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Abstract
Dual-energy computed tomography (DECT) has been widely

used to reconstruct basis components. In previous studies, our
DECT algorithm has shown high accuracy in stopping power
ratio (SPR) estimation of fixed objects for proton radiotherapy
planning. However, patient movement between sequential data
acquisitions may lead to severe motion artifacts in the compo-
nent images. In order to reduce or eliminate the motion artifacts
in clinical applications, we combine a deformable registration
method with an accurate joint statistical iterative reconstruction
algorithm, dual-energy alternating minimization (DEAM). Image
registration is a process of geometrically aligning two or more im-
ages. We implement a multi-modality symmetric deformable reg-
istration method based on Advanced Normalization Tools (ANTs)
to automatically align the scans we acquire for the same patient.
The precalculated registration mapping and its inverse are then
embedded into each iteration of the DEAM algorithm. The perfor-
mance of warped DEAM is quantitatively assessed. Theoretically,
the performance of warped DEAM on moved patients should be
comparable to the performance of the original DEAM algorithm
on fixed objects. The warped DEAM algorithm reduces motion
artifacts while preserving the accuracy of the iterative joint sta-
tistical CT reconstruction algorithm, which enables us to recon-
struct accurate results from sequentially scanned dual-energy pa-
tient data.

Introduction
Compared to conventional single-energy CT, Dual-energy

CT (DECT) generates more informative and quantitative results,
such as virtual monoenergetic images, material decomposition
images, or electron density maps, from transmission sinograms
acquired at two different energies [1]. As a result, DECT has been
developed for estimating the proton stopping power ratio (SPR) to
reduce estimation uncertainty. The current clinical practice esti-
mates the SPR mappings from the single-energy CT (SECT) re-
sults, which leads to 2−3.5% proton beam range uncertainty. We
use basis components reconstructed by DECT to estimate proton
stopping power for proton radiotherapy planning. Previous stud-
ies have shown that our iterative DECT algorithm, dual-energy
alternating minimization (DEAM), has achieved sub-percentage
uncertainty in estimating proton stopping-power mappings from
experimental 3 mm collimated phantom data [2, 3].

Single source sequential acquisition is used when dual en-
ergy equipment is not available in the clinic. However, this acqui-
sition method is more vulnerable to object movement, since tens
of seconds might elapse between the two scans. In clinical use,
voluntary or involuntary movement of the patient may influence
the quantitative accuracy of the result and produce severe motion
artifacts. A pair of precalculated registration mappings are incor-
porated into DEAM algorithm in order to reduce motion artifacts.

Deformable image registration has been incorporated with
many medical imaging techniques to reconstruct dual-energy im-
ages for decades. G. J. Gang et al. utilized deformable registration
that aligns two images scanned at different energies before dual-
energy decomposition to generate dual-energy x-ray results [4].
It has also been shown that the commercial analytic CT recon-
struction techniques with deformable image registration achieved
anticipated performances in reconstructing sequentially scanned
DECT images. Jessie Huang et al. evaluated the performance of
the registration algorithm implemented in Siemens Healthineers
SOMATOM Definition Edge scanner on DECT processing [5].
Leng et al. compared the performance of sequentially scanned
DECT with Siemens Healthcare Syngo VA 44 and deformable
image registration to the dual-source DECT w.r.t differentiating
uric acid and non-uric-acid renal stones [6]. To the best of our
knowledge, this is the first time that the deformable registration is
embedded in an iterative joint statistical DECT algorithm.

Our goal is to incorporate a 3D registration method into an
iterative DECT algorithm in order to reduce motion artifacts of
patients while preserving the sub-percentage uncertainty in esti-
mating proton stopping-power mappings. The performance of the
proposed algorithm on moved patients should be quantitatively
comparable to the performance of the original DEAM algorithm
on fixed objects.

Methods
DEAM

DEAM is a joint statistical iterative algorithm that minimizes
the objective function given by the sum of I-divergence [7],

I(d||g) = ∑
j

d j(y) ln
d j(y)

g j(y : c)
−d j(y)+g j(y : c), (1)
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and a penalty term,

R(c) = λ

2

∑
i=1

∑
x

∑
x̃∈Nx

w(x, x̃)ϕ (ci(x)− ci(x̃)) , (2)

ϕ(t) = δ
2
(∣∣∣ t

δ

∣∣∣+ log
(

1−
∣∣∣ t
δ

∣∣∣)) , (3)

where x, y denote the indices of the discretized image space and
measurement space, respectively. Nx denotes the set of the neigh-
bouring voxels of the image index x, w(x, x̃) is the voxel weight
calculated as the inverse physical distance between voxel x and
x̃, λ and δ are two hyper-parameters that control the weight and
sparsity of the regularization term, i denotes image component
index (specifically 1 for polystyrene and 2 for CaCl2 ), j denotes
measured data index (specifically 1 for 90 kVp and 2 for 140 kVp
), d denotes measured data, g(y : c) denotes the estimation of mea-
sured data based on image components ci, which is the forward
model, written as

g j(y : c) =∑
E

I0, j(y,E)exp

(
−∑

x
h(x,y)

2

∑
i=1

µi(E)ci(x)

)
, (4)

Algorithm 1: DEAM algorithm without registration
Result: c1,c2
Initialization: c1,c2,dL,dH ;
while Not Converge do

Apply forward-projection:
for i in {1,2} do

cF
i (y) = ∑x h(x,y)ci(x)

end for
Apply basis vector model:

for j in {1,2} do

q j(y,E) = I0, j(y,E)e−∑i µi(E)cF
i (y)

end for

for i in {1,2} do

g̃i(y) = ∑ j ∑E µi(E)q j(y,E)

d̃i(y) = ∑ j
∑E µi(E)q j(y,E)d j(y)

∑E′ q j(y,E ′)

end for
Apply back-projection:

for i in {1,2} do

gB
i (x) = ∑y h(x,y)g̃i(y)

dB
i (x) = ∑y h(x,y)d̃i(y)

end for
Update: Solve decoupled objective function using
Newton method
∑ j ∑i ∑x dB

i j(x)c
new
i1

↪→ + gB
i j(x)

1
Zi(x)

exp(Zi(x)[cold
i1 (x)− cnew

i1 (x)])

↪→ + R(ck+1)
end

where µi(E) denotes the attenuation coeffcient of the ith ma-
terial at energy E, I0, j denotes the photon counts of the jth peak

energy in the absence of an object, which contains information of
the spectrum and the bowtie filter, and h(·, ·) denotes the system
operator that represents the helical fan beam CT system.
The DEAM algorithm is shown in Algorithm 1. cF is the forward-
projection of c, gB is the back-projection of g. In each iteration,
the algorithm consists of four parts: forward projection, basis vec-
tor model evaluation, back projection and update.

Registration
Image registration is the process of aligning two or more im-

ages of the same scene taken at different times, from different
viewpoints, or by different sensors [8]. For the two images reg-
istration problem, we will denote one image as a fixed image to
provide a reference to the other called a moving image. The gen-
eral registration algorithm will generate an optimal transforma-
tion (mapping) that warps the moving image into the fixed image
domain.

Based on our need for constantly warping image volumes
between two different material domains (c1 and c2), a symmet-
ric algorithm is critical to the whole reconstruction process. The
symmetric property will guarantee the inverse consistency of the
output transformations. Since the patient anatomy may vary dur-
ing two successive scans, the algorithm should also be stable with
large-scale deformation. After careful evaluation of some avail-
able methods, we decided to use the Advanced Normalization
Tools (ANTs) [9] toolkit to build our registration code. And we
will have a brief introduction of the registration algorithm in this
part.

The algorithm ANTs use is called the symmetric image nor-
malization method (SyN) [10]. The framework of the SyN algo-
rithm can be described as an optimization process. The optimal
transformation (mapping) ϕ is acquired by minimizing the total
energy function E which is given by

ϕ = argminϕ E = argminϕ{M+w×R}, (5)

where w is the weight parameter, M is the similarity term and R is
the regularization term .

In our dual energy CT case, the similarity term is selected
as the minus mutual information (MI) [11], since the attenua-
tion coefficient of the same material varies under different en-
ergy. The regularization term R contributes relatively less than
the similarity term M to the total energy function, but it guarantees
the minimization process within the space of diffeomorphic maps
and provides the Euler-Lagrange equations necessary to solve the
optimization problem. A series of diffeomorphisms is computed
during the registration process that generates a smooth and in-
vertible path that connects the moving and the fixed images. For
each pair of patient data sets, we will be able to obtain a pair of
composite (Rigid + Deformable) transformations. We will denote
the forward mapping (from the moving image space to the fixed
image space) as ϕ and its inverse as ϕ−1. The forward mapping
composed with the inverse mapping should return an approximate
identity transformation which is given by

ϕ ◦ϕ
−1 = I, (6)

where ◦ denotes the composition operator, e.g. f ◦g = f
(
g(x)

)
.

However, in practice, we may still confront small inconsis-
tencies between the two transformations. And those small error
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Figure 1. (a) flowchart of the entire process. (b) flowchart of warped DEAM.

may accumulate during the iterative reconstruction algorithm and
bring some artifacts to the final result. The registration will be
executed once per pair of patient scans but the output forward and
inverse transformations will be implemented into the loop of the
iterative reconstruction algorithm.

Warped DEAM
In order to simulate the image deformation introduced by

the patient movement, the registration mapping ϕ and its inverse
ϕ−1 are introduced prior to and after the updating process. The
entire process is shown in figure 1(a). Two sequentially scanned
measured sinograms are reconstructed individually by the single
energy alternating minimization algorithm to get two SECT im-
ages. Taking these SECT images, the image registration process
will generate the forward and inverse deformation fields.

Suppose the first measured data (scanned at 90 kVp) cor-
responds to the moving image, and the second measured data
(scanned at 140 kVp) corresponds to the fixed image. The
flowchart of the warped DEAM algorithm is shown in figure 1(b),
and the algorithm is shown in algorithm 2. (c1 j,c2 j) denotes the
basis weights registered to the jth patient position. Compared
to the original DEAM, the warped DEAM has two more steps:
inverse registration mapping before forward-projection and regis-
tration mapping after back-projection. In each iteration, the mov-
ing image is registered to the fixed image after the back-projection
operation, and the inverse transformation is applied to the rela-
tive partial densities c1 and c2, respectively, before the forward-
projection operation.

Results
Measured data are acquired sequentially on the Phillips Bril-

liance Big Bore CT scanner located in the Department of Radia-
tion Oncology at the Washington University School of Medicine,
scanned at 90 and 140 kVp with 12 mm collimation.

The point-wise mutual information is utilized as the mis-
alignment indicator of two images, which reads

PMIAB(x) = pAB
(
A(x),B(x)

)
log

(
pAB
(
A(x),B(x)

)
pA
(
A(x)

)
pB
(
B(x)

)), (7)

where A and B are two target images, x denotes the image in-
dex, PA(a) denotes the probability that value a appears in image
A, PB(b) denotes the probability that value b appears in image B,
and PAB(a,b) denotes the probability that value a appears in im-
age A and value b appears in image B. DEAM algorithm is very
sensitive to subtle errors, while PMI is pretty good at differenti-
ating little differences if the bin size is properly selected. In this

Algorithm 2: DEAM algorithm with registration
(Warped DEAM)

Result: c11,c21
Initialization: c11,c21,d1,d2;
while Not Converged do

Apply inverse registration mapping:
for i in {1,2} do

ci2 = ci1 ◦ϕ−1

end for
Apply forward-projection:

for i, j in {1,2} do

cF
i j(y) = ∑x h(x,y)ci j(x)

end for
Apply basis vector model:

for j in {1,2} do

q j(y,E) = I0, j(y,E)e
−∑i µi(E)cF

i j(y)

end for

for i, j in {1,2} do

g̃i j(y) = ∑E µi(E)q j(y,E)

d̃i j(y) =
∑E µi(E)q j(y,E)d j(y)

∑E′ q j(y,E ′)

end for
Apply back-projection:

for i in {1,2} do

gB
i1(x) = ∑y h(x,y)g̃i1(y)

g̃B
i2(x) = ∑y h(x,y)g̃i2(y)

dB
i1(x) = ∑y h(x,y)d̃i1(y)

d̃B
i2(x) = ∑y h(x,y)d̃i2(y)

end for
Apply inverse registration mapping:

for i in {1,2} do

gB
i2(x) = g̃B

i2(x)◦ϕ

dB
i2(x) = d̃B

i2(x)◦ϕ

end for
Update: Solve decoupled objective function using
Newton method
∑ j ∑i ∑x

[
dB

i j(x)c
new
i1 +

↪→ gB
i j(x)

1
Zi(x)

exp(Zi(x)[cold
i1 (x)− cnew

i1 (x)])
]

↪→ + R(ck+1)
end
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Figure 2. Comparison between pre-registration and post-registration re-

sults. From left to right column: inverse PMI overlaying on corresponding

140 kVp image slice, c1 from original DEAM, c2 from original DEAM. First,

third and fifth row: slice of pre-registration results in different z-position from

the same patient. Second, fourth and sixth row: corresponding slice of pose-

registration results in different z-position from the same patient.

project, the range of the bin is chosen to be [0, 0.04], with the bin
number of 32.

Figure 2 shows the pre-registration and post-registration re-
sults. From left to right column: inverse PMI overlaying on corre-
sponding 140 kVp image slice, c1 from original DEAM, c2 from
original DEAM. From figure 2(a-c), slight mismatches could be
observed in the throat area, so we see an overestimation of c1 and
an underestimation of c2 near the throat. More mismatches could
be seen in the second slice of pre-registration images figure 2(g-j)
around the throat and right shoulder, which leads to more severe
artifacts in DECT reconstructed results. The pharyngeal wall and
tracheal wall are reconstructed as bone-like high-density struc-
tures due to the misalignment. In the third slice of pre-registration
figure 2(m-o), the motion artifact on the left shoulder has the same
shape as the mismatch indicated by inverse PMI. Moreover, more
mismatches appear on the boundary of the right shoulder. The
mismatch influences the value of DECT images not only at their
corresponding position, but also in the area surrounded by them.

Compared to pre-registration results, post-registration results
have fewer mismatches and motion artifacts. For all the selected

Figure 3. (a) regions of interest in the adipose are indicated by circles. (b)

the plot and the magnified plot of percentage bias vs. energy. (c) the plot

and the magnified plot of percentage mean absolute error vs. energy.

slices, the magnitude and area of inverse PMI are reduced after
registration. The algorithm could correctly reconstruct the mar-
gins of the throat and trachea as soft tissues rather than bones.
Also, by comparing figure 2(q)(r) to figure 2(n)(o), c1, c2 of the
warped DEAM for the right shoulder now have similar values to
other adipose tissues that are not affected by the mismatch. How-
ever, in figure 2(p-r), there is still a mismatch on the edge of the
right shoulder, which leads to the bone-like artifact in the recon-
structed results.

Moreover, we analyze the performance of the warped DEAM
algorithm quantitatively. The following quantitative analyses are
based on the assumption that the property of the adipose of the
object is close to our anticipation. Three regions of interest in the
adipose are indicated by circles, shown in figure 3(a). The ROIs
are cylinders, but only one slice is shown here for visualization
convenience. Figure 3(b) and (c) shows the error of the DEAM
result on estimating attenuation coefficients at different energies
of the adipose of the object.

As the metrics, percentage bias and mean absolute error
(MAE) of estimated attenuations at different energies are calcu-
lated by

bias =
1
N ∑

x

c1(x)µ1(E)+ c2(x)µ2(E)−µre f (E)
µre f (E)

×100% (8)

and

MAE =
1
N ∑

x

|c1(x)µ1(E)+ c2(x)µ2(E)−µre f (E)|
µre f (E)

×100%,

(9)

respectively, where µre f are the reference attenuation coefficients
of adipose come from [12].

Figure 3(b) shows the plot of the percentage bias versus
energy. The warped DEAM has a lower bias than the original
DEAM at most of the energies. Biases in region 1 and region 2
are greatly reduced. The values of warped DEAM in region 2 and
region 3 are below 1% after 40 kev. The values of warped DEAM
in region 1 are below 1% after 60 kev, while most of the values of
original DEAM in three regions are greater than 1%.
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Figure 4. (a) Mean errors of SPR estimated by original DEAM and warped

DEAM. (b) Standard deviation errors of SPR estimated by original DEAM and

warped DEAM

Figure 3(c) shows the plot of the percentage MAE versus
energy. MAEs of warped DEAM in region 2 and region 3 are still
lower than MAE of original DEAM at most of the energies, and
MAE of warped DEAM in region 2 and region 3 vibrate near 1%
after 40 kev. However, the MAE of warped DEAM in region 1 is
higher than MAE of the original DEAM after 45 kev. We noticed
that the warping of images introduces noise in the reconstructed
results.

Figure 4 compares the mean and standard deviation error be-
tween original DEAM and warped DEAM on SPR estimation. We
use adiposes with different percentage of lipid to match the SPR
of adipose of the object. Figure 4(a) shows that mean errors of
SPR estimated by warped DEAM are smaller than SPR estimated
by original DEAM in all regions for all lipid percentages, except
for 61.4% percent lipid in region 2. It is worth noticing that the
mean errors of the estimated SPR to the reference adipose SPR
with 87.3% lipid are below ±1% in all the selected ROIs.

Figure 4(b) shows that standard deviation errors of SPR es-
timated by warped DEAM are below 1% in region 2 and 3 for all
lipid percentages. The standard deviation error of SPR estimated
by original DEAM is also below 1% in region 3 because this re-
gion was hardly affected by the mismatch. However, in region 1,
the standard deviation errors of both results are around 10%, and
the warped DEAM is worse than the original DEAM because of
the noise introduced by the warping process.

Conclusion
We proposed an iterative DECT reconstruction algorithm

with embedded deformable registration mapping that could re-
duce motion artifacts. We visually compared the performance of
the warped DEAM and original DEAM, and quantitatively as-
sess the image quality w.r.t mono-energy and SPR estimation. It
has been shown that the warped DEAM outperformed the original
DEAM in reconstructing sequentially scanned deformed DECT
data.
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