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Abstract
Modern scan routines require a predefined scan resolution,

whether it is customer-selected or a default value in the scan-
ner’s settings. When the scanning process begins, the resolu-
tion cannot be changed. This results in all scanned pages, no
matter how much their contents may vary, having output images
of the same size. If we can determine an optimal resolution for
each scanned document raster content, we can save a lot of stor-
age. In this paper, the resolutions in question are 300 dpi, 150
dpi, and 75 dpi. We define the criteria for optimal scan reso-
lution and propose some new features to help determine it for
scanned document raster content. The features proposed are sam-
ple power spectrum mean squared error (MSE), edge density,
and edge contrast. These features can reflect the truthfulness be-
tween high-resolution 300 dpi images (references) and their low-
resolution (150 dpi and 75 dpi) counterparts and the intrinsic
changes among them. Combining them with spatial activity, tile
standard deviation (STDDEV) structural similarity index measure
mean (tile-STDDEV SSIM), and tile STDDEV structural similar-
ity index measure STDDEV (tile-STDDEV SSIM STDDEV), we
can form a feature vector, which is then fed into an SVM classi-
fier. Test result shows that we can achieve a prediction accuracy
of 93.4%.

Introduction
Currently, when scanning documents using automatic docu-

ment feeders (ADFs), people need to define a scan resolution, or
use the default setting in the scanner. After the scanning process
begins, the resolution cannot be changed. This makes the result-
ing scanned images have the same resolution, and the same size
if saved as uncompressed files. But this can lead to inefficient
usage of memory, especially for document pages containing dif-
ferent raster contents, as shown in Figure 1. Although they look
very different, the two pages will have the same size using the cur-
rent scanning process. But we can clearly see that the flat image
in Figure 1a only needs a scan resolution of 75 dpi, but the line
drawing in Figure 1b requires 300 dpi to keep all details. If we set
the scan resolution to be 75 dpi, we will lose a lot of information
in Figure 1b. If the scan resolution is 300 dpi, storing scanned
version of Figure 1a will need much more storage than needed.

In order to solve this problem, we need to determine the op-
timal scan resolution according to the scanned document raster
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(a) Flat image (b) Line drawing

Figure 1: Example of two pages with different contents. We can
see that picture (a) contains a plain area, while picture (b) has
more detail. So we can see that they need different scan resolu-
tions.

content. Here, optimal scan resolution refers to the lowest scan
resolution that keeps all details in the scanned copy. In this paper,
the resolutions in question are 300 dpi, 150 dpi, and 75 dpi. We
choose 300 dpi as the highest scan resolution because after look-
ing at many scanned images from 600 dpi to 75 dpi, we think that
300 dpi is good enough to keep all details of the scanned docu-
ments. We choose 75 dpi as the lowest scan resolution because it
is the smallest value in most HP scanners. 150 dpi is added into
consideration because it is half of 300 dpi, and twice of 75 dpi.
To the best observation of the author, it is also commonly used
in everyday scanning processes. To decide the optimal resolution
for a scan document raster content, we need to compare the image
quality across 300 dpi, 150 dpi, and 75 dpi, and choose the lowest
resolution that has all the information as the 300 dpi version can
provide.

Image quality (IQ) or image quality assessment (IQA) is
a widely-studied topic and many quality estimators (QEs) have
been developed [1][2]. Based on whether a reference image exists
or how complete the reference image is, QEs can be divided into
three categories: full-reference (FR), reduced reference (RR), and
no reference (NR) QEs. FR QEs are developed by taking into con-
sideration a perfect reference image. Examples are mean squared
error (MSE) or peak signal-to-noise ratio (PSNR), most apparent
distortion (MAD) [3], structural similarity index (SSIM) [4][5],
and visual information fidelity (VIF) [6]. They all require the ref-
erence images of the same size. RR QEs are used in cases where
reference images are available, but too costly to get. Examples
include “divisive normalization” [7] and “quality-aware image”
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QEs [8]. Often they are based on natural scene statistics (NSS)
models [9]. NR QEs are used in cases where no reference im-
ages are available. They instead exploit the intrinsic properties of
test images. Examples are edge raggedness [10][11], small speck-
les [12][13], blocking [14][15], ringing [16], sharpness [17][18],
or features based on deep neural networks [19].

Since the reference 300 dpi images are much larger than the
test images of 150 dpi and 75 dpi resolution, we cannot use the
FR QEs mentioned above. There are also studies that can as-
sess image quality across different resolutions, like the Multiscale
Image Quality Estimator (MIQE) [20], which is used to assess
images of different resolutions from various viewing devices like
laptops, televisions, and smart phones. A cross spatial resolu-
tion image QE [21] was proposed to estimate the quality of inter-
polated high-resolution images compared to their low-resolution
counterparts. But both QEs do not consider the fact that since the
scanned images are stored in the same device, people may zoom
in a low-resolution image for better viewing experience. Thus,
in the scope of FR QEs, comparing the image quality between
the 300 dpi reference image and the resized 150 dpi and 75 dpi
images is more similar to people’s viewing habits.

In this paper, we propose a method to determine the opti-
mal scan resolution for different scanned raster contents. We
develop one FR QE: sample power spectrum MSE, and some
NR QEs (edge density and edge contrast). Along with spa-
tial activity [22], tile standard deviation (STDDEV) structural
similarity index measure mean (tile-STDDEV SSIM), and tile
STDDEV structural similarity index measure STDDEV (tile-
STDDEV SSIM STDDEV) [23], we can have a feature vector
for a scanned page. After collecting feature vectors for a large
self-created dataset, we can feed them into an SVM classifier for
training and testing. Experiments show that we can have a predic-
tion accuracy of 93.4%.

Methodology

Sample Power Spectrum MSE

(a) Reference 300 dpi
image

(b) Resized 150 dpi im-
age

(c) Resized 75 dpi im-
age

Figure 2: Changes of scanned character images from 300 dpi to 75
dpi. For a better viewing experience, the lower resolution images
are resized to the same size as that of 300 dpi through nearest-
neighbor interpolation.

With the decrease of the scan resolution, we can clearly
see the loss of details, such as the blurring of edges, as shown
in Figure 2, which indicates the changes from 300 dpi to 150
dpi and then to 75 dpi images. Note that the 150 dpi and 75
dpi images are resized to the same size of 300 dpi through the
nearest-neighbor interpolation. We choose this resizing method
because after studying common image and pdf viewing software,
we found that the results of nearest-neighbor interpolation method

resembles closely the resizing effects of these software tools.
We can see that the characters are clearly distinguishable when
scanned at 300 dpi. Although we can identify the words in the re-
sized 150 dpi image, the small-sized words in the top are a little bit
blurry. The situation is even worse in the resized 75 dpi image,
as the characters seem to have merged together, and it becomes
impossible to tell the words.

The detail changes from 300 dpi to 150 and 75 dpi images
indicate the sample power spectrum changes. Thus, we can cal-
culate the sample power spectrum mean squared error (MSE) of
(300 dpi, 150 dpi) and (300 dpi, 75 dpi) image pairs as one QE.
Note that in order to most resemble the human viewing habits, we
need to resize 150 dpi and 75 dpi images to the size of 300 dpi
reference images before calculating the power spectrum MSE.

Edge Density

Perhaps the most obvious changes we can notice with the
decrease of the scan resolution is that images are getting more
and more blurry. For some document images and line drawings
with very close but distinct edges, one or more close edges may
be hard to distinguish or even merge into one when the scan res-
olution decreases from 300 dpi to 75 dpi. This would cause some
of the characters to become unidentifiable, and drawings to lose
information. With this motivation in mind, we define a new NR
QE: edge density, that can take the changes of both the foreground
and background pixels into consideration, and thus better reflect
the local pixel changes.

Figure 3: Workflow to calculate edge density.

Figure 3 shows the workflow to calculate edge density. Color
images are converted to grayscale before being passed into the
workflow. Then we apply the Canny edge detector [25] to get the
edge map, on which we calculate the edge density. In order to
be able to capture small changes, we partition the edge map into
small windows. In order to assure the pixel correspondences and
window numbers from different scan resolutions, we choose dif-
ferent window sizes according to their resolutions. Then window
edge density values are calculated in each window, and we take
the average value as the edge density of the image.

Figure 4: An example of horizontal edge density.
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The edge density is comprised of two parts: horizontal edge
density and vertical edge density. Figure 4 shows an example
of how we compute horizontal edge density. The process is as
follows:

(1) Imagine a horizontal line (the red dashed line in Figure 4)
passing through the center of the small window (the green box).

(2) Count the number of horizontal transitions along the hor-
izontal line. A transition is defined as sudden change from back-
ground to foreground. In this case, the number of horizontal tran-
sitions ht num is 2.

(3) Following the horizontal line, count the number of con-
secutive foreground pixels, and then the number of consecutive
background pixels, and then the number of consecutive fore-
ground pixels, and so on. In this case, the numbers are 1, 2, 1, 3,
denoted in the figure as ht f g 1, ht bg 1, ht f g 2, ht bg 2, re-
spectively. In Figure 4, the number of consecutive foreground and
background pixels are color-coded as black and blue, respectively.
Note that the smallest number of foreground or background pixels
is 1, since the counting process is based on pixels, and one pixel
belongs either to the foreground or the background.

(4) The horizontal edge density ht density is calculated using
the formula

(1)
ht density = ht num ·

(
I

∑
i

1(ht f g i > 0)
1

ht f g i

+
J

∑
j

1(ht bg j > 0)
1

ht bg j

)

where 1 is the indicator function. I is the total number of
sequences of foreground pixels, and J is the total number of se-
quences of background pixels. ht f g i is the number of consec-
utive foreground pixels in the i-th sequence of foreground pix-
els, and ht bg j is the number of consecutive background pix-
els in the j-th sequence of foreground pixels. Their values are
all larger than 0. In Figure 4, the horizontal edge density is
2 · (1/1+1/2+1/1+1/3) = 5.67.

The reason why we sum the reciprocals of consecutive fore-
ground/background pixel numbers is that it can better reflect the
merging of foreground/background line segments. Clearly, im-
age quality degrades most when foreground and background pix-
els are interleaved by one pixel. Namely, one foreground pixel
is followed by one background pixel, and then followed by one
background pixel, and so on. In this situation, simply downsam-
pling the image from 300 dpi to 150 dpi would make the resul-
tant image lose a lot of information. With large pixel numbers,
like a 10-pixel-width foreground line segment followed by a 10-
pixel-width background segment, the image quality would not be
affected much even when downsampled to 75 dpi. As a result, we
use the reciprocals of line segments to reflect drastic changes in
the number of foreground and background pixels.

The vertical density is calculated in a similar way, as shown
in Figure 5. We draw a vertical line through the window cen-
ter, and count the number of consecutive foreground and back-
ground pixels. The equation to calculate the vertical edge density
vt density is

(2)

vt density = vt num ·

(
I

∑
i

1(vt f g i > 0)
1

vt f g i

+
J

∑
j

1(vt bg j > 0)
1

vt bg j

)

Figure 5: An example of vertical edge density.

where 1 is the indicator function. I is the total number of
sequences of foreground pixels, and J is the total number of se-
quences of background pixels. vt num is the number of verti-
cal transitions. vt f g i is the number of consecutive foreground
pixels in the i-th sequence of foreground pixels along the ver-
tical line, and vt bg j is the number of consecutive background
pixels in the j-th sequence of foreground pixels. Their values
are all larger than 0. In Figure 5, the horizontal edge density is
2 · (1/2+1/2+1/2+1/1) = 5.

Clearly, the direction that would achieve the maximum edge
density value is the most vulnerable to suffer from changes in scan
resolution. So the final edge density edge density is

edge density = max(vt density, ht density) (3)

Accordingly, the edge density for the window shown in Fig-
ure 4 and Figure 5 is max(5.67, 5) = 5.67

Edge Contrast
Blurry edges are the most apparent quality degradation when

the scan resolution goes down from 300 dpi to 75 dpi. The sep-
arated edges merged together. Some areas with high frequency
alternation between black and white become gray. Although the
edge density can reflect the merging of edges, they cannot repre-
sent the changes of pixel values around edges. Those pixel value
changes around edges are important since they reflect the contrast,
which is a very important QE. As a result, we propose a QE based
on Michelson contrast [24].

Contrast is the difference in color or intensity that makes an
object distinguishable from its surrounding background. The hu-
man visual system (HVS) is more sensitive to contrast than ab-
solute intensity; and this enables us to see a world similarly de-
spite the big intensity changes from day to night. Since Michelson
contrast is easy to calculate, and takes into consideration both the
maximum and minimum intensity values. We choose it to calcu-
late the contrast changes from 300 dpi to 150 and 75 dpi images.

Michelson contrast is defined as

c michelson =
Imax − Imin

Imax + Imin
(4)
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where c michelson is the Michelson contrast. Imax and Imin
are the maximum and minimum intensity values, respectively, of
the areas in question.

Figure 6: Workflow to calculate edge contrast.

Figure 6 shows the workflow to calculate edge contrast.
Since it is a NR QE, we only need one input image. Color im-
ages are converted to grayscale before being fed into the pipeline.
We use the Canny edge detector [25] to detect edges since it can
result in 1-pixel-width edge maps. After getting the edge pixels,
we map them back to the grayscale image. Specifically we will
use the coordinates of edge pixels in the edge map to identify the
edge pixels in the grayscale image, and to calculate the Michelson
contrast in a small window. The window sizes are based on the
scan resolutions (shown in Table 1); so that the calculated con-
trast values correspond to roughly the same area, independent of
the resolution of the image.

Table 1: Scan resolutions and their corresponding window size.

Resolution (dpi) Window width/height (pixel number)
300 13
150 7
75 3

Spatial Activity
In the paper [22], the spatial activity is defined as the root

mean square (RMS) difference between the edge maps of two im-
ages. The color images are turned into grayscale before calculat-
ing the spatial activity. Since this is a FR feature, we also need to
resize the low-resolution image to the size of the high-resolution
image through nearest-neighbor interpolation.

Tile-STDDEV SSIM
Tile-STDDEV SSIM and Tile-STDDEV SSIM STD-

DEV [23] are introduced as QEs to assess image qualities of dif-
ferent scan resolutions. The idea is that the input images are first
partitioned into the same number of tiles by selecting tile sizes
proportional to the scan resolutions. Then, the standard deviation
(STDDEV) of each tile is calculated, and forms a tile STDDEV
map. Since all resolution images have the same number of tiles,
their resultant tile maps have the same size. Based on these tile
maps, Tile-STDDEV SSIM and Tile-STDDEV SSIM STDDEV
are calculated. Results in [23] show that they can effectively re-
flect image quality changes with the decrease of scan resolutions.

Data Collection
We collect our own data for training and testing. In this pa-

per, we mainly focus on line drawings and cartoon images. The
collection process follows the routine below.

(1) PDF files are collected from the internet, and printed us-
ing an HP LaserJet 500 color MFP M575.

(2) Pages are scanned into 300 dpi digital images using HP
Officejet Enterprise Color Flow MFP X585 with the HP-internal
w scan routine. W scan is chosen instead of regular scanning be-
cause it does not include post-processing steps like edge enhance-
ment and JPEG compression, which may unnecessarily affect our
judgement.

(3) In order to augment the data set, the 300 dpi images are
partitioned into 300 pixel × 300 pixel sub-images. Duplicated
sub-images are removed. Each sub-image is treated separately as
an individual image. In this paper we do not consider stitching the
sub-images together. We also rotate the sub-images for data aug-
mentation. We do not use flipping because most of our features
are flipping-invariant.

(4) Images of other resolutions are achieved from 300 dpi
sub-images using area-based downsampling instead of scanning
to save processing time.

Optimal scan resolution is quite an ambiguous term. Al-
though we can understand it as the lowest scan resolution with
acceptable image quality, we still need to make it clear what the
acceptable image quality is. In the scope of this paper, we define
two criteria for acceptable image quality:

(1) For 75 dpi and 150 dpi images, we resize them to the
size of their 300 dpi counterpart. Since blurriness and jaggedness
are two most obvious degradations in our scope (Figure 7). The
blurriness or jaggedness is either imperceptible, or perceptible but
not annoying in the resized image. Clearly, this is a NR criterion,
as we do not need a reference image.

(a) Blurriness (b) Jaggedness

Figure 7: Examples of blurriness and jaggedness.

(a) 300 dpi image (b) Resized low-resolution image

Figure 8: An example of detail loss. We can clearly see three
circles in the red oval in (a). But in the same area of (b), we are
not very sure if they are circles.
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(2) If we resize the low-resolution image to the size of the
300 dpi reference, the resized image must contain all the details
that the reference image contains. For example, if there is a circle
in the 300 dpi image, there must be also a circle (not a square, or
not sure if it is a circle or square) in the resized image, as is shown
in Figure 8.

Figure 9 shows the workflow of how we label the optimal
scan resolution for a sub-image. The high-resolution image is the
300 dpi reference image, and the low-resolution images are 150
dpi and 75 dpi images. Here, 300 dpi images are captured through
scanning, and low-resolution images are generated using the area-
based downsampling method to save processing time. The low-
resolution (150 dpi and 75 dpi) images are resized by nearest-
neighbor interpolation to the same size as that of their 300 dpi
reference image. All images, the reference image, and the two
resized images are opened in the same image viewing software,
at 100% of image size. The viewer then looks at the three images
side by side, and picks the optimal scan resolution based on the
criteria mentioned above. All sub-images are viewed on a 14-
inch HP Elitebook 840 G3 laptop. The display resolution is 1366
pixels × 768 pixels. The subject was seated straight in front of the
laptop, with the laptop slightly below the eye height. The distance
between the laptop and the subject’s eyes is around three times the
height of the laptop screen. The subject is asked to wear glasses
or contact lenses if needed. For the work reported in this paper,
the author was only subject.

Figure 9: Workflow to label optimal scan resolution. Each low-
resolution (150 dpi and 75 dpi) image is resized to the same size
as that of its 300 dpi reference image. The reference image and
both of the resized images are opened in the same image viewing
software. Finally, the optimal resolution for the input image is
chosen.

The resolutions and their corresponding number of scanned
sub-images collected are shown in Table 2. For each resolution,
we have 537 sub-images and the data set has in total 1,611 sub-
images. These sub-images are generated from 45 scanned whole
pages.
Table 2: Ground truth optimal scan resolution and the number of
sub-images

Scan Resolution No. of Sub-Images
300 dpi 537
150 dpi 537
75 dpi 537
Overall 1,611

Experimental Results
After getting the features, we use an SVM to train and test

the accuracy of our model. In practice, we use LIBSVM [26]

with a radial basis function (RBF) as the kernel, to execute the
training and testing process. LIBSVM uses grid search, and is
very efficient in finding the optimal parameters. In order to get
a more compelling result, we use 5-fold cross-validation to test
our model. Precisely, we split the training data equally into five
folders. For each experiment, we pick four of them as the training
set to get the SVM model, and the remaining one folder as the
testing set to get the testing accuracy. We repeat this process four
times, each time with a different folder as the testing set. The final
accuracy is the average of all five experiments. We also test the
training accuracy by running the model on the training data.

Table 3 shows the training and cross-validation results. We
see that we achieve a training accuracy of 95.2%, and validation
accuracy of 93.4% with a STDDEV of 1.2%.

Table 3: Training and validation results.

Accuracy STDDEV
Training 95.2% 0.3%

Cross-validation 93.4% 1.2%

Conclusion
Current scanning mechanisms scan all pages into the same

resolution, which may cause an inefficient use of storage. To
tackle this problem, we first define a criteria based on which to
judge an image’s quality. That is, when resized to the same size
as that of 300 dpi, the blurriness or jaggedness is either impercep-
tible, or perceptible but not annoying in the resized image. Also,
the resized image should keep all the details that its 300 dpi ref-
erence image has. The resolution that meets both criteria is called
the optimal scan resolution. Then we propose some new QEs:
sample power spectrum MSE, edge density, and edge contrast.
We combine them with spatial activity, tile-STDDEV SSIM, and
tile-STDDEV SSIM STDDEV. Concatenating these features and
feeding them into an SVM, we can have a prediction accuracy of
93.4%.
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