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Abstract. Evaluating the utility of polarimetric imaging for material
identification, as compared to conventional irradiance imaging,
motivates this work. Images of diffuse objects captured with a wide
field of view Mueller matrix polarimeter are used to demonstrate a
classification and measurement optimization method. This imaging
study is designed to test polarimetric utility in discriminating white
fabric from white wood. The material color is constrained to be similar
so that classification from only total radiance imaging is difficult,
i.e., metamerism. A statistical divergence between two distributions
of measured intensity is used to optimize the Polarization State
Generator (PSG) and the Polarization State Analyzer (PSA) given
two classes of Mueller matrices. The classification performance as
a function of number of polarimetric measurements is computed.
This work demonstrates that two polarimetric measurements of
white fabric and white wood offer nearly perfect classification. The
utility and design of partial Mueller imaging is supported by this
optimization of PSG/PSA states and number of measurements.
c© 2020 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2020.64.6.060409]

1. INTRODUCTION
The polarization state of light can be described using the
real-valued Stokes parameters (also called a Stokes vector), a
set of four numbers which represent the following properties
of measured light
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Here Pφ◦ is the radiance transmitted through a linear
polarizer with a transmission-axis oriented in the φ◦

direction. For example, if S1 = 0, the radiance measured
through a horizontal linear polarizer and a vertical linear
polarizer are equal. Thus, S1 measures the excess of
horizontal polarization over vertical polarization and is
negative if P90◦ > P0◦ . The radiance transmitted through
right- and left-circular polarizers are PR and PL, respectively.
The first Stokes component is the total radiance leading to
the constraint S2

0 ≥ S2
1 + S2

2 + S2
3. The Stokes parameters are
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frequently labeled I , Q, U , and V , particularly in remote
sensing and astronomy [1].

Linear light-matter polarization effects are expressed as
changes to the incident Stokes parameters after transmission
or reflection

Sout =MSin, (2)
where M is the Mueller matrix of the material. This
4 × 4 matrix is multiplied with the Stokes parameters
of the incident state Sin to compute the exiting state
Sout . Any changes in the wavelength, angle of incidence,
or angle of observation will, in general, have a unique
Mueller matrix. In imaging polarimetry, a Mueller matrix
is reconstructed in a pixel-wise matter from a series of
independentmeasurements. For each of thesemeasurements
the polarization state incident on the sample is given by
the Polarization State Generator (PSG) and the polarization-
dependent detection of the light reflected from the sample
is given by the Polarization State Analyzer (PSA) [1]. To
reconstruct the Mueller matrix, intensity measurements at
unique PSG/PSA pairs form a system of linear equations,

p=W †m. (3)

Here p is a vector of intensity measurements, the 16 elements
of the Mueller matrix are lexicographically ordered into a
16 × 1 vector m, and the rows of W † are constrained to
satisfy fully polarized PSG/PSA states [2]. If W is a 16×K
matrix where K is the number of intensity measurements
made, then each row of W † can be written as a Kronecker
product between the kth PSG/PSA state as in

W †
=


a1⊗ g1

a2⊗ g2

...

aK ⊗ gK

 . (4)

Here al is a 4 × 1 vector of Stokes parameters describing
the kth PSA, gk is a 4 × 1 vector of Stokes parameters
for the kth PSG. To form a full-rank system K ≥ 16
[3]. The optimal choice of PSG/PSA states for Mueller
matrix reconstruction was rigorously solved several decades
ago [4]. However, researchers recognize that not all 16
Muellermatrix elements are necessary formany applications.
Use of terms like ‘‘adaptive polarimetry’’ [5] and ‘‘partial
polarimetry’’ [6, 7] appear in the literature and have been
adopted in limited applications. A method to access the
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information content of polarimetric measurements and
inform the design of partial polarimetric systems for broad
applications is still needed. This article reports analysis of
polarimetricmeasurement utility to evaluate adaptive/partial
polarimetry for diffusematerial identification.Measurement
utility relates an individual measurement to the performance
of a scientific task as an empirical method for exploring a
samples relevant optical properties [8, 9].

Polarimetry has been recognized as a tool for target
discrimination for several decades [10]. Early results show
clear demarcations between conducting metals and poorly
conducting dielectrics [11]. Particle scattering in the Earth’s
atmosphere is the most notable application for which
mathematical models of polarized light scattering and depo-
larization have been developed [12, 13]. In remote sensing,
classification of ground targets from radar polarimetry
combined with statistical decision-making techniques are
well established [14]. Material classification for visible and
near visible Mueller matrix imaging has been tested with
a small field of view bench top imaging systems with
an emphasis on post-processing algorithms and polarized
light scattering models [15–18]. As the diffuse reflectance
of a material increases, the degree of polarization of the
scattered light decreases; this is known as the Umov Effect
[19]. Materials with rough surfaces and high albedo like
Spectralon and Teflon have been characterized in past work
to have a small polarizing effect on scattered light [20].
This work demonstrates the optimization of polarimetric
imaging to resolve metamerism in similarly high albedo
dielectric materials which are diffusely scattering. The novel
contributions of this article are: (1) demonstration of polari-
metric imaging to resolvemetamerism in diffusely scattering,
dielectric materials, (2) a capture system optimization which
yields nearly perfect classification from two polarimetric
measurements, and (3) these two optimal measurements are
non-linear polarization states and therefore not achievable by
a commercially available linear Stokes cameras.

The rest of this article is organized as follows. Imag-
ing hardware, acquisition, and the object ensembles are
described in the Polarimetric Imaging System section. A
detailed description of the J-optimal Channelized Quadratic
Observer (J-CQO) used to optimize the PSG/PSA mea-
surements is given in the Mathematical Methods section.
Classification results are reported as area under the receiver
operating characteristic (ROC) curve, otherwise known
as the AUC , in the Classification Results section. Final
observations, a summary of methods, and contributions are
given in the Conclusions section.

2. POLARIMETRIC IMAGING SYSTEM
The RGB950 Mueller Matrix Imaging Polarimeter operates
at 451, 524, 662, and 947 nm [21]. Figure 1 is a photograph
of the instrument. The PSG is an LED array source followed
by a diffuser, a fixed linear polarizer, a rotating 4’’ diameter
multiplate achromatic retarder, and a similar-sized circular
aperture. The retarder has a nominal retardance of one-third
wave for the four operational wavelengths in the LED light

Figure 1. Photo of the RGB950 Mueller matrix imaging polarimeter. Note
the illuminated circular aperture of the PSG. To the left of the PSG is the
sample stage and the PSA is to the right. The sample normal bisects the
scatter angle γ ; this geometry images specular reflections.

box source. The PSA is a camera lens followed by a 1’’
diameter quartz retarder, 1’’ diameter linear polarizer, and an
8-bit detector. This unique instrument can produce videos
of life-sized objects in a controlled environment where angle
of incidence, angle of scatter, and sample orientation are
precisely automated. The measurement studio is enclosed in
a lightfast tent under which all reflecting surfaces and LED
indicator lights are blocked.

Samples sit atop an automated base which consists of
a rotation motor under a mounting base plate. The PSG
hardware is fixed to an optical breadboard shared with the
sample base to ensure optical andmechanical axis alignment.
The breadboard itself is fixed to the optical table. The PSA
hardware is attached to an XYZ translation stage which sits
on an optical rail whose mechanical axis is aligned with the
center of the sample base. The base is positioned at the point
where the PSG/PSA hardwares’ optical axes cross. The height
of the PSA and the distance of the PSA to the sample stage
is adjustable to account for a variety of object shapes and
sizes. A ThorLabs camera is fixed to the PSA to capture RGB
images of the samples. The ThorLabs camera’s optical axis is
parallel to the optical axis of the PSA in the sagittal plane.

The samples are positioned at the intersection of the
axes for the source arm and camera arm. The sample normal
bisects the scatter angle, labeled γ in Fig. 1. This geometry
images specular reflections.

2.1 Object Ensemble
The object ensemble comprises materials which exhibit
metamerism in RGB imaging to deliberately create a difficult
material identification task for RGB images. The materials
are reported in Table I and Figure 2 is a photograph of the
samples. Color, texture, tone, and finish were considered
when selecting materials. All materials selected are white in
color to ensure a high albedo across the red, green, and blue
color channels of themeasurement instrument. Albedo is the
diffuse reflectance of amaterial and has a inverse relationship
with the degree of polarization, which is known as the Umov
Effect [19].
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(a) (b)

Figure 2. (a) RGB image of a sample set: seven objects consisting of white spray painted wood next to white fabric. (b) Small regions of the samples’
RGB image removed from context. Top row is spray painted wood and bottom row is fabrics. These seven unique paints and seven unique fabrics are
reported in Table I. The material color is similar so that classification from RGB imaging is difficult.

Table I. Fourteen objects: 7 painted wood and 7 fabric samples.

7 Paints 7 Fabrics

Ace Premium Wool
Ace Rust-Oleum Felt
Colorshot Polyester
Krylon ColorMax Cotton
Liquitex 97% Cotton /3% Spandex
Rust-Oleum Silk
Rust-Oleum 2X 60% Cotton / 40% Polyester

All spray paints used in this study have a matte finish.
Each spray paint is applied to a light wood panel in two even
coats. Two coats of each paint were applied at a minimum
to a wooden panel. Care is taken to keep the layers as thin
as possible to avoid smoothing out the rough feature sizes
in the wood panels. No sanding or priming treatment is
used on the wooden panels before applying spray paint,
and no additional finishing coats are applied to maintain a
non-glossy finish. The seven white fabrics represent different
sheens, material blends/types, and textures as described in
Table I. All fabric samples are bleached to furthermatch their
color. Fabrics are ironed to ensure the samples are as flat as
the painted wood.

3. MATHEMATICALMETHODS
3.1 Partial Polarimetry
To evaluate partial polarimetry L measurements are simu-
lated from a measured Mueller matrix as in

i= T †m. (5)

Here T is a 16× L matrix where the columns are related to
PSG/PSA states as in Eq. (4). Note that K is the number of
measurements made to reconstruct the Mueller matrix and
L<K ; see Eq. (3).

The number of PSG/PSA parameters producing a single
measurement can be reduced from eight (i.e., four elements
of each Stokes vector a and g) to four (i.e., two coordinates
on the surface of the Poincaré sphere for a and two for g).
The surface of the Poincaré sphere represents all possible
fully polarized states. A Stokes vector can be transformed to

coordinates on the Poincaré sphere by

a=


Ia

ρa cos(2ψa) cos(2χa)
ρa sin(2ψa) cos(2χa)

ρa sin(2χa)

 , (6)

where Ia is the total radiance, ρa is theDegree of Polarization,
ψa is the longitude, and χa is the latitude for the PSA [1].
Identical coordinates are defined for the PSG Stokes vector
g denoted by the subscript. Ia and Ig are set to unity since
any increase in total radiance would always increase the
merit function for an otherwise fixed PSG/PSA.ThePoincaré
coordinates yield points on or within a sphere of unit
radius: 0≤ ρ ≤ 1, −π/2≤ψ ≤ π/2, and −π/4≤ χ ≤ π/4.
Setting ρa = ρg = 1 constrains PSG/PSA solutions to be fully
polarized states which are on the surface of the Poincaré
sphere. States are partially polarized for ρ < 1. A partially
polarized state is an incoherent sum of a fully polarized
and an unpolarized state. Any addition of unpolarized light
to a polarimetric measurement system is not desirable for
reconstruction or classification tasks [22]. Therefore, the
four variables subject to optimization for a single row
of the matrix T are the longitude and latitude of the
PSA and the longitude and latitude of the PSG, denoted
θ = [ψa, χa, ψg , χg ].

3.2 PSG/PSA Optimization
The J-optimal Channelized Quadratic Observer (J-CQO)
is used to optimize the PSG/PSA states given empirical
distributions of Mueller matrix measurements from two
classes [2]. The J-CQO optimizes Jeffrey’s divergence (J )
between two normal likelihoods: pr (i|1) and pr (i|2), where
these are conditional probability density functions (PDF) of
the intensity measurements i for each class (e.g., fabric or
wood). The non-Gaussian distribution on theMuellermatrix
is denoted: prn(m). The first- and second-ordermoments are
a 16× 1 vector and a 16× 16 matrix, denoted: mn and Kn
for each class n= 1, 2. Assume the intensity measurements
are normally distributed where the mean of the nth class is
an L× 1 vector in = T †mn and the L× L covariance matrix
is Cn = T tKnT . The dependence between the moments of
the intensity measurements and the PSG/PSA could bemade
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explicit by denoting in (T ) and Cn(T ). This dependence is
dropped for brevity.

The scalar value of J between the L-dimensional normal
PDFs pr(i|1) and pr(i|2) is

2J (T ) = − 2L+ tr
[
C−1

2 C1

]
+ 1itC−1

2 1i+ tr
[
C−1

1 C2

]
+1itC−1

1 1i, (7)

where1i= i1− i2 = T t (m1−m2).
A closed-form gradient of Eq. (7) with respect to the

matrix T and the PSG/PSA parameters θ can be found in
[2]. This closed-formed gradient is the primary reason that
the scalar value of J between two Gaussian distributions
is an incredibly useful merit function. The Bhattacharyya
distance has also been used to optimize a single PSG/PSA
measurement without a closed-form gradient [5]. The
mathematical and empirical relationship between J andAUC
is described in [23].

3.3 Classification Task Performance
Objective assessment of image quality [24] quantifies the
ability of an observer to use image data for performing
a scientific task of interest, e.g., detection, classification,
or estimation. Mathematical observers for detection or
classification tasks operate on image data, or a post-
processed version of the image data, to form a scalar-
valued decision variable. ROC analysis provides the most
comprehensive description of detection task performance,
because it estimates and reports all of the combinations
of sensitivity and specificity [25]. The area under the
ROC curve, otherwise known as the AUC , is the gold
standard figure of merit to quantify detection (i.e., binary
classification) performance [24]. AUC is superior to other
figures of merit for detection tasks that do not incorporate
sensitivity and specificity [26]. The AUC ranges from 1.0
(i.e., classifier never makes a mistake) to 0.5 (i.e., classifier
is guessing a decision). Another advantage of AUC is
the operational definition as the percent correct on a
two-alternative forced-choice test [25].

The Bayesian ideal observer maximizes the AUC as well
as other task-based figures of merit using the log of the ratio
of the likelihoods as a test statistic [27].

3(i)= ln
[
pr (i|1)

]
− ln

[
pr (i|2)

]
. (8)

This expression simplifies for normal likelihoods to

3(i)=
(
i− i2

)t C−1
2
(
i− i2

)
−
(
i− i1

)t C−1
1
(
i− i1

)
, (9)

where terms that do not depend on i have been dropped.
A testing set and training set are created from the 7

fabric and 7 wood samples listed in Table I. The training
set is used to compute a solution for the PSG/PSA states
which maximize Eq. (7). The training set is also used to
estimate the mean and covariance terms on the RHS of
Eq. (9). Each Mueller matrix measurement in the testing set
is used on the LHS of Eq. (9) to compute a test statistic and

Table II. Estimates of AUC from an unpolarized PSG/PSA (i.e., conventional
irradiance imaging) at varying wavelengths λ and scattering angles γ . Mean and
standard deviation are reported from five perturbations of the testing and training sets.

γ /λ 451 nm 524 nm 662 nm

20◦ 0.59± 0.05 0.55± 0.04 0.62± 0.09
30◦ 0.59± 0.09 0.57± 0.03 0.62± 0.03
40◦ 0.66± 0.09 0.62± 0.06 0.65± 0.06
50◦ 0.73± 0.07 0.65± 0.08 0.73± 0.03
60◦ 0.78± 0.06 0.68± 0.10 0.78± 0.03
70◦ 0.78± 0.09 0.69± 0.08 0.82± 0.05
80◦ 0.79± 0.13 0.70± 0.14 0.84± 0.09
90◦ 0.72± 0.08 0.67± 0.15 0.79± 0.13
100◦ 0.66± 0.09 0.66± 0.08 0.70± 0.08
110◦ 0.61± 0.02 0.59± 0.05 0.62± 0.09
120◦ 0.68± 0.08 0.61± 0.05 0.58± 0.04
130◦ 0.70± 0.19 0.65± 0.16 0.65± 0.09

Table III. Estimates of AUC from randomly selected PSG/PSA states. AUC is
tabulated at varying scattering angles: γ and number of measurements: L . All results
are for λ = 524 nm. The AUC is close to 1.0 at a majority of scattering angles for
two measurements or greater. Mean and standard deviation are reported from five
perturbations of the testing and training sets.

γ /L 1 2 3 4

20◦ 0.67± 0.06 0.82± 0.18 0.97± 0.03 0.95± 0.04
30◦ 0.68± 0.15 0.83± 0.17 0.92± 0.09 0.97± 0.02
40◦ 0.69± 0.15 0.93± 0.11 0.92± 0.07 0.99± 0.01
50◦ 0.68± 0.08 0.86± 0.17 0.96± 0.04 0.99± 0.01
60◦ 0.67± 0.14 0.92± 0.08 0.99± 0.01 0.99± 0.01
70◦ 0.66± 0.10 0.97± 0.02 0.99± 0.01 1.00± 0.00
80◦ 0.79± 0.15 0.94± 0.08 1.00± 0.01 1.00± 0.00
90◦ 0.74± 0.19 0.96± 0.08 1.00± 0.00 0.97± 0.05
100◦ 0.81± 0.17 0.98± 0.03 1.00± 0.00 1.00± 0.00
110◦ 0.79± 0.16 0.98± 0.05 1.00± 0.00 1.00± 0.00
120◦ 0.86± 0.17 0.91± 0.15 1.00± 0.00 1.00± 0.00
130◦ 0.89± 0.19 1.00± 0.00 0.99± 0.01 1.00± 0.00

estimate the AUC. Three images are selected for the training
set and the remaining four images are the testing set. Five
random selections without replacement are made to create
independent combinations of the testing and training sets.
From these five estimates of AUC the mean and standard
deviation are reported in Tables II–IV.

4. CLASSIFICATION RESULTS
As a benchmark, the AUC is computed for a non-
polarimetric imaging system. An unpolarized measurement
is calculated from Eq. (5) using the unpolarized Stokes
vector [1, 0, 0, 0] for both the PSA and the PSG. This
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(a) (b)

Figure 3. Poincaré sphere plot of randomly selected PSG/PSA states and histogram of test statistic: 3 (see Eq. (9)) for one instance of the five
perturbations of testing and training images. In (a) single measurement (L = 1) and (b) two measurements (L = 2) from a single wavelength λ= 524 nm
and single scattering angle γ = 20◦ image. From Table III AUC = 0.67 for L = 1 and AUC = 0.82 for L = 2.

(a) (b)

Figure 4. Poincaré sphere plot of J-CQO optimized PSG/PSA states and histogram of test statistic: 3 (see Eq. (9)) for one instance of the five
perturbations of testing and training images. In (a) single measurement (L = 1) and (b) two measurements (L = 2) from a single wavelength λ= 524 nm
and single scattering angle γ = 20◦ image. From Table IV, AUC = 0.78 for L = 1 and AUC = 0.82 for L = 2. For L = 1 the PSG is nearly right-circular
polarized and PSA is nearly left-circular polarized. All PSG/PSA states are clustered around right-circular polarization for L = 2.

substitution results in a singleMuellermatrix element [M]0,0
proportional to ameasurement with an unpolarized PSA and
an unpolarized PSG.

At three wavelengths and 12 scattering angles, these
AUC estimates are reported in Table II. The ensemble of
painted wood and fabric is selected so that the total re-
flectance (i.e., color) is similar and therefore the classification
task using non-polarimetric imaging would be challenging.
The AUC values in Table II are closest to 0.5 (i.e., guessing)
at lower scattering angles and higher scattering angles. The
AUC peaks at γ = 80◦ for all three wavelengths. At this

acquisition geometry the mean is AUC = {0.79, 0.70, 0.84}
for 451, 524, and 662 nm, respectively. To assess polarimetric
measurements a single wavelength λ = 524 nm is selected
since theseAUC are lowest for the non-polarimetric imaging
case.

Table III show AUC values for randomly selected
PSG/PSA states using only λ = 524 nm measurements.
AUC are tabulated over 12 scattering angles and 1–4
measurements. The AUC is close to 1.0 at a majority
of scattering angles for three measurements or greater.
This result indicates the potential to improve the material
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(a) (b)

Figure 5. For (a) single measurement and (b) two measurements AUC estimates are compared for J-CQO (red), randomly selected PSG/PSA states (blue),
and unpolarized (green) PSG/PSA states at λ= 524 nm. Mean and ±1 standard deviation are reported as error bars. Classification improvement is seen
between J-CQO and randomly selected PSG/PSA states at all scattering angles, γ , for a single measurement. For a single measurement, even randomly
selected PSG/PSA states improve classification at most scattering angles as compared to imaging with unpolarized illumination and an unpolarized
analyzer. This improvement over unpolarized PSG/PSA states increases for two measurements shown in (b). For two measurements the AUC difference
between randomly selected PSG/PSA states and J-CQO decreases. The variance of the J-CQO AUC estimate is lower than randomly selected PSG/PSA
states for a majority of scattering angles. As the number of polarimetric measurements increases the benefit of J-CQO optimization is expected to decrease.

Table IV. Estimates of AUC from J-CQO optimized PSG/PSA states. AUC is tabulated
at varying scattering angles: γ and number of measurement: L . All results are for
λ= 524 nm. The AUC at onemeasurement is greater than AUC from randomly selected
PSG/PSA states reported in Table III. Similar to randomly selected PSG/PSA states AUC is
close to 1.0 for two measurements or greater. Mean and standard deviation are reported
from five perturbations of the testing and training sets.

γ /L 1 2 3 4

20◦ 0.78± 0.14 0.82± 0.12 0.87± 0.12 0.95± 0.14
30◦ 0.72± 0.14 0.76± 0.16 0.97± 0.02 0.96± 0.15
40◦ 0.72± 0.17 0.96± 0.04 0.99± 0.01 0.98± 0.02
50◦ 0.83± 0.19 0.97± 0.04 1.00± 0.00 1.00± 0.00
60◦ 0.90± 0.10 0.97± 0.03 1.00± 0.00 1.00± 0.00
70◦ 0.92± 0.06 0.97± 0.03 0.99± 0.01 1.00± 0.00
80◦ 0.89± 0.11 0.92± 0.08 1.00± 0.00 1.00± 0.00
90◦ 0.95± 0.05 0.96± 0.05 1.00± 0.00 1.00± 0.00
100◦ 0.97± 0.04 0.99± 0.01 1.00± 0.00 1.00± 0.00
110◦ 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
120◦ 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
130◦ 0.96± 0.06 1.00± 0.00 1.00± 0.00 1.00± 0.00

classification by optimizing the PSG/PSA states for one or
two measurements.

Table IV areAUC values for J-CQOoptimized PSG/PSA
states using only λ = 524 nm measurements. For a single
polarimetric measurement AUC is greater for J-CQO
optimized than randomly selected PSG/PSA states at all
scattering angles. For two measurements the mean AUC is
also equal or greater for J-CQOoptimized PSG/PSA except at
γ = {30◦, 80◦}; here the mean values are close, within half of
the standard deviation. At three and four measurements the

AUC differences between J-CQO optimized and randomly
selected PSG/PSA states are within one standard deviation.

Cells from Tables III–IV are selected to report inter-
mediate results: scattering angle γ = 20◦ and number of
measurements: L = 1, L = 2. In figures 3 and 4, the single
measurement solution is shown in (a) and twomeasurements
in (b). These PSG/PSA solutions are plotted on the Poincaré
sphere and histograms of the test statistic 3 for randomly
selected (Fig. 3) and J-CQOoptimized (Fig. 4). The benefit of
twomeasurements versus one is notable from the histograms
of test statistics; this benefit is more pronounced for the
J-CQO optimized solutions. At L= 1 the J-CQO optimized
PSG is nearly right-circular polarized and PSA is nearly
left-circular polarized. All PSG/PSA states are clustered
around right-circular polarization for L= 2.

5. CONCLUSIONS
Polarized illumination and imaging effectively improve
the discrimination accuracy of a diffuse, high albedo,
metameric material data set. Improvements in discrimina-
tion accuracy are demonstrated when the generated and
analyzed polarization states are both randomized or both
optimized when compared to images using monochromatic
unpolarized illumination and unpolarized imaging for
scattering angles from 20◦ to 130◦. Illumination wavelengths
λ = {451, 524, 662} nm are benchmarked for comparison;
see Table II. Classification performance ofAUC > 0.70 is not
achieved for λ= 524 nm using unpolarized monochromatic
measurements at any scatter angle; see Figure 5. The
highest value overall for unpolarized imaging is AUC = 0.84
for 80◦ and λ = 662 nm. The wavelength of lowest
classification performance for unpolarized imaging, λ= 524
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nm, is selected to evaluated potential improvements from
polarization imaging.

As compared to an unpolarized measurement, classifi-
cation improved using a single randomly selected PSG/PSA
state; see Fig. 5. The classification improvement is most
pronounced at larger scattering angles where AUC increases
+0.20; see Fig. 5. Using four polarimetric measurements
at randomly selected PSG/PSA states yields a classification
performance of 0.95 ≤ AUC ≤ 1.0 from scattering angles
20◦ –130◦.

Using J-CQO to select optimized PSG/PSA state
achieves the same classification performance from a smaller
number of measurements, as compared to randomly selected
PSG/PSA states. The AUC values for one measurement from
J-CQO optimized PSG/PSA states in Table IV are similar
to the AUC values for two measurements from randomly
selected PSG/PSA states in Table III. At three and four
measurements the differences between J-CQO optimized
and randomly selected PSG/PSA states are negligible. This
result indicates that J-CQO optimization is capable of
reducing the number of measurements without reducing
classification performance.

This work demonstrates how J-CQO can be used to
compute PSG/PSA pairs for which metameric materials in
unpolarized color images become separable from a small
number of monochromatic polarimetric measurements.
Using these polarimetric measurements, materials can be
classified without dependence on scene context. Analysis of
optimal PSG/PSA states is intended for designing partial or
adaptive Mueller imaging polarimeters.
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