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Abstract
In most optic systems images are captured using a

CCD/CMOS sensor, where the phases of the converted photons
are inevitably lost. Fourier Ptychographic Microscopy (FPM) cir-
cumvents this issue by capturing normal microscopy images, and
Fourier transforming them computationally (hence the name).
Reconstructing the complex object not only yields amplitude but
also phase information, enhanced up to super-resolution. Yet one
disadvantage remains unsolved: FPM is a very ill-posed prob-
lem, the algorithm is not guaranteed to converge to the correct
solution, if it converges at all. In practice this means that there
is reasonable doubt if the recovered image actually represents the
object under the microscope. This work inquires the quality of
FPM reconstruction under variation of important system param-
eters in simulation and experiment. It shows that the alignment
of the illumination source is quite critical: even 0.2 degrees off
renders reconstruction useless. This paper thus furthers the cost-
benefit analysis of which amount of computation time should be
spent on digital post-correction.

Fourier Ptychographic Microscopy
Fourier Ptychographic Microscopy (FPM) is a computa-

tional imaging technique trading multiple images coherently il-
luminated from different angles and computation time for a high
resolution complex image. Measuring the phase of a light-field is
non-trivial and usually quite complicated; comprising of lasers for
coherent light creating diffraction patterns, which need special de-
tectors with large dynamical range. FPM circumvents this prob-
lem by capturing generic microscopic images (in real space), and
transforming them computationally into Fourier space—hence the
name. Now one can utilise standard phase retrieval techniques
dating back to the eighties [3], to combine the images to a syn-
thetic aperture. Which yields a recovered image, not only of a
resolution orders of magnitude higher than the images on their
own; it even overcomes the resolution limit of the optical system,
obtaining super-resolution [5]. Additionally, the final image is a
complex object, it not only contains amplitude-, but phase infor-
mation as well. This enables FPM to work on translucent ob-
jects, like biological samples, without the need of staining. Var-
ious work has been done on using FPM on translucent objects
(e.g. cells), multi-colour-reconstruction [5], digital refocusing
[5], high-speed high-throughput video [6]. Yet one disadvantage
remains: The Gerchberg–Saxton (GS) algorithm [4], which is a
type of gradient descent (the formulation is often non-convex), is
not guaranteed to converge to the correct solution (the global min-
imum) [8]. Relying solely on low resolution amplitude images
as ground truth—the phase generally being unknown—assigning
reconstruction quality is non-trivial. In practice this means that

there is reasonable doubt if the recovered image actually repre-
sents the object under the microscope.

Figure 1: Schematic concept of the microscope for FPM, 3D il-
lumination source position r and 2D Fourier space locations k,
adapted from [7].

A schematic illustration of a typical FPM setup is shown in
Figure 1; θ angle-varied illumination source (left) illuminates a
target, which results in a diffraction pattern at the aperture. The
detector is at focus, and so captures generic images.

To put FPM recovery in a nutshell, we show the full proce-
dure in Algorithm 1. In the following description we refer to the
corresponding lines in brackets.

The core of FPM is an iterative outer loop, in which an in-
ner loop is covering the images ιn from all n different incident
illumination wave-vectors kn (angle θn) sequentially (lines 2–
10); until the FPM algorithm can be considered converged after
` outer loops. Convergence is estimated by the pixel-wise Root
Mean Square (RMS) Error E`, the deviation of the current high-
resolution spectrum Ô` to the last iteration’s Ô`−1 (line 10). For
all n low resolution amplitudes an =

√
ιn, in each of these ` loops;

the part of the high-resolution (indicated by upper case letters)
complex object’s spectrum Ô, corresponding to the incident il-
lumination kn, is rescaled to low-resolution (lower case letters)
size (η/ζ )2 and convolved with the pupil function P̂ of the opti-
cal system (line 5). The resulting low-resolution spectrum ôn is
now inverse Fourier transformed to on (line 6), and its phase φn is
computed (line 7). The estimation `+1 is now given by the com-
bination of the amplitude of the measured image an and the phase
of the corresponding recovered object on (line 8). In the next
step, the high-resolution spectrum Ô gets updated with the Fourier
transform ôn of that new estimation on (line 9). Reaching conver-
gence, the resulting spectrum Ô finally is inverse Fourier trans-
formed, yielding the high-resolution complex object O (line 11);
And thus amplitude A = |O| and phase Φ = 6 O.

An exemplary FPM recovery is shown in Figure 2; spectrum
(2b), amplitude (2c) and phase (2d), where one can clearly see the
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Algorithm 1 Fourier Ptychography Core

1: function REKOVER( a )
2: while E` > ε do
3: `← `+1
4: for all kn do
5: ôn← ( ζ

η
)2 Ôk−kn

∗ P̂

6: on←F−1(ôn)
7: φn← 6 on

8: on← an eiφn

9: Ôk−kn
← (η

ζ
)2 F (on)∗ P̂

10: E`←
√

< |Ô`− Ô`−1|2 >

11: O←F−1(Ô`)

improved resolution compared to the best single low-resolution
image (2a).

(a) Low-resolution Amplitude (b) Recovered Spectrum

(c) Recovered Amplitude (d) Recovered Phase

Figure 2: Examples from the FPM process; The central (best)
low resolution image 2a, recovered high-resolution spectrum 2b,
amplitude 2c and phase 2d.

Alignment Simulations
The scope of this work is to investigate the robustness of

FPM to variation of the critical system parameters. Based on the
GS algorithm, FPM uses multiple images taken from different il-
lumination angles, so recovery obviously relies on the knowledge
of the illumination positions, but to what degree? The objective
of this paper is to investigate the six degrees of freedom of the il-
lumination setup for its respective impact on the subsequent FPM
recovery.

The most convenient and frequently used setup for the illu-
mination is a shift- register controlled RGB LED matrix, made for

displays in urban spaces. This makes it a cheap and easy to im-
plement solution proven to work [5], in spite of not all the LEDs
being equidistant to the target.

Simulating FPM recovery is quite a straight forward task,
as the concept is basically embedded in the FPM algorithm it-
self. The procedure of this simulation is shown in Algorithm 2,
which closely follows the nomenclature from Algorithm 1: Mul-
tiple images are rendered as if from various illumination angles
kn, and so comprise different regimes in spatial frequency space
of the complex object. So if one happened to know the com-
plex object (amplitude and phase) beforehand (line 2), its Fourier
transform could be decomposed into a stack of simulated low-
resolution amplitudes an (lines 7–8)! These stacks are generated
step wise (line 4) with respect to the system parameter of inter-
est xm e.g. shift in x-axis (line 5), each time recovered using the
standard FPM algorithm (line 9).

Quite on the contrary to actual experiments, in simulations
like this, we are able to readily denote the quality of the recon-
struction: Every step during recovery, we can compare the com-
plex object with the ground truth, summing over the root mean
square error (RMSE) of the differences.

Algorithm 2 Alignment Simulation

1: procedure ALIGNING( A,Φ,m )
2: O← AeiΦ

3: Ô←F (O)
4: for all m misalignments xm do
5: kn← KRID( ∆x,∆y,∆z,ρ,ψ,γ )
6: for all kn do
7: ôn← ( ζ

η
)2 Ôk−kn

P̂

8: an←F−1(ôn)

9: Om← REKOVER( a )

The k-space positions kn corresponding to the locations rn
of the physical LEDs in real space are defined according to Algo-
rithm 3: To simulate misalignment of all six degrees of freedom,
the LED’s positions rn are first rotated about the x-,y-, and z-axis
(respective rotation matrices Rρ ,Rψ ,Rγ in line 2). The rotated
grid r is then shifted in x-,y-, and z-axis (line 3) and mapped to
the two-dimensional sensor plane (line 4) in Fourier space, where
k0 = 2π/λ denotes the spatial frequency of the incident light.

Algorithm 3 K-space Grid Variation

1: function KRID( ∆x,∆y,∆z,ρ,ψ,γ )
2: r← Rγ Rψ Rρ r
3: r← r+∆x+∆y+∆z
4: k←−k0 sin(arctan(rx./rz))

A slightly misaligned LED panel is exemplary shown in Fig-
ure 3; the LED panel with 6 mm spaced LEDs is positioned at
a height of −80 mm (below the target), with a shift of 1 mm in
x-, y-, z-axis, and 1◦each tilt, roll, and yaw. The corresponding
k-space grid is shown in Figure 4.

Alignment Calibration
A structural downside of FPM is that the illumination source

is off-focus, so its alignment is—though crucial—not directly

166-2
IS&T International Symposium on Electronic Imaging 2021

Computational Imaging XIX



−5 0
5

·10−2

−5

0
5

·10−2

−8.2

−8

−7.8

−7.6

·10−2

y / m
x / m

z
/m

Figure 3: LED positions (nodes) of a slightly misaligned panel in
3d real space.
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Figure 4: Comparison of the k-space projections kn (nodes) of
the LED positions of a slightly misaligned panel (violet) shown in
Figure 3; versus the initial panel (orange).

measurable. Fortunately numerical calibration is still possible,
at least for the images taken under bright-field conditions: Via
autocorrelation. First proposed by [2], to circumvent the for-
mer expensive embedded corrections: A surprisingly simple yet
beautiful calibration algorithm using autocorrelation to correct
for the positions. As icing on the cake, during the process this
method necessarily corrects the magnification of the optical sys-
tem, which is usually known only to some degree. Based on [2],
yet quite contrarily, the proposed method is a standalone calibra-
tion: Introducing a single step running prior to, and completely
detached of, the standard FPM routine!

In the experimental FPM setup, the camera records intensity
images ιn, where n indicates the illumination direction θn of a co-
herent plane wave which corresponds to the spatial frequency kn
in the high-resolution spectrum Ô. The images two-dimensional
Fourier transform ι̂n can be related to:

ι̂n = F{ιn}= F{|an|2}= ân ? ân (1)

where ? denotes autocorrelation of the amplitude an, as a
special case of cross-correlation. the Fourier transform ι̂n of n-th
discretely sampled intensity image captured by the camera can be

modelled according to:

ι̂n =̂(P̂∗ Ôk−kn
)? (P̂∗ Ôk−kn

) (2)

Typically a Fourier spectrum decays sharply from the DC
term—the average (arithmetic mean) of the entire image, located
at frequency zero, thus at the centre—toward higher frequencies,
usually about a few orders of magnitude. Only when the image ιn
is illuminated under bright field conditions, the DC term of the ob-
ject spectrum Ô(k−kn) is located within its pupil’s pass band P̂;
leading to high values where the pupil overlaps the DC term, and
negligible outside. The position correction problem now shifted
to a much simpler image recognition problem! One simply needs
to fit two circles to the disks of each of the spectra ι̂n, to find the
illumination positions kn and −kn.

Algorithm 4 Alignment Calibration

1: ι̂n←F{ιn}
2: ι̂n← |ι̂n|/meann(|ι̂n|)
3: ι̂n← log10(ι̂n)
4: ι̂n← gauss(ι̂n,σ)
5: for all m ⊂ n images do
6: rn← imfindcircles(r±∆r, ε)

7: r←mediann(rn)
8: for all n images do
9: c1,c2← imfindcircles(r)

10: cn← argmin1,2(|c1,2−kn|)

The alignment calibration procedure proposed by [2] is
shown in Algorithm 4, the corresponding lines are shown in
brackets: For a set of n low-resolution images ιn, the two-
dimensional Fourier transform is computed. The magnitude of
these spectra is divided by their mean, to filter out the sample in-
formation, which we are not interested right now (line 2). The
Fourier spectra usually span some orders of magnitude, even after
the DC term is lost, so we take the logarithm (line 3). Since the
following function for the circle detection, imfindcircles [1]
(part of the image package in octave forge) is based on a Hough
transform—alas on edge detection—it wants the background as
smooth as possible. So we blur the image, where σ = 2 was found
empirically to work well (line 4). Since the Hough transform tests
all possible circles, its speed heavily relies on the knowledge of
the radii, which are in the case of FPM all the same and based on
the cutoff frequency.

So we first run imfindcircles on a subset m⊂ n with our
initial guess for the radius with some reasonable deviation, subse-
quently taking the median of the n best radii (line 7). Using this
estimated radius to initialize the Hough transform, we search for
the two best circles in all n images (line 9), since all the low-
resolution images contain two autocorrelation discs (at kn and
−kn), due to the symmetry of the problem. Based on our ini-
tial positions kn, we take the one nearest of the two c1,2, in order
to get all the different positions once (line 10), leaving us with n
corrected positions cn.
This calibration has to be performed only once for a given micro-
scope setup, subsequent FPM recovery operations can all use the
corrected bright field positions cn, as shown exemplary for one
experimental setup and three simulations in Figure 5.
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Additionally the radius r is linked to the magnification M of
the optical system, and so represents a possibility to correct:

M =
NAlils

λ r
(3)

where li denotes the size of the low-resolution image ι , and
ls the pixel size of the sensor.

(a) Experiment (b) Simulation ∆x = 0 mm

(c) Simulation ∆x = 2 mm (d) Simulation ∆x = 10 mm

Figure 5: Alignment Correction: Comparison of exemplary spec-
tra |ι̂n| (Algorithm 4 line 4) of both experiment (5a) and simula-
tion (5b–5d), for the same arbitrary illumination angle θn = 1.5◦

at increasing shift; One can clearly see the autocorrelation cir-
cles, the corresponding illumination positions and pupil radii are
shown for assumed (x, dashed line) and found (o, line).

Alignment Correction
Considering the geometry of FPM it is hardly surprising to

see a strong correlation between alignment perfection, and the
quality of the obtained result. Interestingly, this work shows on
the basis of simulations, that even a misalignment of the illuminat-
ing LED matrix of only a 0.2 degrees (equivalent to a shift of 1mm
for the used LED matrix’ optimal setup) poses a serious threat to
FPM recovery! This result is exemplary shown for three different
misalignment of the LED panel (shift in x-axis) in Figure 6, using
arbitrary images as a basis for amplitude and phase. Interestingly
FPM is able to recover the amplitude even under bad conditions,
as one can see all of the racoons quite clearly. Unfortunately the
recovered phase is heavily distorted even at tiny misalignment of
0.35 ◦ (2mm shift)! This explains the need for careful calibration
and correction algorithms used widely [2].

The main goal here is to find misalignment of the whole LED
panel, even though it is conceivable that some individual LEDs
are mispositioned on panel assembly level too.

Shift
Since the most common experimental setup for FPM is a

LED panel, the most important alignment calibration probably is
the shift in x-axis, respective y-axis [2]. The height (shift in z) is
comparatively easy to adjust by direct measurement, whereas the
shift in x, y, is extremely tedious to measure. This is due to the
fact, that the LED panel is off focus, so there is no easy way of
answering the question where the centre really is, in respect to the
optical path.
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Figure 6: Demonstrating the impact of misalignment of the whole
LED panel on reconstruction amplitude (left) and phase (right)
in respect to ground truth (top). Even a misalignment of mere
0.35 ◦ (2mm shift) renders the recovered phase quite useless.
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As an example for such a case, the order of magnitude of
the calibrated misalignment, O(∆xn) = log10 (∆xn), is shown in
Figure 7 for all bright-field LEDs.
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Figure 7: Order of magnitude of the position misalignment for the
bright field region of the LED panel.

One can clearly see, that the majority of the values are quite
in the same range, except those in the bottom row, where they are
far off (roughly one order of magnitude). Though the explanation
for this is not obvious, but may be neared with a cautious look at
the spectra in question. It turns out, that due to the misalignment
of ∆x = −5 mm,∆y = 8 mm, the bottom row LEDs are shifted
just outside the cutoff frequency, thus into the dark-field!

It is a hard prerequisite for the proposed calibration though,
that the images are taken under bright field conditions, so these
values are not to be considered. But how to find out if the given
image was indeed a bright field image, thus the calibration result
could be considered significant?

A first estimation of the corrections significance conve-
niently comes included in the procedure imfindcircles: the
strength of the found circles; sort of the probability, that the found
circle is indeed a circle.

It appears, that the results with a strength below the order
O(−2) are probably not significant anymore, and may be ren-
dered outliers. To visualise this, the initial and actual (shifted)
grid is shown in Figure 8, together with the corrected positions
(circles), colour-coded in order of magnitude of their strength.

The relation between the strengths and the validity of the
corrections are quite evident, yet the precise border between in-
and outliers is made empirically, and unfortunately have to be ex-
pected to vary with respect to the sample in question!

Yaw
A considerably harder problem is the case, where the LED

panel is turned around the z-axis: Yaw. Like shift it is not that
easy to align in a physical calibration step, as one has to lower
the focus down to the LED panel. Additionally, yaw results in
a misalignment that is proportional to the distance of the LED
to the centre of the panel, rendering previously used descriptive
statistics of the whole panel as one ensemble, including state of
the art correction methods [2], useless.

The solution proposed here is to fit the set of corrected posi-
tions to a grid, and subsequently to evaluate the angle γ between
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Figure 8: Correcting shift: Comparison of the k-space projec-
tions kn (nodes) of the bright field LED positions of the slightly
shifted panel (violet); versus the initially assumed grid (orange);
versus the corrected positions (circles), colour-coded in the order
of magnitude of their strengths (colour, higher is better).

this and the initial grid for each row and each column separately:

γ ≈ arctan(β ) (4)

where β refers to the slope of the horizontal and vertical
lines of the grid in respect to the initial grid. In the horizontal case,
ζ denotes the kx-axis, and χ denotes the ky-axis; in the vertical
case vice versa. Since the data points of these lines have to be
considered noisy, we assume a linear progression, via solving the
least squares fit:

ζ = β χ +δ (5)

Depending on the size of the bright-field area of nb × nb
LEDs, we end up with nb horizontal inclinations γx and nb ver-
tical ones γy, which can be considered one statistical ensemble
each. Again, careful observation of the deviations reveals if the
panel is yawed (low deviations) or otherwise skewed (high devia-
tions); And thus if we can deduce a meaningful mean and median.

Finally this allows the following conclusion: if—and only
if—the both inclinations γx and γy are almost equal, we may de-
duce that this grid was only yawed. All other inclinations (e.g.
pitch or roll) would have tilted the grid in a way, such that γx 6= γy.
As an example, the bright-field area of the k-space grid of a
slightly misaligned panel (γ = 11◦) is shown in comparison with
the actual and initial grids in Figure 9.

Roll & Pitch
The methods described so far provide a direct measure of the

shift, respective yaw in the k-space grid of the LED panel, both of
which are translation invariant in z-direction. Unfortunately these
are the special cases of a bijection; where the misaligned LED
panel is still strictly parallel to the object (and sensor), so it has a
direct relation to the 2d grid in k-space.

Considering pitch and roll (rotations around the x-, respec-
tive the y-axis), the LED panel is not parallel to the sensor any-
more. This results in a much harder problem: The mapping be-
tween the 3d real space and the measured 2d k-space is not bijec-
tive anymore. Thus it does not have an inverse function; it is not
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Figure 9: Correcting yaw: Comparison of the k-space projections
kn (nodes) of the corrected bf LED positions of the highly mis-
aligned panel of Simulation 5 (circles), colour-coded in the order
of magnitude of their strengths (fill, higher is better); versus the
actual grid with yaw γ = 11◦ (violet); versus initially assumed
grid (orange).

possible to infer to the 3d real space misalignment by measure-
ment of the 2d k-space grid!

An example for such a heavily tilted LED panel is shown in
Figure 10: roll ρ = 30 ◦, no pitch. The grid is still rectangular,
but unlike previous examples the kx-, and ky-axis are not spaced
equidistantly anymore! On the one hand the grid is compressed
in ky-axis; one the other hand it forms a trapezoid. This is only
very slightly visible in both shown examples, due to the panel
being much farther away (327 mm in z-direction) as opposed to
the difference in height caused by the tilt (±45 mm in z-direction).
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Figure 10: Correcting roll & pitch: Comparison of the k-space
projections kn (nodes) of the corrected bf LED positions of the
highly misaligned panel of Simulation 6 (circles), colour-coded in
the order of magnitude of their strengths (colour, higher is better);
versus the actual grid with roll ρ = 30◦ (violet); versus initially
assumed grid (orange);

Unsurprisingly the resulting mean γx and γy values are both
around zero, but with huge standard deviations. The mean is prof-
fered here, because we do not have to consider extreme outliers

shifted into dark field. Either way, the spread of the values due
to the compression & trapezoid effects is quite high—which is a
strong indicator that the setup exceeds correctability.

An example of such a profoundly tilted LED panel—roll
ρ = 21◦ and pitch ψ = 30◦— is shown in Figure 11. Evidently,
the grid is not rectangular anymore. Analysis correctly depicts
this: γx and γy values are both around zero for the kx-axis, yet
around 10 ◦ for the ky-axis. Both median and mean deviations
support this claim, which inherently points to tilt of the panel in
x- and or y-axis.
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Figure 11: Correcting roll & pitch: Comparison of the k-space
projections kn (nodes) of the corrected bf LED positions of the
highly misaligned panel of Simulation 6 (circles), colour-coded
in the order of magnitude of their strengths (colour, higher is bet-
ter); versus the actual grid with roll ρ = 21◦ and pitch p = 30◦

(violet); versus initially assumed grid (orange).

Table 1: Robustness of FPM to misalignment for all six degrees
of freedom; empirical limits, indication and correction feasibility.

Parameter Limit Indication Correction
Shift ∆θx 0.2◦ low spread ∆θx quantitative
Shift ∆θy 0.2◦ low spread ∆θy quantitative
Shift ∆z 2% high spread

∆θx, ∆θy

qualitative

Roll ρ 3◦ γx 6= γy qualitative
Pitch ψ 3◦ γx 6= γy qualitative
Yaw γ 2◦ γx ≈ γy quantitative

Robustness, Indication & Correction Limits
The proposed methods enable the direct study of the impact,

misalignment of the illumination source has on FPM recovery,
shining light on which system parameters are more critical than
others. Our calibration procedures permit precise correction of
the experimental setup, where possible. Additionally the stated
analysis allows assessment of present misalignment, even if
uncorrectable by known methods. Since FPM is a very ill-posed
problem, the reconstruction of the phase heavily depends on
the object itself, so it is not possible to give a strict limit where
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misalignment breaks the algorithm. Nevertheless we might name
empirical limits based upon our simulations, up to which degree
of misalignment the recovery still works. Empirical limits of
misalignment for conventional FPM, indicators of the respective
misalignment, and the feasibility of quantitative correction
are shown in Table 1 for all six degrees of freedom. To our
knowledge, such an analysis was never demonstrated before.
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