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Abstract
Conventional X-ray computed tomography (CT) systems

obtain single- or dual-energy measurements, from which
dual-energy CT has emerged as the superior way to recognize
materials. Recently photon counting detectors have facilitated
multi-spectral CT which captures spectral information by
counting photon arrivals at different energy windows. However,
the narrow energy bins result in a lower signal-to-noise ratio in
each bin, particularly in the lower energy bins. This effect is
significant and challenging when high-attenuation materials such
as metal are present in the area to be imaged. In this paper, we
propose a novel technique to estimate material properties with
multi-spectral CT in the presence of high-attenuation materials.
Our approach combines basis decomposition concepts using
multiple-spectral bin information, as well as individual energy
bin reconstructions. We show that this approach is robust in
the presence of metal and outperforms alternative techniques
for material estimation with multi-spectral CT as well with the
state-of-art dual-energy CT.

Introduction
Non-destructive material characterization is important in

many applications related to medical, security, and industrial
imaging. X-ray computed tomography (CT) offers the potential
of estimating material properties such as effective atomic number
and density which helps to characterize the materials present.
In order to estimate such properties, dual-energy CT (DECT)
is utilized, where objects are scanned with two distinct X-ray
energy spectra. However, the reconstructed images from the
measurements of each individual spectrum contain significant
artifacts due to monochromatic approximations used in the
inversion algorithms, and to the low signal levels caused by the
presence of highly-attenuating materials. The linear attenuation
coefficient (LAC), which characterises the attenuation of the
X-ray beam as it travels through the object, is energy-dependent.
In CT systems, the reconstruction algorithms often assume
a monochromatic X-ray beam model, which results in beam
hardening [1] and other artifacts leading to poor material
characterization.

To alleviate beam hardening artifacts in dual-energy systems,
images are often generated as coefficients of energy-dependent
basis functions. The detector measurements in the two energy
spectra are decomposed into basis coefficient measurements,
from which coefficient images are subsequently reconstructed [2,
3]. These basis images then can be used to estimate material
properties such as effective atomic number and electron density.

However, the presence of metal or other dense materials
which have a higher absorption rate leads to significant distortions
in the reconstructed basis images, because the lower energy
photons are heavily attenuated. These distortions can lead to
inaccurate material characterization in security imaging. In

our prior work [4] we proposed a reconstruction technique
based on minimizing weighted least squares estimation with
edge-preserving total variation regularization for the most
common basis functions of photoelectric absorption and Compton
scatter basis (PCB) functions. While the proposed method
outperformed the competing iterative reconstruction algorithms,
the final photoelectric images still had some artifacts. The
photoelectric absorption rate at lower energies is significantly
higher in metal, and is difficult to estimate given the detector
measurements. Therefore in [5] we investigated alternative basis
functions of synthesized monochromatic basis (SMB) [6] which
performed significantly better than PCB functions in the presence
of metal.

In this paper we utilize multi spectral CT (also known
as multi-energy CT (MECT)) for material estimation in the
presence of metal. Different from DECT, MECT systems count
photon arrivals at narrow energy windows with photon counting
detectors, allowing for the formation of CT images in each energy
window. In this manner, MECT systems capture more spectral
dependent information [7]. Since the energy bins are narrow,
there will be little beam hardening artifacts as compared with
conventional CT, and the attenuation values in CT images can be
directly interpreted as estimates of the LAC values at different
energies. In [8], a method was proposed to estimate effective
atomic number and electron density directly from the energy
dependent CT images. A limitation of this approach is that the
number of photons measured in each energy bin is much less than
that with conventional energy-integrating detectors, and results in
a lower signal to noise ratio (SNR). This becomes a significant
issue in the presence of dense materials particularly as the lower
energy bins have only a few photons to use for the reconstructions.

We propose to estimate material properties by combining
direct energy bin reconstructions and basis image reconstructions.
In [9] and [10] basis decomposition reconstruction was achieved
with multi-spectral CT measurements. In [9] a DECT sinogram
decomposition method of using PCB functions was extended for
MECT and basis images were reconstructed with FBP. In [10]
a new basis representation was introduced to represent K-edge
materials. However none of these work addressed material
characterization of scenes containing significant metal regions.

In this paper we propose a robust novel technique to estimate
material properties in the presence of metal, exploiting MECT
measurements. Building on our prior work on DECT [4], we
use down-weighted sinograms and edge-preserving total variation
(EPTV) regularization for image reconstruction. We first estimate
the basis sinograms from the measurements in all energy bins
using a weighted non linear solver. The weighting serves to
de-emphasize energy bins which have low photon counts. Next,
we do an initial reconstruction of the highest energy image to
determine edges for regions in the reconstructed image, in order
to support EPTV reconstruction of the basis images. This energy
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bin has the strongest SNR, which enables accurate determination
of region boundaries. We also use EPTV regularization to get an
enhanced image of the highest-energy bin. Once we have the three
images (dual basis images and the high energy direct image), we
estimate the effective atomic number and the electron density.

We compare the proposed method with alternative
techniques for material estimation with MECT and state-of-art
DECT in the presence of metal. We used DECT experimental
results acquired from a Imatron C300 medical scanner to
determine representative containers with multiple materials
present. We add materials of interest and metal to those
containers and simulate both DECT and MECT signatures. We
used two different basis decompositions, one based on a pair
of materials (aluminum and polystyrene), and a second based
on synthesized monochromatic basis (SMB). Our experiments
indicate that our proposed method generates more accurate
estimates of effective atomic number and electron density over a
broad range of conditions.

In the following sections we give an overview of MECT
modality, a detailed description of the proposed algorithm and
describe our performance evaluation experiments.

Measurement Model
Multi-spectral CT systems count photon arrivals in narrow

energy windows with Photon Counting Detectors (PCD). The
Beer-Lambert law indicates that the expected photon counts
received at detector j can be modelled as

Ii( j) =
∫

I0wi(E)e
−
∫

L j
µ(r,E)dl

dE (1)

with i = 1...N denoting the energy bins and wi(E) denoting
the narrow spectrum at the energy bin i which includes the
energy-dependent source strength and detector sensitivity. In this
equation, E is the energy level, r is the spatial location, µ(r,E) is
the linear attenuation coefficient (LAC) at energy E and position r
along the X-ray path L j, and I0 is the source intensity. In Figure 1
we show an example multi-energy spectra with 9 bins.

Note that the actual received counts at detector j are modeled
as a Poisson process with the mean given by (1), neglecting
electronic noise in this approximation. We use the negative log
of the normalized intensity of photon counts as the measurements
quantities in each energy bin, which are referred to as sinograms
when collected over all detectors. Let si( j) denote the measured
ith energy sinogram at detector j, defined as

si( j) =−ln(
Zi( j)

Zi,0( j)
) (2)

where Zi( j) are the actual received counts and Zi,0( j) are the
expected photon counts from a direct path with no attenuation on
projection L j.

Dual-energy CT systems collect only two measurements of
the scene acquired with two distinct X-ray spectral distributions,
each of which is significantly wider in support over photon
energies. An advantage of using narrow energy bins in MECT
is the capture of additional spectrally-dependent information, as
well as the relative homogeneity of photon energies in each energy
bin. This latter effect can alleviate beam hardening that arises
with wider spectra. In particular, one can form CT images in
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Figure 1: An example of multi-energy spectra with 9 bins

each energy window and estimate the LAC values directly at
each center energy. However, the narrow energy bins reduces the
number of photons measured in each energy bin, which leads to
lower signal to noise ratio (SNR). In the presence of metal this
becomes a significant issue, particularly in the lower energy bins
where photons are heavily attenuated. In order to avoid this, one
can use basis decomposition techniques using the multispectral
measurements, enabling combination of multiple energy windows
to estimate basis coefficients accurately. These basis coefficients
can be used to reconstruct the basis images, and estimate material
properties from them.

In dual basis decomposition, the energy-dependent LAC of a
material is approximated in terms of two energy-dependent basis
functions f1(E) and f2(E) as

µ(r,E) = x1(r) f1(E)+ x2(r) f2(E) (3)

where x1(r) and x2(r) are the respective basis coefficients of the
material at spatial location r. Using this basis decomposition, the
expected value of normalized counts in (1) can be written as

Ii( j) =
∫

wi(E)e
−
∫

L j
(x1(r) f1(E)+x2(r) f2(E))dl

dE (4)

which can be further simplified as

Ii( j) =
∫

wi(E)e−y1( j) f1(E)−y2( j) f2(E)dE (5)

where y1( j) =
∫

L j
x1(r)dl and y2( j) =

∫
L j

x2(r)dl are line
integrals of basis coefficients along the ray L j.

The first step in multi-energy basis image reconstruction is
to decompose the energy bin measurements at detector j, denoted
by s1( j)...sN( j) into the basis integrals y1( j),y2( j). We do this
using a nonlinear least squares minimization, where we minimize

min
y1,y2

N

∑
i=1

Zi( j)(si( j)+ ln
∫

wi(E)e−y1 f1(E)−y2 f2(E)dE)2 (6)

Here we use the measured counts as an approximation to the
inverse variance of the measurements, as in [11]. This weighting
de-emphasizes energy bins which have low photon counts. We
use a trust-region algorithm to solve the non linear problem,
with Steihaug’s conjugate gradient method used to solve the
trust-region sub-problem [12]. We vectorize the problem such
that a GPU can be utilized for the estimation to obtain the
decomposition for all detectors j in parallel.
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We refer to the collection of decomposed measurements
y1( j),y2( j) for the different detectors as basis sinograms.
Discretizing the relationship of the basis sinograms with the
respective basis coefficients using the forward projection matrix
A, we obtain the linear relationship

y1 = Ax1 and y2 = Ax2 (7)

Once coefficient images are reconstructed, they can be used to
estimate effective atomic number Ze and electron density ρe.
However, estimating accurate coefficient images in the presence
of metal is still challenging and we describe our approach next.

Enhanced Reconstruction
In our prior work [4] we developed a regularization

technique based on edge-preserving total variation (EPTV) for
DECT dual-basis images utilizing the structure similarity between
the basis images, where region edges were expected in similar
locations in both images. In this work we extend the technique to
MECT, exploiting the idea that individual images reconstructed at
each energy bin and the basis images will share the same region
structure. In [4], we did an initial reconstruction of the high
energy image to find the edges. Here we use the highest energy
bin for the initial reconstruction as it suffers less from photon
starvation and has the highest SNR. Once the edges are identified,
the optimization problem for generating a basis coefficient image
for basis b can be modelled as,

x̂b = argmin
xb

1
2
||yb−Axb||2Wb

+τ||WhDhxb||1+τ||WvDvxb||1

(8)

In this optimization, Wb is the weighting matrix used to weight
the importance of different components of the basis sinogram.
In solving the nonlinear least squares problem in (6), we obtain
an estimate of the covariance for the basis coefficients at each
detector, and we use the inverse of these covariances as the
components of the diagonal matrix Wb. Wh and Wv are
diagonal matrices for edge preserving with elements assigned as
wh = exp(−Dhµhigh

β
) and wv = exp(−Dvµhigh

β
) , where µhigh is

the high-energy image, Dh and Dv are horizontal and vertical
gradient operators, and β is the controlling parameter. τ is the
regularization parameter. We use split-Bregman techniques [13]
to solve (8) and the details of the implementation steps can be
found in [4].

We experimented with two sets of basis functions: material
basis functions and synthesized monochromatic basis (SMB)
functions. We did not use the common photoelectric and
Compton basis functions, because the photoelectric basis
function reconstruction is very noisy in the presence of metal,
when compared to other basis functions. In material basis
decomposition, the LAC values of a material is approximated
by as a linear combination of the LAC values of aluminum and
polystyrene. The SMB functions approximate monochromatic
functions at chosen energies, so that the basis coefficients coincide
with the LAC values at those energies. We chose SMB 27 and
SMB 93 as our SMB functions. The basis functions are illustrated
in Figure 2. The reason for choosing 27 keV and 93 keV for SMB
functions, is that these energies are the most separated energies
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Figure 2: Basis functions: (a) Material basis, (b) Synthesized
monochromatic basis.
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Figure 3: Material estimation with LAC values, (a) ratio of LAC
at 27 keV to LAC at 93 keV vs atomic number, (b) electronic
attenuation at 93 keV vs atomic number.

covered by both the spectra of the DECT scanner we used in our
experiments.

Enhanced Material Estimation
Once the basis coefficient images are reconstructed, the

linear attenuation at any two energies can be extrapolated from the
basis coefficients. If using SMB functions the basis coefficients
will be the LAC values at the selected energies. These two LAC
values (or SMB coefficients) are used to estimate effective atomic
number (Ze) and electron density (ρe) as derived in detail in [6].
Suppose cL and cH are the estimated LAC coefficients at energies
EL and EH . In this case, Ze is a function of the ratio of ( cL

cH
). Once

Ze is found ρe can be determined by,

ρe =
cH

σe(EH ,Ze)
(9)

Here σe(EH ,Ze) is the electronic attenuation at energy EH . The
relationships between Ze and the ratio ( cL

cH
), and between Ze and

σe(EH ,Ze) for pure elements of atomic number ranging from 1 to
30 are depicted in Figure 3. We use linear interpolation to estimate
Ze and ρe using these curves. This is the approach we used with
DECT in [5].

This approach can be enhanced utilizing the additional
spectral information received with MECT. While the
measurements in lower energy bins may be corrupted due
to low photon counts, the measurements in higher energy bins are
much cleaner. Therefore to estimate ρe we can directly use the
attenuation at a higher energy bin. Since the bins are narrow, at
higher energies the LAC curves of the materials are relatively flat
with energy. Thus, we assume that the attenuation reconstructed
at each energy bin is equivalent to the attenuation at the center
energy of the bin.
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In this work we use the highest energy bin to find ρe.
We used an initial reconstruction of the highest energy image
to find the edges for basis image reconstruction with EPTV
regularization. Using the same EPTV regularization we can get
an enhanced image of the highest-energy bin as

µ̂H = argmin
µH≥0

1
2
||SH−AµH ||2WH

+τ||WhDhµH ||1+τ||WvDvµH ||1

(10)

Here SH is the sinogram of the highest energy bin and
WH = diag(Zhigh) where Zhigh are the photon counts received
at the highest energy bin.

Experiments and Results
As we do not have experimental data with MECT, we use

DECT experimental results (acquired from Imatron C300 medical
scanner) to determine the contents of cluttered images with
various articles. We added materials of interest and additional
metal structures to the regions of interest, and we simulate
both DECT and MECT measurements for regions containing
the background clutter, as well as added metal and materials of
interest. Figure 4 shows the reconstructed SMB images of a slice
from a bag with clutter acquired with the DECT scanner. We
then inject a box, a bottle and various metal pieces as shown in
Figure 5. The metal is positioned as in metal clutter observed in
other experimental data.
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Figure 4: Reconstructed SMB images from DECT scanner data
(a) SMB 27, (b) SMB 93.
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Figure 5: Injected objects on the scanner data (a) SMB 27, (b)
SMB 93. The bottle is filled with water and the box is filled with
black powder.

We experimented with different liquids inside the bottle, and
different powder materials in the box. The choice of liquids
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Figure 6: Ze and ρe of the materials. In blue are the materials we
chose to evaluate and in red are the basis materials.

and powders were spread across the feature space of Ze and
ρe. For liquids, we chose water, acetone, cytric acid, ethanol,
hydrochloric acid, and kerosene. For powders, we chose PETN,
polypropylene (PP), RDX, calcium chloride, magnesium, and
black powder. The Ze and ρe of all the materials are depicted in
Figure 6. The metallic pieces we added were made of copper. The
material attenuation coefficients for these materials were obtained
from the NIST XCOM database [14] for use in our simulations.
Poisson noise was added to all detector measurements. We
forward projected the attenuation values to generate both MECT
and DECT data. We designed the MECT spectra illustrated in
Figure 1 to match closely as possible to Imatron C300 DECT
spectra (95 kVp and 130 kVp) such that the photons received
at each energy were comparable for both systems. We estimate
Ze and ρe with our proposed MECT method, and compare
them with two alternative methods: estimation with DECT basis
decomposition, and estimation with MECT direct energy bin
reconstructions. The process on estimating Ze and ρe with DECT
are laid out in detail in [5]. For estimating Ze and ρe directly
from MECT energy bin reconstructions, we follow the method
proposed in [8]. Note that instead of finding low- and high-energy
thresholds as in [8], we use all energy bins to estimate the
material properties, because choosing the correct thresholds was
not practical for scenes with multiple materials and lots of metal
scatter. For all reconstructions, we used the EPTV regularization
technique described earlier.

The SMB reconstructions for a slice when the bottle is filled
with water and the box is filled with black powder are shown in
Figure 7 (the ground truth is the Figure 5). Looking closely at the
figures we see that the MECT reconstructions are much sharper
and cleaner than the DECT reconstructions.

Table 1: Average of relative mean errors for Ze
Mean DECT MECT MECT
error (%) MB SMB direct MB SMB
Metal free 1.06 0.42 1.50 1.06 0.37
With metal 8.68 7.49 3.33 2.99 2.8

In tables 1 and 2 we list the relative mean absolute errors of
Ze and ρe. When metal is not present errors are 1% or less for both
DECT and MECT basis decomposition. MECT direct estimates
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Figure 7: SMB reconstructions of the slice containing a water
bottle and a black powder box; (a) DECT SMB 27, (b) DECT
SMB 93, (c) MECT SMB 27, (d) MECT SMB 93.

Table 2: Average of relative mean errors for ρe
Mean DECT MECT MECT MECT-joint
error (%) MB SMB direct MB SMB MB SMB
Metal
free

0.79 0.21 1.54 0.75 0.16 0.16 0.32

With
metal

10.1 2.51 2.71 4.52 1.8 0.95 1.52

have higher errors around 1.5%. This is because, even without
the presence of metal, the higher Ze materials suffer from the low
photon counts in lower energy bins.

In the presence of metal, MECT estimates are clearly better
than DECT estimates for both Ze and ρe. To shed additional
insight on these results, we show the errors for individual
materials in tables 3 and 4. The average Ze errors with DECT are
∼ 8%, and the average errors with MECT are ∼ 3%, which is a
significant improvement. In addition the Ze estimates with MECT
basis decomposition are better than with the direct method.

The ρe errors with DECT and MECT basis decomposition
again show that MECT is significantly better no matter which
basis set is used, with an improvement from 10% to 5% for MB
and an improvement from 2.5% to 1.8% for SMB. For the MECT
direct method, the ρe estimates are good for low Ze materials, but
they show significant errors for high Ze materials. ρe estimates
with MECT MB decomposition are less accurate, when compared
to the MECT estimates with SMB decomposition. This is
likely due to the choice of the materials in MB. Aluminium and
polystyrene are not as good as SMB at resolving the higher energy
components of denser materials, and ρe depends mostly on the
higher energy components. This can be improved by estimating
ρe with the joint method. In the joint method instead of using the
basis coefficients to estimate the high energy attenuation, we use
the direct energy bin reconstruction for the high energy bin. This
reduces the ρe errors with MB to 1%. There is also improvement

Table 3: Ze relative mean errors of all materials in the presence of
metal

Mean DECT MECT MECT
error (%) MB SMB direct MB SMB
Kerosene 25.9 7.25 4.37 10 3.03
Acetone 7.44 6.85 4.07 2.62 2.18
Ethanol 6.47 6.94 2.40 2.83 1.14
Cytric A 1.11 2.53 1.32 1.96 1.23
Water 1.98 2.62 3.34 1.52 0.34
Hcl 0.36 0.34 5.65 0.39 0.69
PP 10.9 28.5 0.41 5.02 10.5
RDX 32.4 4.32 0.47 1.99 0.32
PETN 1.94 18.7 0.22 1.38 0.59
Mg 3.55 0.85 3.71 0.48 0.41
Black P 4.21 5.04 2.44 3.36 7.87
CaCl2 7.77 5.94 11.56 4.34 5.33
Average 8.68 7.49 3.33 2.99 2.8

Table 4: ρe relative mean errors of all materials in the presence of
metal

Mean DECT MECT MECT MECT-joint
error (%) MB SMB direct MB SMB MB SMB
Kerosene 4.49 1.83 0.31 2.58 0.64 1.27 1.05
Acetone 5.02 1.13 0.37 2.34 0.72 1.28 1.25
Ethanol 1.79 1.32 0.40 1.91 0.91 1.34 1.25
Cytric A 1.99 0.76 0.42 1.18 0.41 0.21 0.31
Water 3.28 0.75 0.72 2.01 0.63 1.12 1.07
Hcl 2.1 0.81 11.38 1.4 0.3 0.57 0.51
PP 2.89 7.75 0.10 2.36 0.63 0.41 0.65
RDX 8.21 3.13 0.05 4.82 0.7 0.33 0.24
PETN 18.9 1.54 0.08 5.38 0.34 0.5 0.44
Mg 16.3 3.73 2.27 0.35 1.5 0.4 0.38
Black-P 23.6 2.9 2.85 13.5 8.48 1.13 5.65
CaCl2 32.7 4.43 13.58 16.3 6.35 2.89 5.47
Average 10.1 2.51 2.71 4.52 1.8 0.95 1.52

in using the joint method with SMB, particularly for higher Ze
materials, but the overall improvement is not as dramatic, as
the SMB 93 basis is capable of capturing the higher energies
components well. The joint method is much useful when the basis
functions cannot extrapolate high energy components accurately.

Discussion
In this paper we presented a robust algorithm to

estimate material properties in the presence of metal, utilizing
multi-spectral CT (MECT). We extended edge-preserving total
variation regularization for enhanced image reconstruction and
combined basis image reconstructions and direct energy bin
reconstructions to estimate Ze and ρe. The proposed method
outperformed the alternative techniques of estimating materials
from direct MECT reconstructions and the state-of-art DECT
techniques. The main limitation of the proposed approach is that
it is more computationally complex than standard back-projection
algorithms but the computations can be structured to exploit
parallelism.

We experimented with two choices of basis functions:
material bases (MB) and synthesized monochromatic bases
(SMB). When analysing the results on accuracy of estimation
for Ze and ρe, MB and SMB behaved differently for different
materials. There is still ambiguity as to the optimal choice of
basis functions and the energies for material recognition. This is
a topic for further investigation.
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