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Abstract

We propose a neural network architecture combined with
specific training and inference procedures for linear inverse prob-
lems arising in computational imaging to reconstruct the underly-
ing image and to represent the uncertainty about the reconstruc-
tion. The proposed architecture is built from the model-based
reconstruction perspective, which enforces data consistency and
eliminates the artifacts in an alternating manner. The training
and the inference procedures are based on performing approxi-
mate Bayesian analysis on the weights of the proposed network
using a variational inference method. The proposed architecture
with the associated inference procedure is capable of character-
izing uncertainty while performing reconstruction with a model-
based approach. We tested the proposed method on a simulated
magnetic resonance imaging experiment. We showed that the pro-
posed method achieved an adequate reconstruction capability and
provided reliable uncertainty estimates in the sense that the re-
gions having high uncertainty provided by the proposed method
are likely to be the regions where reconstruction errors occur.

Introduction

The problem of reconstructing the underlying image can
be cast as solving a linear inverse problem for several imaging
modalities such as magnetic resonance imaging [1] and computed
tomography [2]. Thus, linear inverse problems are at the founda-
tion of the computational imaging.

Recently, neural network-based methods have become in-
creasingly popular to solve the linear inverse problems arising in
computational imaging (for a review see [3]). While one class of
methods such as [4] tries to invert the forward model with a deep
neural network to reconstruct the underlying image from the mea-
sured data, another class of methods such as [5] takes a slightly
more conservative approach and aims to recover the latent image
by formulating an optimization problem and replacing some part
of the iterative reconstruction algorithm with a neural network.

Although these methods achieve state-of-the-art results in
several computational imaging applications, the resulting image
might experience unexpected instabilities [6]. The lack of uncer-
tainty information about the reconstructed image severely limits
the applicability of neural network-based methods in practice, es-
pecially in safety-critical applications. If a neural network-based
reconstruction algorithm is able to provide uncertainty informa-
tion about the reconstructed image, that can be leveraged to as-
sess the quality of the reconstruction or to warn the practitioner,
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who uses a fully automated pipeline performing reconstruction
and analysis tasks simultaneously. Thus, being able to represent
the uncertainty in neural network-based reconstruction methods
is crucial for computational imaging problems.

To solve the problem of obtaining uncertainty information
with a Bayesian perspective, we need to define probability distri-
butions on the weights of a neural network, and to obtain the pos-
terior distribution of the weights. These type of probabilistic mod-
els, called Bayesian neural networks [7], have attracted significant
attention recently. Unfortunately, obtaining the posterior distribu-
tion of weights is not an easy task because of the large number
of parameters and complex neural network models. Hence, dif-
ferent approximation methods (see [8] and the references therein)
have been used in the literature to perform approximate Bayesian
analysis for neural networks.

In this article, we introduce a model-based Bayesian deep
learning architecture for computational imaging, which is built
by using a model-based reconstruction approach. The training
and inference procedures utilize Monte Carlo (MC) Dropout [9]
to perform variational inference. Combined with specific train-
ing and inference procedures, the proposed architecture performs
reconstruction and provides uncertainty information about the re-
constructed image. The proposed architecture and the associated
training and inference procedures are easy to implement in deep
learning frameworks.

Recently, [10] has proposed a U-Net [11] based methodol-
ogy combined with MC Dropout to obtain uncertainty informa-
tion about the reconstruction for phase imaging. The differences
between our approach and the one in [10] lie in that our architec-
ture is built by taking a model-based reconstruction perspective,
which can be perceived as a slightly more conservative approach
compared to [10], and that we focus on a broad class of computa-
tional imaging problems, i.e., all computational imaging problems
that can be written as a system of linear equations.

The rest of the paper is organized as follows: In the “Pre-
liminaries” section, we review the basic material related to the
formulation of the reconstruction problem, the generative model
of the data, and the Bayesian approach to uncertainty estimation.
In the “Proposed Method” section, we describe the proposed ar-
chitecture with its training and inference procedures in detail. In
the “Experiments” section, we present the experimental results
we have obtained in a simulated magnetic resonance imaging sce-
nario. Finally, the “Conclusion” section concludes the paper.

Preliminaries
In this section, we review some background on the classi-
cal statistical reconstruction approach, the generative model of
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the data, and the Bayesian approach to uncertainty estimation for
neural networks.

MAP Reconstruction
Consider the following setup

m=As+n, (L

where m € CS is the vector containing the measurements, A €
C5*D s the operator that represents the transformation applied
by the imaging system, s € CP is the vectorized image, and n €
CS is the measurement noise in the system, which is assumed
to be circulary-symmetric complex Gaussian noise with variance
O-r%m‘se'

For an underdetermined system (S < D), recovering the im-
age, s, from the measurements, m, becomes an ill-posed problem.
One way to restrict the solution space and regularize the task is
to use the prior knowledge about the image, s. Then, the maxi-
mum a posteriori (MAP) estimate of the image, §, can be found
by solving the following optimization problem

§ = argmin { | As —m| + By (s)} 6
seCP

where the function y : CP — R is the regularizer coming from the
image prior, and the parameter 3 controls the balance between
the data fidelity term and the regularizer. To find an equivalent
problem involving only real vectors and matrices, we introduce
two operators 17 : C" — R?" and K : C"*™ — R2"2" gych that

RX) —3(X)
5 Kn‘m(X) = [S(X) %(X) :| ) (3)

where R and S compute the element-wise real and imaginary
parts of a given vector or matrix, respectively. Then, using these
two operators, the optimization problem in Eqn. (2) can be writ-
ten as

=1, (argmin{||A§m|%+w<§>}), @
ScR?P

where A := k5 p(A), § := p(s), M = ng(m), and ¥ is the mod-

ified regularizer such that y(s) = (8) for all (s,$) pairs. There-

fore, finding the solution of the Eqn. (2) boils down to finding

the solution of the optimization problem located inside the 1, 1

operator in Eqn. (4).

Assuming that the modified regularizer, ¥, is a convex,
closed and proper function, we can use different splitting methods
such as the proximal gradient method [12] or the alternating direc-
tion of method of multipliers (ADMM) [13] to solve the problem
inside the 1, ! operator in Eqn. (4) efficiently.

Generative Model of the Data

: : 2
Suppose for a fixed operator A and a noise variance o, ;.

we have a training dataset, %, consisting of a collection of N
measurement-target image pairs, i.e.,

T ={ (@ 39 [m) = ng(m?),59 =np(s?),i € [N]}. (5)

We assume that the training dataset, %, consists of i.i.d. samples
of measurements and target images drawn from the distribution

@Y 50) ~ p(m)p(sm), Vie{l,..,N},
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where both p(1i1) and p(§|m) are unknown distributions and could
be only accessed empirically through Z;,. This assumption is jus-
tifiable for computational imaging problems. Each measurement
in the training dataset is obtained by using the operator A and the
noise variance G,fmse, which can be thought as generating a sam-
ple from p(m). Ideally, we want to use ground truth images as
target images; however, we do not have an access to ground truth
images in practice. Thus, the target image for the measurement
is obtained by imaging the same object using a suppressed noise
level and without data reduction so that the resulting image, which
is often referred to as the reference image, is close to the ground
truth image. This process can be thought as generating a sample
from p(§|m).
We also assume that the test dataset,

e = {0 8y @) = nsm?),5" =np(s),ie (M1}, 6)

consists of i.i.d. samples of measurements and target images
drawn from the same distribution that the training measurements
and target images are drawn from.

Bayesian Approach to Uncertainty Estimation

Suppose we have a training dataset, %, and a test measure-
ment, m,, from %,. For a regression model with a set of param-
eters 7, the predictive distribution is

P, %) = [ pls.lin.,p(r\%i)dy. ™

Throughout this paper, we refer to p(Ss|.,7) as the likelihood,
and to p(Y| %) as the posterior distribution.

Unfortunately, obtaining the posterior distribution is not an
easy task because of the large number of parameters and complex
neural network architectures. Hence, approximation techniques
such as variational inference methods [9] or Markov Chain Monte
Carlo-based methods [7] are necessary.

After obtaining an approximation of the posterior distribu-
tion and defining the form of the likelihood, we can approximate
the integral in Eqn. (7) using Monte Carlo integration to esti-
mate the predictive distribution. Finally, we obtain the mean and
the variance of the estimated predictive distribution with moment-
matching. The resulting predictive variance can be used to char-
acterize the uncertainty in the prediction.

Proposed Method
We define the following Gaussian likelihood for the recon-
struction problem

p(8lii,y) = N(§| fo (i), diag (0, ()?)), ®)

where fg : R?S — R2P and Oy : R%S — R2P are neural networks
parametrized by sets of parameters @ and ¢, respectively, and
y=0Ud.

The architecture of the neural network f, is motivated by the
model-based reconstruction approach. Assuming that the mod-
ified regularizer is a closed proper convex function, the update
equation of the proximal gradient method to solve the optimiza-
tion problem inside the ! operator in Eqn. (4) is

s = proxs gy { (1-22A7A)sK U4 228Tm ), @)
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Figure 1. Proposed model-based Bayesian deep learning architecture.
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Figure 2. Neural network block R used in the proposed model-based Bayesian deep learning architecture.

where A is the step size, and 514 is the reconstructed image at the
k" iteration. The benefit of using proximal gradient method over
methods such as ADMM is that it does not require any matrix
inversion in the update equation.

Similar to the idea in [5], we replace the proximal operator
prox; gy with a neural network, and the update equation becomes

7 = (I - uATA) sk-1 422 T

st —r {7 0},

where R is the neural network, and  is the set of parameters of
the neural network R. For a fixed number of iterations K, the
series of updates correspond to a deep neural network, which is
the desired function fy,. Figure 1 illustrates the structure of f,
in detail. Figure 2 depicts the components of the neural network
R that contains P residual blocks consisting of a skip connection
and C modules. Each module includes a convolutional layer fol-
lowed by dropout, and each module except the last one includes a
rectified linear unit (ReLU) activation function. Note that we use
the same neural network R at every iteration, so the resulting neu-
ral network f, is consistent with the model-based reconstruction
approach.

For computational imaging problems, the neural network o
captures the inherent noise in the target images, which is some-
times referred to as the aleatoric uncertainty [14]. Thus, the
choice of the oy depends on the requirements of the applica-
tion. If the true conditional distribution, p(§|f), is not invariant
across the training and test datasets, we can simply use an arbi-
trary neural network that provides a non-negative output to explic-
itly model the data dependent uncertainty. On the other hand, if
the true conditional distribution is invariant across the training and
test datasets, we can focus on quantifying the uncertainty on the
model parameters and set it to be a constant function 6y = Gypdel
where 0;,,p4¢; 1s a fixed model parameter and ¢ = @. In the rest of
this section, we assume that G is a neural network parametrized
by a set of parameters ¢ to keep the generality.

Specifying the form of the neural networks f, and oy
completely specifies the form of the likelihood function. Next,
we need to find an approximation of the posterior distribution,
p(Y1%:r), which represents the uncertainty in the parameters of
the regression model, y. The uncertainty in the parameters of the

(10)
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regression model, which is sometimes referred to as the epistemic
uncertainty [14], reflects the uncertainty caused by the lack of
training examples around the test measurement .

Monte Carlo Dropout [9] is a popular and scalable varia-
tional inference method because it has a simple implementation
in deep learning frameworks, requires minimal changes on the
classical neural network architecture, training and inference pro-
cedures, and provides reliable uncertainty estimates in several ap-
plications such as depth completion [8], and semantic segmenta-
tion [14]. In this work, we employ Monte Carlo Dropout to ob-
tain an approximation of the true posterior distribution p(y| %)
by minimizing the Kullback-Leibler divergence between the true
posterior distribution and the distribution g¢(y) parametrized by
the set of parameters o.

If the likelihood is defined as in Eqn. (8), and the distribution
that we use to approximate the true posterior distribution, gg(7),
is a Bernoulli variational distribution [15], i.e.,

L
qa(v) = p(zi = )N (vl e,

i=1

6%)+p(zi = 0)N(0,6%), (11)

where o is a sufficiently small constant, & = {0} |, y= {71}171’

and p(z; = 1) = p, then the optimal set of parameters, o*, can be
approximated by solving the following optimization problem [14]
1 N 2D
= argmin{ 5 ) Z [log[og ()]
z 1k=

(12)

+([ i~ 1fa (m())}) gi

2[o40 (m)]7 2N S
here [ . ] denotes the k" element of a given vector, and #/) =
(I) i) U(ﬁ () isa sample from the Bernoulli variational distribution,

qa(7)-

Interestingly, generating a sample from the Bernoulli vari-
ational distribution requires sampling a set of Bernoulli random
variables {z;}~_; and multiplying them with the parameters of the
Bernoulli variational distribution, {¢;}% . This procedure resem-
bles the dropout operation in the deep learning literature. Hence,
solving the optimization problem in Eqn. (12) boils down to train-
ing two neural networks fi and oy using the first term of the Eqn.
(12) as a loss function with the weight decay parameter of %
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while the dropout is applied after every weight layer of the neural
networks f, and 0y with the dropout rate of 1 — p. The result-
ing weights of the neural networks after the training stage are the
optimal parameters of the Bernoulli variational distribution, ot*.

After obtaining an approximation of the posterior distribu-
tion, go+ (Y) = p(Y|%:r), we can find approximations of the mean
and the variance of the predictive distribution by moment match-
ing with 7 samples

1
T

™~

E [8x [y, Z;r] = Saw (1), (13)

t=1

=1

1 1
Var[[g*]k |ﬁ1*>—@tr] "\‘J? Z [Ggﬁ(f) (Iﬁ*)b% + T ;[f(b(f) (ﬁl*)}%
N (14)

1 & .
- (T,g Sao (m*)]k>

Because the original formulation of the problem involves
complex target images, we can find the mean and the variance
of the complex version of the predictive distribution as

Els.|m., 7] = np" (E[. ., Z;/]) (15)

Var[[s.]; [m.. Zy,] = Var[[5.]; [, Z4,] + Var [[8.],. p [, 7]
(16)

for all k € {1,2,...,D}. Remarkably, the inference procedure
also requires samples from the Bernoulli variational distribution.
Thus, finding the predictive variance and the mean boils down to
feeding the measurement, ., into the neural networks fi, and oy
T times while the dropout is enabled and performing the updates
in Eqn. (15) and Eqn. (16).

Experiments and Results

The main advantage of the proposed method is that we can
both perform reconstruction and obtain uncertainty information
about the reconstruction. In this section, we evaluate the proposed
method on a simulated magnetic resonance imaging experiment
and focus on addressing the following questions:

e Can we use the uncertainty information to locate the poten-
tially erroneous regions in the reconstructed image?

o [s the uncertainty information reliable in the sense that the
region described by the predictive mean and the predictive
variance contains the target pixel intensity values?

e How does the size of the training dataset N effect the uncer-
tainty?

Setup

In magnetic resonance imaging, the measurement vector, m,
contains the Fourier coefficients of the ground truth image. In ex-
periments, we used a single-coil model with a constant sensitivity
map; therefore, the forward operator A is simply a subsampled
Fourier transform operator. The subsampling rate of the Fourier
coefficients in the k-space determines the structure of the A matrix
and the acceleration rate of the data acquisition step. For example,

2014

if 20% of the Fourier coefficients are collected, the acceleration
rate of the acquisition becomes 5x.

For different acceleration rates (3.33x, 5x, and 10x) and
noise standard deviations (0.01, 0.05, 0.1, and 0.2), we con-
structed 12 different training dataset-test dataset pairs. To obtain
the target images of the training and test datasets, we extracted
N = 17300 256 x 256 MRI images from the MRI data of 558 pa-
tients in the IXI Dataset! and M = 268 256 x 256 MRI images
from the MRI data of 20 patients in the IXI Dataset, respectively.
The target images were normalized such that the pixel intensity
values lie between 0 and 1. For each acceleration rate-noise stan-
dard deviation pair, i.e., for each setup configuration, the mea-
surements of the training and test datasets were generated using
the linear model given in Eqn. (1).

For the function that maps measurements to images fg, we
use the neural network architecture introduced in the “Proposed
Method” section with K = 10 iterations, P = 1 residual blocks
and C = 8 modules. We used 32 filters in the first and the second
modules, 64 filters in the third and the fourth modules, 128 filters
in the fifth, sixth, and the seventh modules, and 2 filters in the final
module. The kernel size of the filters was set to 3, and the stride
and the padding size were set to 1. By the assumption that the true
conditional distribution is invariant between the training and the
test datasets, here we concentrate on quantifying the uncertainty
on the parameters of the regression model. Thus, we set 0y to be
a constant function with a fixed model parameter o;,,,4.; = 0.001,
i.e. Oy = Opoder> and ¢ = 0. In the case where the target images
contain noise, or the true conditional distribution is not invariant
across the training and test datasets, representing the aleatoric un-
certainty becomes an important task for characterizing the overall
uncertainty in the prediction. We leave the investigation of these
cases for future work.

Uncertainty Map and Reconstruction Error

To investigate the relationship between the uncertainty map
obtained by the proposed method and the reconstruction error, we
tested the proposed model on test measurements and computed
the absolute reconstruction errors and the uncertainty maps. Fig-
ure 3 illustrates the reconstruction error and the uncertainty map
for a single test measurement.

As can be seen in Figure 3, the similarity between the un-
certainty map and the absolute reconstruction error is remarkable.
The uncertainty provided by the proposed method is high in the
regions where the reconstruction error occurs such as the regions
around the edges and small details. On the other hand, it is rela-
tively low in the regions where the reconstruction error is negli-
gibly small such as piecewise constant and smooth regions. We
observed the same behavior for different setup configurations as
well. Thus, we deduce that we can leverage the uncertainty infor-
mation provided by the proposed method to locate the erroneous
regions in a reconstructed image without the need of the reference
image.

Reliability of the Uncertainty Information

To evaluate the reliability of the uncertainty information ob-
tained by the proposed method, we trained the proposed model for
each setup configuration using the corresponding training dataset.

Uhttps://brain-development.org/ixi-dataset/
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Figure 3. The target image, the reconstructed image, the reconstruction
error, and the uncertainty map for a single test measurement.

We performed T = 100 stochastic forward passes on each mea-
surement in the test datasets to obtain the reconstructed complex
image and the corresponding uncertainty map. Then, we counted
the number of pixels whose target intensity values lie within three
predictive standard deviations from the predictive mean (the re-
construction). Figure 4 shows the percentage of the number of
pixels satisfying this condition for each reconstructed complex
image in the test dataset for each setup configuration.

The results indicate that significant amount of target pixel in-
tensity values lie within the region determined by the predictive
mean and the three predictive standard deviations from the pre-
dictive mean. One can argue that these percentages can be made
arbitrary high if the predictive variance is high across the image;
however, this is not the case because in the previous subsection,
we experimentally showed that the predictive variance is high in
the erroneous regions and low in the regions where reconstruc-
tion error is negligible or not present. Thus, we can claim that the
uncertainty information obtained by the proposed method is reli-
able in the sense that it correctly localizes the erroneous and non-
erroneous regions, and the target pixel intensity values lie within
the region determined by the uncertainty information.

Uncertainty Map and Training Dataset Size

To assess the effect of the number of training examples in the
dataset on the uncertainty, we trained four different versions of the
proposed model with N = 10, N = 50, N = 100, and N = 7000
training examples. We performed 7 = 100 stochastic forward
passes on each test example to obtain the reconstructed images
and the corresponding uncertainty maps. Figure 5 shows the re-
constructed images and the corresponding uncertainty maps ob-
tained by the aforementioned models.

For the model that was trained on N = 10 examples, the
model uncertainty obtained by the proposed method is severely
high, and it suggests that the number of training examples must
be increased to obtain a more confident reconstruction. For the
second and the third models trained with N = 50 and N = 100
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Figure 4. The percentage of the number of pixels whose target intensity val-
ues lie within three predictive standard deviations from the predictive mean
for each reconstructed complex image in the test dataset for each setup con-
figuration.

examples, the overall uncertainty in the prediction continued to
decrease. For the models trained with N = 100 and N = 7000
examples, the overall decrease in the uncertainty levels was not
as drastic as the first two cases, but the uncertainty levels kept
decreasing in some of the smooth regions. Hence, the model un-
certainty maps in Figure 5 suggest that the model would get more
confident as we increase the size of the training set.

One can confirm this by investigating the differences be-
tween the reconstructions obtained by the four models in Figure
5. From left to right, the values of SSIM index are 0.899, 0.922,
0.929, and 0.932. Considering the contrast, the artifacts and the
details, the best and the most confident reconstruction was ob-
tained with the model trained with N = 7000 examples. There-
fore, our results show that the proposed model is successful at
capturing the uncertainty information depending on the size of
the dataset.

Conclusion

We proposed a model-based Bayesian deep learning archi-
tecture for computational imaging and its specific training and in-
ference procedures. The proposed architecture complies with the
model-based reconstruction approach, and approximate Bayesian
inference is performed using the MC Dropout technique. The pro-
posed method is simple to implement in different deep learning
frameworks and has a fast inference procedure. We tested the pro-
posed method in magnetic resonance imaging simulation under a
variety of setup configurations. We experimentally showed that
the uncertainty information provided by the proposed method is
reliable, and we can leverage it to detect the erroneous regions in
the reconstructed image without the need of the reference image.
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