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Abstract
A Supervised Learning Approach for Dynamic Sampling

(SLADS) addresses traditional issues with the incorporation of
stochastic processes into a compressed sensing method. Sta-
tistical features, extracted from a sample reconstruction, esti-
mate entropy reduction with regression models, in order to dy-
namically determine optimal sampling locations. This work in-
troduces an enhanced SLADS method, in the form of a Deep
Learning Approach for Dynamic Sampling (DLADS), showing re-
ductions in sample acquisition times for high-fidelity reconstruc-
tions between ∼ 70− 80% over traditional rectilinear scanning.
These improvements are demonstrated for dimensionally asym-
metric, high-resolution molecular images of mouse uterine and
kidney tissues, as obtained using Nanospray Desorption Electro-
Spray Ionization (nano-DESI) Mass Spectrometry Imaging (MSI).
The methodology for training set creation is adjusted to miti-
gate stretching artifacts generated when using prior SLADS ap-
proaches. Transitioning to DLADS removes the need for fea-
ture extraction, further advanced with the employment of convo-
lutional layers to leverage inter-pixel spatial relationships. Ad-
ditionally, DLADS demonstrates effective generalization, despite
dissimilar training and testing data. Overall, DLADS is shown to
maximize potential experimental throughput for nano-DESI MSI.

Introduction
Background

Traditional scans in Mass Spectroscopy Imaging (MSI),
among other forms of spectroscopy and microscopy, move a probe
along a rectilinear grid (e.g. raster scanning), with measure-
ments of each scanning location requiring up to ∼ 5 seconds for
high-resolution acquisitions. This results in a high inefficiency
for sample processing and throughput, possible sample deteriora-
tion in scenarios requiring the employment of high-energy parti-
cle streams, and difficulties when studying time-sensitive chemi-
cal/biological phenomena. While there are other sampling meth-
ods that use predetermined locations, (including uniform, ran-
dom, and low-discrepancy approaches [1, 2, 3]), or instances
where a sample geometry is sufficiently defined [4], typically
they either lack sufficient context to effectively approximate the
ground-truth, or the needed flexibility for widespread adoption.

Alternative dynamic sampling methods were developed to
determine optimal scan locations based on information obtained
during acquisition [5, 6, 7]. A particularly successful imple-
mentation, Supervised Learning Approach for Dynamic Sampling
(SLADS) [8, 9], seeks to only acquire data necessary to generate
a low-error reconstruction of the ground-truth, through weighted

mean interpolation. Measurement locations are therefore chosen
by which minimize the entropy within the reconstruction, as esti-
mated through a regression model. Training this model incorpo-
rates matched sets of extracted features and their corresponding
entropy reductions for potential measurement locations. Since it
only performs measurements in regions likely to contain infor-
mation of interest and requires minimal post-processing to pro-
duce high-fidelity reconstructions, SLADS minimizes computa-
tional expense and maximizes experimental throughput.

The SLADS framework provides a significant reduction to
the number of measurements for many pointwise scanning scenar-
ios. SLADS achieved below 10−5 Normalized Distortion (ND)
levels with only 6.9% of scanned locations in Electron Back Scat-
ter Diffraction (EBSD) microscopy [8, 9]. In X-Ray crystallog-
raphy of proteins, only 5% of a sample was required for a ND
level of∼ 10−3% (a∼ 20-fold reduction in X-ray exposure) [10].
In confocal Raman microscopy, SLADS yielded a 6-fold reduc-
tion in the number of measurements needed for a 0.1% image
difference [11]. Besides the original SLADS least-squares model,
variations using a neural network [12], Gaussian mixture mod-
els [13], and vector measurements [14] have also previously been
employed. The neural network implementation, designated as
SLADS-Net, provided evidence of improved generalization when
employed with dissimilar training and testing content.

DLADS Approach
Existing SLADS implementations have utilized synthetic,

symmetric data with relatively low resolutions, and only operated
in the pointwise domain. This work’s architecture, Deep Learning
Approach for Dynamic Sampling (DLADS), was engineered for
real-world, high-resolution images of biological tissues. Mouse
uterine and kidney ion images, seen in Figure 1, were acquired us-
ing Nanospray Desorption ElectroSpray Ionization (nano-DESI)
MSI [15], to examine DLADS generalizability and performance
compared with prior SLADS approaches.

Rather than using the least-squares model of SLADS, or the
multi-layer perceptron network of SLADS-Net, DLADS employs
a Convolutional Neural Network (CNN) to leverage inter-pixel re-
lationships in a two dimensional space. Additional advancements
were made to the reconstruction and entropy estimation methods,
compensating for input image asymmetry, modifying previously
static hyperparameters, and removing the need for feature extrac-
tion. Given the potential time expense for hardware alignment,
as present in nano-DESI MSI, a group-wise selection implemen-
tation was also developed. This line-bounded mode, limits po-
tential scanning locations to specific coordinate ranges. While
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Figure 1: Ion images of training, validation, and testing samples formed by averaging handpicked nano-DESI MSI density visualizations.

the original SLADS’s least-square, SLADS-Net’s neural network,
and DLADS’s CNN all resulted in throughput improvements in
this study, DLADS produced the most significant advancements.

Methods
Pointwise Acquisition

Ω consists of all locations within an N×M image X . The
set S contains k pixel locations obtained (S = {s(1),s(2), ...,s(k)}),
with their values denoted by X (S). Similarly, the set T con-
tains the q unmeasured locations (T = {t(1), t(2), ..., t(q)}). Within
pointwise acquisition, groups of locations U containing m pixels
are greedily selected from T (U = {u(1),u(2), ...,u(m)}). When
scanned, X (U) are set in the reconstruction: X̂ (U). Values X̂ (T )

are then determined through weighted mean interpolation where
DLADS applies a penalty (derived from the input sample’s aspect
ratio) on Ω, preventing the development of stretching artifacts.

Overall, this selection process equivocates to the maximiza-
tion of a Reduction in Distortion (RD) entropy metric: R, where
D(·, ·) is absolute difference between two images. The RD of
a measurement is described by the difference between the dis-
tortion in the reconstructions with and without that measurement
(Eq (1)). Since X cannot be known during implementation, an
Estimated RD (ERD) for T must be found with Eq (2).

R(U) = D(X , X̂ (S))−D(X , X̂ (S+U)) (1)

R̂(T ) = E
[
R(T )|X (S)

]
(2)

Line-Bounded Acquisition
The set of horizontal lines in X , L = {l(1), l(2), ..., l(M)} (with

pixel locations z), is comprised of a set of lines not visited: T ⊂
L = {l ∈ L : (∀z ∈ l) /∈ S}, and the set of visited lines: S ⊂ L =
L \T . For line-bounded acquisition, the ERD for l ∈ T : R̂(l∈T ),
is defined by the sum of R̂(z∈l) (Eq (3)). The next line to scan is
selected by finding the line where {R̂(l∈T )} is maximized. Data
acquisition was further refined to measure only 40% of the chosen
line’s pixels, those with the highest ERD.

R̂(l∈T ) = ∑
z∈(l∈T )

R̂(T )(z) (3)

SLADS
In SLADS, the ERD for unmeasured locations: R̂(T ), may be

described by a least-squares predictor (Eq (4)), with the product
of a ρ-dimensional vector VS extracted from X̂ (describing mea-
sures of the data gradient, standard deviation, and density), and a
parameter set θ̂ , approximated through least-squares (Eq (5)).

R̂(T ) =VSθ̂ (4)

θ̂ = arg min
θ∈Rρ

∥∥∥∥∥∥∥∥


Rs(1)

...
Rs(k)

−
Vs(1)

...
Vs(k)

θ

∥∥∥∥∥∥∥∥
2

(5)

SLADS-Net
SLADS-Net’s regression (Eq (6)) uses a function g(·), to de-

note a deep neural network (50 neurons in 5 layers). Its layer
weights w are optimized using an Adam solver (learning rate of
1e− 3) to minimize a squared loss function (Eq (7)). As in the
original publications, in order to reduce computational overhead
during operation, both SLADS and SLADS-Net only update the
ERD for pixels in neighboring regions (size determined during
operation) of newly scanned points.

R̄(s) = gw(Vs) (6)

Loss =
1
2

n

∑
i=1

(Rs(i) −gw(Vs(i)))
2 (7)

DLADS
DLADS replaces g(·) with a CNN consisting of 4 sequential

ResNet identity blocks, using layer normalization, and He weight
initialization (Figure 2). A Nadam optimizer (learning rate of
1e− 3) is used to minimize a Mean-Squared Error (MSE) loss
(Eq (8)) with two inputs: the known measured values (X (k)) and
the reconstruction values for unmeasured locations (X̂ (q)). Af-
ter training for b epochs, if the training loss falls below that of a
validation set, and the average PSNR of that set’s ERD does not
improve within e epochs, training will terminate.

Loss =
1
n

n

∑
i=1

(Rs(i) −gw([X (S), X̂ (T )]))2 (8)
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Figure 2: DLADS CNN model (right) with the component iden-
tity block architecture (left).

Optimization Parameter c
In all of the models, each of the training samples are mea-

sured at h densities: P = {p1, p2, ..., ph} to simulate data pat-
terns encountered during operation. As the actual ground-truth
RD is computationally prohibitive to determine, an approxima-
tion is formed with a parameter c used to limit the regional effects
of each unmeasured location’s determined reconstruction value.

In a scenario with two locations, one measured: i and another
unmeasured: j, there exists a weighted distance σi (Eq (9)). The
RD at j, given i: R( j)(i) can be estimated according to σi applied
to the estimated distortion (Eq (10)). As i becomes more distant
from j, its impact decreases up to the bounds of a window W .

σi =
min f∈S ‖i− f‖

c
(9)

R( j)(i)≈ R̂( j)(i) = exp

{
− 1

2σ2
i
‖ j− i‖2

}
D(X ( j), X̂ ( j)) (10)

In SLADS and SLADS-Net, W is set to a static, symmetric
value. DLADS uses a dynamic window set on a pixel-by-pixel
basis as 3σ , additionally applying the sample aspect-ratio penalty
to account for asymmetry. Further, while the ground-truth RD
values in the original SLADS and SLADS-Net publications were
only calculated for a maximum of half of the unmeasured loca-
tions in order to reduce training times, DLADS leverages multi-
processing to enable calculation for all locations.

The c parameter still needs to be optimized for each appli-
cation with o possible values: C = {c1,c2, ...,co}. SLADS and
SLADS-Net generate a model for each possible c, simulate those
models’ employment, and select the optimal c value: c∗, as which
best minimizes D(X , X̂) over all measurement iterations. DLADS
uses the approximated ground-truth RD in place of a model gen-
erated ERD, so only a single model must be trained. DLADS
then chooses c∗ based on which maximizes the PSNR for all of
the training and validation samples, over a simulated scan.

Experimental
Parameters

Visualizations of the employed data, may be seen in Fig-
ure 1. The training set consisted of 6 mouse uterine ion images,
each formed from 10 handpicked visualized mass ranges, aver-
aged together to highlight biological structures. The validation
set for DLADS was similarly constructed from 2 uterine sam-
ples. Testing data included another 2 mouse uterine and alter-
nately 4 kidney samples. All tissues were scanned with nano-
DESI MSI [15], with a spatial resolution of ∼ 10µm. The re-
sultant images possessed average widths/heights of 1000/60 and
2000/49 pixels, and average pixel values of 7.573 and 0.008
for uterine and kidney respectively. The images’ dimensional
asymmetry resulted from a linear interpolation between rows,
made necessary by the use of automated gain control during
data acquisition. Additional parameters were empirically cho-
sen as follows: C = {1,2,4,8,16,32,64,128}; P = {1,2, ...40};
m = 0.01(N ∗M); W = [15×15] (for SLADS and SLADS-Net);
b = 50 and e = 50 (for DLADS).

Simulated nano-DESI MSI
Pointwise selection initialized after a 1% random acquisi-

tion, while line-bounded selection began after scanning 40% ran-
dom locations in the central horizontal line. Each simulated scan
was terminated after ≥ 40% of all pixels were obtained. Subse-
quent evaluations were conducted with PSNR.

Pointwise
For qualitative evaluation, matched measurement masks and

reconstructed images for uterine and kidney test samples, are
shown in Figure 3a and Figure 4a, with 10%, 20%, and 40% of all
pixels scanned. SLADS and SLADS-Net had a high coherence to
the most prominent structures, but failed to obtain sufficient con-
textual information for low-error reconstructions. DLADS mea-
surements tended to be more diverse, owing to the spatial aware-
ness afforded by the convolutional layers. Further, while vertical
artifacts may be seen in both SLADS and SLADS-Net results,
these are absent in those of DLADS, due to the modifications
made for asymmetry. These trends may also be seen throughout
the scanning progressions, visualized in Figure 5, where DLADS
outperformed both of the SLADS architectures.

These observations are borne out by the final quantitative re-
sults in Table 1a. Using uterine and kidney samples for testing,
DLADS provided average improvements of 25.0% and 45.4%
over SLADS. Similarly, DLADS had corresponding improve-
ments of 25.4% and 45.9% over SLADS-Net. Neither SLADS,
nor SLADS-Net was able to achieve a high-fidelity 40 dB recon-
struction, though DLADS was able to with only 20.5% of the
sample measurement locations for uterine and 30.8% for kidney.
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(a) Pointwise Acquisition

(b) Line-Bounded Acquisition

Figure 3: Binary measurement masks and reconstructions of a uterine test sample across simulated scans, with all models trained on
uterine data. SLADS and SLADS-Net exhibit visual artifacts and clustered measurements. DLADS avoids these behaviors, allowing for
effective reconstructions at sampling densities as low as 10%.

Line-Bounded
Line-bounded simulations were able to produce comparable

reconstructions to those of pointwise operation, seen in Figure 3b
and Figure 4b. SLADS and SLADS-Net lacked sufficient spa-
tial awareness to select effective measurement locations, while
DLADS was better able to determine the underlying geometries.
This is evidenced by DLADS having performed fewer measure-
ments in background regions, as well as the lack of visual arti-
facts in its produced reconstructions. Final PSNR scores for line-
bounded simulations are tabulated in Table 1b, where DLADS
improved on SLADS by 11.5% and 15.2%, as well as SLADS-
Net by 13.7% and 14.7% for uterine and kidney testing sets. The
PSNR progression is visualized in Figure 5, where DLADS was
the only model able to reach a reasonable approximation of the
ground-truth, achieving 30 dB at 30.0% for uterine testing.

Discussion
DLADS provides a demonstrable improvement over prior

SLADS implementations of ∼ 11 dB and ∼ 16 dB for similar
and dissimilar tissues when using pointwise acquisition. It fur-

Table 1: PSNR (dB) at 40% acquisition of pixels for uterine and
kidney testing samples with models trained on uterine data.

Uterine Kidney
SLADS-LS 38.4±0.4 27.0±1.6
SLADS-Net 38.2±0.2 26.9±1.7

DLADS 49.3±0.8 42.8±0.8

(a) Pointwise Acquisition

Uterine Kidney
SLADS-LS 30.1±0.3 22.1±1.3
SLADS-Net 29.5±0.7 22.2±1.4

DLADS 33.8±0.6 25.8±1.9

(b) Line-Bounded Acquisition

ther showed similar gains of ∼ 4 dB in line-bounded scenar-
ios irregardless of varied training/testing tissues. This exhibits a
70− 80% advancement in sample throughput compared to tradi-
tional rectilinear scanning, depending on acceptable PSNR levels.

Designing and training the DLADS model sufficiently for re-
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(a) Pointwise Acquisition

(b) Line-Bounded Acquisition

Figure 4: Binary measurement masks and reconstructions of a kidney test sample across simulated scans, with all models trained on
uterine data. SLADS and SLADS-Net have similar issues to those exhibited in uterine testing and additionally fail to generalize for
line-bounded acquisition. DLADS was able to produce high-fidelity reconstructions, despite dissimilar training and testing content.

liable improvements over existing SLADS implementations was
particularly difficult given the low availability of nano-DESI MSI
data. As a result, this study could not determine the limit of
DLADS ability to generalize and learn specific biological struc-
tures. Therefore, simulating and training DLADS models with a
wider assortment and quantity of tissue visualizations remains ad-
visable prior to general implementation or integration with phys-
ical equipment. More advanced methods should be considered
for reconstruction to further improve throughput. While DLADS
averages together handpicked visualized mass ranges to generate
the ground-truth sample and RD images, this process may obscure
pertinent structural information. Instead, the correlations between
and the information within all mass ranges should be utilized for
RD generation and ERD estimates. This can be more easily ac-
complished with DLADS, where each mass range can simply be
appended to the network’s input. Further adjustments may also
allow for semantic segmentation (multi-label classification for all
pixel locations) during active scans, thereby enabling researchers
to further refine what specific data should be obtained.

Conclusion
Pointwise SLADS and SLADS-Net methodologies and mod-

els were adapted within this work to perform pointwise and line-
bounded acquisitions for dimensionally asymmetric molecular
images of real-world biological samples, additionally forming the
DLADS architecture. Simulations of these models were shown
to significantly improve nano-DESI MSI throughput, allowing
for the reduction in the number of required measurements by
70−80%. DLADS additionally allows for better inter-tissue gen-
eralization and demonstrated a ∼ 14− 46% improvement over
prior SLADS variations. Further work should be conducted to
make this method more practical for high-resolution scanning ap-
plications, utilizing the entirety of available samples’ mass spectra
and employing more advanced reconstruction methods.
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Figure 5: PSNR scanning progression for models with varied acquisition modes and training/testing sets. DLADS shows notable im-
provements in pointwise acquisition over prior SLADS implementations, with better generalization exhibited when testing with dissimilar
data. Scans conducted with a line-bounded constraint were able to produce comparable reconstructions to those of pointwise.

Data, Materials, and Code Availability
Code utilized has been made available in an online reposi-

tory: https://github.com/Yatagarasu50469/SLADS.
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