 2013.

[5] Yi Yang, Utpal Sarkar, Isabel Borrell and Jan P. Allebach,
2020. “Inkjet quality ruler experiments and print uniformity
predictor” IS&T Electronic Imaging, 2020.

[6] Pei-Ju Chiang, Nitin Khanna, Aravind K. Mikkilineni,
Maria V. Ortiz Segovia, Sungjoo Suh, Jan P. Allebach,
George T.-C. Chiu and Edward J. Delp, “Printer and scanner
forensics,” Signal Processing Magazine, IEEE, vol. 26, no.
2, pp. 72–83, 2009.

[7] Ahmed H. Eid; Mohamed N. Ahmed, Brian E. Cooper
and Edward E. Rippetoe, “Characterization of electrophoto-
graphic print artifacts: Banding, jitter, and ghosting,” Image
Processing, IEEE, vol. 20, pp. 1313–1326, 2011.

[8] Cheng-Lun Chen, George T.-C. Chiu, Jan P. Allebach,
“Banding reduction in electrophotographic process using
human contrast sensitivity function shaped photoreceptor
velocity control,” Journal of Imaging Science and Technol-
ogy, vol. 47, pp. 209–223, 2003.

[9] Jia Zhang, Stephen Astling, Renee Jessome, Eric Maggard ,
Terry Nelson, Mark Shaw and Jan P. Allebach. “Assessment
of presence of isolated periodic and aperiodic bands in laser
electrophotographic printer output” IS&T Electronic Imag-
ing, 2013.

[10] Jia Zhang and Jan P. Allebach. “Estimation of repetitive in-
terval of periodic bands in laser electrophotographic printer
output” IS&T Electronic Imaging, 2015.

[11] Jia Zhang. An Investigation of Print Quality Defects: Psy-
chophysical Evaluation of Content Masking, Development
of Web-based Troubleshooting Tools, and Analysis of Sharp
Roller Bands, Ph.D. Dissertation, Purdue University, West
Lafayette, IN, 2016.

[12] Jie Chen J, Li-hui Zou, Juan Zhang and Li-hua Dou. “The
Comparison and Application of Corner Detection Algo-
rithms”. Journal of Multimedia, vol. 4, pp. 435-441, 2009.

[13] Philip HS. Torr and Andrew Zisserman. “MLESAC: A new
robust estimator with application to estimating image geom-
etry.” Computer Vision and Image Understanding, vol. 78,
pp. 138-156, 2000.

[14] Konstantinos G. Derpanis, “Overview of the RANSAC Al-
gorithm,” Image Rochester NY, 4(1), pp. 2-3, 2010.

[15] Runzhe Zhang, Yi Yang, Eric Maggard, Yousun Bang,
Minki Cho and Jan P. Allebach, “A comprehensive system
for analyzing the presence of print quality defects”, IS&T
Electronic Imaging, 2020.

[16] Henry Scheffe, The Analysis of Variance, Wiley Classics Li-
brary, Wiley-Interscience Publication, New York, NY, 1999.

[17] Max Kuhn, and Kjell Johnson, Feature Engineering and Se-
lection: A Practical Approach for Predictive Models. Chap-
man Hall/CRC Data Science Series, Boca Raton, FL, 2020.

[18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Tal-
walkar, Foundations of Machine Learning. MIT Press, Cam-
bridge, MA, 2018.

[19] Digna R. Velez, et al, “A balanced accuracy function for
epistasis modeling in imbalanced datasets using multifactor
dimensionality reduction.” Genetic Epidemiology: the Offi-
cial Publication of the International Genetic Epidemiology
Society, 2013.

[20] David M.W. Powers, “Evaluation: from precision, recall and
F-measure to ROC, informedness, markedness and correla-
tion.” arXiv preprint arXiv:2010.16061, 2020.

Author Biography

Yi Yang received her B.S in Geomatics Engineering from
Wuhan University in 2013 and M.S in Geomatics Engineering
from Chinese Academy of Sciences in 2016. She is currently work-
ing on a Ph.D. in Electrical and Computer Engineering at Purdue
University. Her primary area of research has been image process-
ing, computer vision and machine learning.

Eric Maggard received his B.S. degree in Physics from
Northwest Nazarene University, Nampa, Idaho in 1991 and the
M.S. degree in Computer Science specializing in image analysis
and processing from Walden University in 2006. He is an Expert
Imaging Scientist in the LaserJet Hardware Division and has de-
veloped programs and image quality algorithms for the last 15
years that are used in the testing of LaserJet print and scan image
quality.

Minki Cho is an engineer with HP Printing Korea. He re-
ceived B.S.(1997) and M.S.(1999) in electrical engineering from
the Inha University, Korea. From 2003 to 2017, he worked for
Samsung Electronics and Samsung Advanced Institute of Technol-
ogy. His research areas are print image processing, print image
quality diagnosis and calibration.

Yousun Bang is a manager of Image Quality Part in the Imag-
ing Lab at HP Printing Korea Co. Ltd. She received her BS and
MS in mathematics from Ewha Womans University, Seoul, Korea
in 1994 and 1996, and her Ph.D. in the School of Electrical and
Computer Engineering, Purdue University, West Lafayette, Indi-
ana in 2005. She worked for Samsung Advanced Institute of Tech-
nology and Samsung Electronics Company from 2004 to 2017.

Jan P. Allebach is Hewlett-Packard Distinguished Professor
of Electrical and Computer Engineering at Purdue University.
Allebach is a Fellow of the IEEE, the National Academy of In-

IS&T International Symposium on Electronic Imaging 2021
Color Imaging XXVI: Displaying, Processing, Hardcopy, and Applications 245-7



ventors, the Society for Imaging Science and Technology (IS&T ),
and SPIE. He was named Electronic Imaging Scientist of the Year
by IS&T and SPIE, and was named Honorary Member of IS&T ,
the highest award that IS&T bestows. He has received the IEEE
Daniel E. Noble Award, the IS&T/OSA Edwin Land Medal, the
IS&T Johann Gutenberg Prize, and is a member of the National
Academy of Engineering.

245-8
IS&T International Symposium on Electronic Imaging 2021

Color Imaging XXVI: Displaying, Processing, Hardcopy, and Applications



• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging 
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . .  Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org


