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Abstract
Tunable diode laser absorption tomography (TDLAT) has

emerged as a popular nonintrusive technique for simultaneous
sensing of gas concentration and temperature by making light ab-
sorbance measurements. Major challenge of TDLAT imaging is
that the measurement data is very sparse. Therefore, precise mod-
els are required to describe the measurement process (forward
model) and the behavior of the gas flow properites (prior model)
to get accurate reconstructions.

The sparsity of the measurement data makes TDLAT very
sensitive to the accuracy of the models and makes it prone to over-
fitting. Both the forward and prior models can have systematic
errors due to several reasons. So far, substantial amount of work
has been done by researchers on developing reconstruction meth-
ods and formulating models, forward and prior. Yet, there has
not been significant research work done on constructing a met-
ric for goodness of the model fit that can indicate when there is
an inaccuracy in the forward or the prior model. In this paper,
we present a metric for goodness of model fit that can be used to
indicate if the models used in the reconstruction are inaccurate.
Results show that our metric can reliably quantify the goodness
of model fit for sparese data reconstruction problems such as TD-
LAT.

Introduction
Tunable diode laser absorption tomography (TDLAT) is a

popular non-intrusive method to determine different properties
of gaseous media in situ. [1–3]. In TDLAT imaging of gaseous
flow, precisely tuned laser light is used to measure light absorption
spectrum which is reconstructed to determine different properties
simultaneously such as concentration and the temperature of the
gas flow [4–6]. TDLAT has several advantages over conventional
gas flow imaging techniques that include high signal to noise ra-
tio, relative simplicity of the equipment [6–8] and specie-specific
signals [9].

Unlike conventional image reconstruction problems such as
X-Ray computed tomography (X-Ray CT), TDLAT poses many
challenges including non-linearities and availability of a very
small number of projection measurements [4]. In TDLAT imag-
ing systems, typically there may be only 10-100 measurements
available to estimate 1,000 to 10,000 unknown variables. There-
fore, closed form solutions based on filtered back projection al-
gorithm can not be used [10, 11]. A typical approach to TDLAT
works by making use of simplifying assumptions to help constrain
the solution such as assuming the availability of a large number
of projection measurements [12, 13], assuming axisymmetric gas
flow [14, 15] and assuming simple flow profiles [16]. These as-
sumptions restrict the application of the typical approaches to a
sparse reconstruction problem such as TDLAT.

Alternatively, reconstruction accuracy can be increased by
model-based iterative reconstruction (MBIR) framework [7, 17].
In MBIR, a model is specified for both the measurement pro-
cess (forward model) and for the unknown image to be recon-
structed (prior model). While using model based methods in TD-
LAT gives a huge advantage in terms of reconstruction accuracy,
it also makes them prone to producing inaccurate or biased recon-
struction results if there are systematic errors in the models used
for reconstruction. There are many sources of mismatches in the
modeling process involved in TDLAT. For example, there can be
error in the spectroscopic parameters used [18] which are con-
tinually updated. Additionally, the TDLAT measurement process
may be subject to harsh environments in which physical vibra-
tions may alter laser beam paths over time [19].

Since TDLAT reconstruction requires the inversion of very
sparse amounts of data, it is very susceptible to errors resulting
from forward modeling mismatch and data over fitting. Perhaps
the closest work to the work presented in this paper is the work
done by Mustafa et. al. on model validation in positron emission
tomography (PET) [20]. However, they use a dense set of pro-
jection measurements and reconstruct the error sinograms using
filtered back projection which is not applicable in this work.

In this paper, we present a systematic method of model val-
idation in sparse data reconstruction problems while specifically
using TDLAT as an application for experiments. Finding model
mismatch is extremely crucial in applications which have limited
measurement data and are highly prone to over-fitting and mod-
eling errors. Because of sparsity of measurements, it is difficult
to validate modeling errors by visualizing the error between mea-
surements and forward projections. We propose to use a method
based on the theory of statistical hypothesis testing by construct-
ing a continuously varying metric that can be used to validate the
reconstruction models; both forward and the prior. We analyze
several aspects of the residual error and combine several hypoth-
esis tests to increase the likelihood of detecting modeling errors.
We perform several experiments using both correct and incorrect
models to show the utility of our method. Experimental results
show that our metric can reliably detect modeling errors in sparse
data applications such as TDLAT.

Construction of Posterior Distribution
A classic approach to model based image reconstruction

(MBIR) techniques is the computation of the maximum a posteri-
ori (MAP) estimate which is obtained by maximizing the posterior
distribution of the unknown signal given the measured data [21].
The MAP estimate is then given as follows

x̂ = argmax
x

{
log p(Y |x)+ log p(x)

}
, (1)
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Figure 1. Schematic of the region of interest and projection measurement
paths. The magenta lines show the laser beam paths of projection measure-
ments. Blue circle represents the boundary of the flowing medium. The red
asterisks are source detector pairs. The region of interest is inside the blue
circle.

where p(Y |x) is the forward model giving the probability of ob-
serving the measurement matrix Y given the unknown signal x,
and p(x) is the prior model giving the prior probability of observ-
ing x.

Forward Model
In TDLAT imaging [22, 23], projection measurements cor-

responding to a particular target molecule, in our case water, are
made along a few projection paths and at a few discrete frequen-
cies [7, 24]. Fig. 1 shows one such schematic of the projection
paths. Let J be the total projection paths, let K be the total number
of observed absorption lines, let Y ∈RJ×K be the light absorbance
measurement matrix. Let x = [N, T ] ∈ Rp be the vector of un-
known molecular density, N ∈ Rp/2, and temperature, T ∈ Rp/2.
The light absorbance projection measurements are typically cor-
rupted by a variety of noise sources that include electronic noise,
shot noise, digitization noise, beam steering, light scattering by
particles and uncertainty in the spectroscopic database [18] all of
which are modeled together as additive white Gaussian noise with
mean 0 and variance σ2. As a result, the relation between the
measurements Y and unknown x is given by:

Y = H[F(x)]+W , (2)

where H ∈ RJ× p
2 is the forward projection matrix, F(x) =[

f1(x) f2(x) ... fK(x)
]
∈ R

p
2×K , where fk (x) = fk (N,T ) ∈ R

p
2

models the non-linear dependence of light absorption for a par-
ticular absorption line and W ∈ RJ×K is the white noise matrix,
[W ] j,k ∼ N (0,σ2). Combining this together, the log likelihood
of the measurements Y given the unknown x is given by

log p(Y |x) =− 1
2σ2

∥∥∥Y −H [F(x)]
∥∥∥2

2
+η , (3)

where the norm in equation (3) is Frobenius norm and η is a con-
stant that does not depend on x.

Prior Model
We model the joint distribution of the molecular density N

and the temperature T using a Gaussian mixture model (GMM)
with M mixture components. GMM distribution allows for mod-
eling both the long range correlations between the pixels of N and
T and the non-homogeneous, non-Gaussian behaviors. The like-
lihood function of x is therefore given as follows:

p(x) =
M

∑
m=1

πm|Bm|
1
2(

2π
) p

2
exp
{
−1

2

∥∥x−µm
∥∥2

Bm

}
, (4)

where πm, µm represent the prior probability and mean of the class
m and Bm represents the precision matrix of class m, equivalently
the inverse of class covariance matrix Rm.

Typically, the dimension p of the unknown x can be sev-
eral thousand. However, in the majority of cases, the unknown
images reside on a very thin manifold in a higher dimensional
space. Therefore we express x using an eigenimage basis set
E ∈ Rp×p̃ [25]

x = Ez , (5)

where z is the equivalent representation of the unknown x in eigen-
image basis set. In a typical scenario, the dimension p̃ of the vec-
tor z is much smaller than the dimension p of the vector x. The
vector z also has a Gaussian mixture distribution and its parame-
ters are related to the parameters of x by the following equations,

π̃m = πm, (6)

µ̃m = Et
µm, (7)

R̃m = EtRmE, (8)

where π̃m, µ̃m, R̃m are the prior class probability, class mean and
class covariance of the random vector z, and the class precision
matrix of z is denoted by B̃m.

Posterior Distribution
The log posterior distribution of the vector z given the mea-

surement data Y is constructed by combining the forward and the
prior distributions as follows:

log p(z|Y ) = − 1
2σ2

∥∥Y −H f (Ez)
∥∥2

2 +

log

 M

∑
m=1

π̃m|B̃m|
1
2(

2π
) p̃

2

exp
{
−1

2

∥∥z− µ̃m
∥∥2

B̃m

}+ ε, (9)

where all the terms not dependent on z are merged in ε .

Methods
Using the posterior distribution of eq. 9, we compute the

MAP estimate of the unknown molecular density and temperature
and use them to compute the residual error between predicted and
measured values of the absorbance spectrum. We hypothesize that
if the reconstruction is accurate then the residual error should ap-
pear to be a sample of white Gaussian noise. If the residual error
seems unlikely to be a sample of white Gaussian noise then we
conclude that our reconstruction is incorrect likely because of an
inaccurate posterior distribution.

To this end, we use four different hypothesis tests; Wald
Wolfwitz (WW) runs test [26], up and down (UD) runs test [27],
Kolmogorov Smirnov test [28] and Binomial test [29]. For each
hypothesis test, we compute the so called p-value [30] that gives
the probability of observing the data given that the null hypothe-
sis is true. We combine the hypotheses using Fisher’s method [31]
and construct our final p-value metric, p f . To reject the null hy-
pothesis, we require p f be smaller than the threshold value of 0.1
(significance level) [32].

Runs Test
We use two different types of runs test to determine if the

samples of the residual error appear to be independent and iden-
tically distributed or not. Both these tests compute the so called
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“number of runs” which are normally distributed under the null
hypothesis with means and variances computed from the given
data.

Typically, Wald-Wolfwitz (WW) runs test is performed on a
given 1-D binary sequence 1. Since our residual error is contin-
uously distributed, we convert it in to a binary sequence by com-
paring each residual error with the presumed mean value of zero.
For WW runs test, a run is defined as a contiguous sub-sequence
of the binary numbers all having the same sign.

The up and down (UD) runs tests is generally more effec-
tive in testing for serial correlations in the data. For a given nu-
meric sequence, an up and down run is defined as a subsequence
of increasing or decreasing numbers. If the dataset consists of
independent samples of a distribution, then we neither expect to
see any increasing or decreasing trends in the sample, nor do we
expect to see a periodic trends in the data.

We compute the p-values for these two tests from the number
of runs as given in the following equation:

pk = P
(
|z|> |Rk−µk|

σk

)
, (10)

where k ∈ {1,2}, p1 and p2 are the associated p-values of WW
runs test and UD runs test respectively, R1,R2 are the observed
number of runs for the two tests, and µ1,µ2 and σ1,σ2 are the
associated means and standard deviations of WW runs test and
UD runs test respectively computed under the assumption of null
hypotheses of these two tests [26, 27].

Kolmogorov Smirnov Test
We model the noise in our TDLAT measurements as white

Gaussian noise with mean 0 and variance σ2. If the reconstruc-
tion is accurate, then the empirical distribution of the residual er-
ror is expected to be similar to N

(
0,σ2). To validate the dis-

tribution of the residual error we use Kolmogorov Smirnov (KS)
test [28, 33, 34]. KS test works computing the empirical cumula-
tive distribution function (CDF), Fn(τ) of the normalized residual
error and comparing it with the presumed CDF, F(τ) i.e., CDF
of N (0,1). A distance metric, Dn, given by the maximum abso-
lute difference between Fn(x) and F(x) is then computed as given
below:

Dn = max
x
|Fn(x)−F(x)| . (11)

Under the null hypothesis that the normalized residual er-
ror is a sample drawn from N (0,1), the statistic

√
nDn follows

Kolomogorov distribution [34]. The CDF of the Kolmogorov dis-
tribution is used to compute the p-value for this test as follows:

p3 = 1−K(
√

n Dn) , (12)

where K(τ) is the Kolmogorov CDF.

Binomial Test
We test whether or not the residual error has roughly the

same number of positive and negative errors in it. For this, we
use Binomial test for the hypothesis that the residual error has a

1Both WW Runs test and UD runs test require a 1-D sequence. We
convert the 2-D, J×K residual error matrix into two 1-D sequences by
first reading all the columns contiguously and then reading all the rows
contiguously. We compute the p-values for each of the two 1-D sequences
separately and then take their geometric mean as our p-value for the test.

median value of zero [29, 35, 36]. For an unbiased residual error,
we expect to see roughly an equal number of positive and negative
errors.

To perform the binomial test, we compare each of the sam-
ples of the residual error from the assumed median value of zero.
We call the number of observed positive errors Bp. If the true me-
dian value of the residual error is 0, then Bp shall have an asymp-
totic normal distribution. We compute the p-value for this test as
follows:

p4 = P
(
|z|>

|Bp−µB|
σB

)
, (13)

where z is the standard normal random variable and µB and σB are
computed from the residual error data under the assumption that
the null hypothesis is true [37].

Combining all Hypotheses using Fisher’s Method
In order to summarize the results from all the tests, we com-

bine all the individual four tests using Fisher’s method [31, 38].
The test statistic for Fisher’s method is given by adding the nega-
tive log of the p-values:

W =
t

∑
i=1
−2log(pi) , (14)

where pi is the p-value associated with the ith test and t is the total
number of tests (4 in our case).

It follows that under the null hypothesis that all t null hypoth-
esis are true, W follows a chi-squared distribution with 2t degrees
of freedom. We calculate the final p-value, p f , by computing the
following probability:

p f = P
(

χ
2
8 ≥W

)
, (15)

where χ2
8 is chi-squared random variable with 8 degrees of free-

dom and W is the statistic calculated using eq. 14. Having one
or more of very small p-values, pi, results in small value of the
final p-value metric p f leading to the rejection of our final null
hypothesis.

Results
The posterior model is constructed from both the forward

model and the prior model and an inaccuracy in either the for-
ward model or the prior model can result in an inaccurate posterior
model. We study these two problems (incorrect forward model
and incorrect prior model) separately. In all the reconstruction
experiments, we use iterative coordinate descent algorithm with
eigen-images as the bases set [25]. Since the temperature and
concentration have different units and dynamic ranges, we nor-
malize their reconstruction errors with the dynamic range of the
ground truth phantoms when presenting the results [25].

Identification of Inaccuracy in the Posterior Distri-
bution due to Inaccurate Prior Model

In this experiment, we use the p-value metric p f to identify
the inaccuracy in the posterior distribution resulting from an in-
accurate prior model. We construct an inadequate prior model by
training a Gaussian mixture model (GMM) using an incomplete
training dataset. We use eigen-images as our basis set for recon-
struction (see eq. 9). The training data for the Gaussian mixture
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Figure 2. Illustration of the scatter plot of the 42 CFD phantoms using the
first two eigenimage basis vectors [25]. Blue dots represent the samples,
red dots represent the mean of the cluster and the lengths of the red line
segments are equal to the standard deviation of the samples in the respective
cluster. The three phantoms inside the ellipse are part of the same cluster
and are kept out of the training set.

Figure 3. Examples of CFD phantoms. The three phantoms in the red box
represent the test cases, whereas, the remaining phantoms are a subset of
the 39 phantoms that are used for training. There are no phantoms in the
training set which are similar to the test phantoms. The scale of N is 0 to
10×1017 in units of molecules/cm3, and the scale of temperature is 0 to 1000
in units of Kelvins.

model comes from computational fluid dynamics (CFD) simula-
tions.

We use a total of 42 CFD phantoms out of which, we use
3 as the test set as shown in fig. 2. As demonstrated in figure 3,
the three phantoms that are kept outside of the training data have
a distinctly different structure and dynamic range as compared to
the rest of the phantoms that are used as training data and can
not be modeled well by the remaining phantoms. We use these
three phantoms as our test set. By training the mixture model on
an incomplete training data, we construct an incorrect posterior
distribution.

For one of the test case phantoms, we generate five sets of
simulated absorbance measurement data by forward projecting
the CFD phantom. For generating the forward projections, we use
the layout of fig. 1 and four absorption features [25]. We simulate
noise in the measurements as additive white Gaussian noise with
standard deviation of the noise selected to yield an average signal
to noise ratio of 30dB. We reconstruct all the five datasets and for
each reconstruction, we vary the regularization level of the recon-
struction by varying the influence of the prior model. For each
regularization level, we compute an average of the metric p f and
the percent normalized root mean squared error (NRMSE) over
the five measurement datasets. For comparison, we perform the
same experiment using a Gaussian Markov random field distribu-
tion as the prior model [39] with 8 point neighborhood system.

Figure 4 shows the plot of the average p-value metric p f and
the average percent NRMSE for the two prior models. For the
GMM prior, the values of p f are extremely small, well below
the threshold and the values of percent NRMSE are large. For

(a) (b)
Figure 4. Plots of p-value metric p f and % NRMSE for GMM and GMRF
prior models. The green curve shows the significance level for the rejection
of null hypothesis which we choose as 0.1.

the GMRF prior, the value of p f are above the threshold and the
percent NRMSE are much smaller when compared with GMM
prior. For GMRF prior, the value of p f above the threshold level
indicates that our metric does not identify a possible inaccuracy
in the posterior distribution. However, for the case of GMM prior,
our metric identifies the inadequacy of the posterior distribution.

We also provide the reconstruction results for the two prior
models in fig. 5 for one of the simulated datasets. It is clear from
the figure that GMM prior overfits the insufficient training data
leading to incorrect reconstruction result. The GMRF prior on the
other hand does not produce artifacts. The p-value metric p f for
this GMM reconstruction is well below the threshold indicating
an incorrect posterior distribution (resulting from a prior model
which is over-fit to the training data).

Identification of Inaccuracy in the Posterior Distri-
bution due to Inaccurate Forward Model

In this experiment, we use the p-value metric p f to identify
the inaccuracy in the posterior distribution resulting from an inac-
curate forward model. We construct an incorrect forward model
by changing the location of one of the projection paths by 2.13
inches to the right. This models a scenario where the projec-
tion paths drifted due to human error or vibrations in the system.
The actual projection paths that are used to generate the projec-
tion measurements are given in figure 6(a) whereas the projection
paths that are used to generate the reconstruction are given in fig-
ure 6(b). Notice that the first projection path has different location
in the two figures.

GMM Recon. GMRF Recon.

N ground truth NRMSE = 26.29 % NRMSE = 17.08 %

T ground truth NRMSE = 59.63 % NRMSE = 18.26 %
Figure 5. Reconstruction results using two different prior distributions.
GMM prior was constructed using non-representative training samples. For
GMM prior, p f = 10−5 and for GMRF prior, p f = 0.55. For each reconstruc-
tion, the regularization was tuned to maximize p f .
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(a) (b)
Figure 6. The two projection paths are shown side by side. Grey color
shows the pixels that are reconstructed whereas the white color shows the
pixels through which a projection path passes. The 1st projection path in (b)
is moved to the right by 2.13 inches.

To perform the reconstruction experiment, we use a total of
114 CFD simulated phantoms. Out of these, one of the CFD phan-
toms is used as test set whereas the remaining are used as training
data for the prior model. We train a Gaussian mixture distribution
as the prior model and perform the reconstruction using eigen-
image basis vectors. For the test case CFD phantom, given in
figure, we generate the simulated projection measurements using
the layout of figure 6(a) and four absorption features [25]. To
simulate noise in the projection measurements, we add additive
white Gaussian noise in the forward projections to yield an aver-
age SNR of 30dB. After the simulated projection measurements
are generated, we use the layout of figure 6(b) in the reconstruc-
tion algorithm.

Figure 7 shows the ground truth CFD test phantom, the two
reconstruction results using correct and incorrect measurement
layout and the two forward projections using correct and incor-
rect layout. The reconstruction obtained with the incorrect layout
(fig. 7 (f),(i)) shows artifacts, however, such artifacts can be dif-
ficult to identify in the absence of ground truth. We show the
histogram of the noramlized residual error in fig. 8 for the two
reconstructions along with the value of the metric p f . The metric
p f takes a small value due to the unexpectedly large residual error
in the first projection path which can also be seen visually in fig.
7(c) and fig. 8(b). Our p-value metric p f accurately identifies the
resulting incorrect posterior distribution due to incorrect forward
model used.

Summary
In this paper, we proposed a scheme for finding deficiencies

in the posterior distribution/model by developing a p-value metric
p f using the theory of statistical hypothesis testing. We used four
different hypothesis tests increasing the power of our metric. We
aggregated the results from the four tests to formulate the metric
p f . We showed that this metric p f can be used to identify inaccu-
racies in the posterior model due to both incorrect forward or the
incorrect prior models. Results in this paper demonstrate that the
metric can be used as a reliable way to find cases where posterior
distribution is incorrect.
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Ground Truth Correct Layout Incorrect Layout

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 7. (a) is the simulated measurement projeciton measurement
dataset. (b) and (c) represent the forward projections using correct and incor-
rect layout respectively. (d), (e) and (f) show the ground truth concentration
and the reconstructions of concentration using correct and incorrect layout
respectively. (g), (h) and (i) show the ground truth temperature and the re-
constructions of temperature using correct and incorrect layout respectively.

(a)p f = 0.7 (b) p f = 0.048
Figure 8. (a) Histogram of normalized residual error with correct posterior
distribution. (b) Histogram of normalized residual error with incorrect poste-
rior distribution resulting from incorrect forward model. A standard normal
PDF is overlaid on both the histograms in red color. Notice the large error
values in (b) causing a small p-value.
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