

A Web-based Visualization Tool for Multispectral Images

Snehal A. Padhye, David Messinger, James A. Ferwerda; Chester F. Carlson Center for Imaging Science, Rochester Institute of

Technology; Rochester, New York

Abstract

Multispectral imaging has been a valuable technique for

discovering hidden texts in manuscripts, learning the provenance

of antique books, and generally studying cultural heritage objects.

Standard software used in displaying and analyzing such

multispectral images are often complex and requires installation

and maintenance of custom packages and libraries. We present an

easy-to-use web-based multispectral imaging visualization tool

that enables simultaneous interaction with the information

captured in different spectral bands.

Introduction
Multispectral Imaging has led to significant discoveries in

historical documents and artworks. It has been used for better

interpretation of ancient manuscripts and paintings [1]. It was used

in extracting undertexts from Archimedes palimpsests [2].

Multispectral Imaging has also been used in identifying stains and

discoloration on old documents by measuring their spectral

signatures [3]. In multispectral imaging, each spectral band

provides unique information which is used in overall analysis of

the cultural heritage document. It is important to accurately capture

this data at multiple wavelengths, and it is equally important to

have the means to visualize these data in a way that brings out a

meaningful interpretation.

Standard software packages used for visualization and

analysis of multispectral data often require local installation of

custom applications and libraries, leading to system security

problems. They are also platform dependent and require a user to

keep all packages updated for best performance and compatibility

of the software. In contrast, we have developed a tool for

multispectral data visualization through a resource readily

available to modern computer users – web browsers! We use

computer graphics to process and display multispectral data in our

visualization tool. Web-based graphics capabilities have evolved

dramatically in last few years, and with the introduction of WebGL

[4], high-quality, real-time graphics can be easily rendered by most

browsers. We use Three.js [5] – a library and API for WebGL, to

create an interface for interactive multispectral visualization. Users

can access and interact with their multispectral data just by putting

its URL into a browser on any web-compatible device.

Previous Work
There are many software packages for multispectral image

visualization, analysis, and processing. ENVI [6] is one of the most

popular packages for multispectral image processing and

visualization in remote sensing and document imaging. It also

supports multiple windows, displaying data from different spectral

bands in each session. MATLAB [7] is another immensely popular

package with multispectral imaging support. The ImageLab

package [8] also supports multispectral image analysis. While all

these packages provide tools for multispectral data visualization

and analysis, their interfaces can be cumbersome and unintuitive to

use, and they require local installation of their custom apps,

libraries, and drivers. Also, all of them are paid software.

In addition to commercially available software, researchers

have also developed multispectral imaging tools that are freely

available. Opticks [9] is one such freeware package. MultiSpec

[10] is another easy-to-use multispectral data analysis package

which is largely designed for remote sensing applications. Gerbil

[11] is yet another open-source interactive multispectral data

visualization software. It also supports visualization of topological

features along with the spectral properties. While all these

packages are of great value, they still require installation and

maintenance of software components which can create security

issues and often have steep learning curves which can limit

widespread use.

The introduction of WebGL has led to many web-based 3D

publishing and visualization platforms [12]. Sketchfab [13] is the

most popular commercial platform used to display and interact

with user created 3D models. Developed for a broader audience, it

lacks flexibility to support domain specific requirements.

Smithsonian Museum X3D [14] is another tool used to visualize

3D artefacts. It is more flexible than Sketchfab and it was

developed to encompass the huge variety of cultural heritage

objects in the Smithsonian museum. It is owned by Autodesk and

is restricted for wider use. 3DHOP [15] is an opensource 3D

cultural heritage model visualization platform built on WebGL. It

has rich set of tools for interaction with the 3D models.

All these platforms are excellent for 3D model interaction and

visualization and they may also support integration with different

media. However, there is a disconnect between these 3D tools and

those focused on multispectral data. Since, both 3D and

multispectral data have been of great importance in the cultural

heritage domain, we have developed a tool that supports both these

aspects. In the following section, we describe this web-based,

interactive, 3D multispectral data visualization tool that addresses

these issues, and provides simple, secure, and widespread access to

multispectral image data.

Web-based Multispectral Visualization
Instead of displaying a traditional two-dimensional image for

visualization of multispectral images, we employ 3D computer

graphics to render a scene to depict the spectral data. The

development of the tool is driven by following objectives:

 • Multispectral data visualization

• Simultaneous display of multiple bands

• Browser based

• Intuitive and easy to use interface

• No applications or libraries to install and maintain

• No security issues

• Free and open source

• Support for richer datasets (shape, texture, material)

To support the kind of features we are aiming for our tool, we

require a platform independent framework that supports 3D

IS&T International Symposium on Electronic Imaging 2021
Computer Vision and Image Analysis of Art 2021 014-1

https://doi.org/10.2352/ISSN.2470-1173.2021.14.CVAA-014
© 2021, Society for Imaging Science and Technology

representation. WebGL, based on OpenGL ES 2, has brought the

power of complex 3D graphics to browser and every modern

browser supports it. We found the idea of building a browser-based

interface very attractive since browsers protect users from security

threats arising from installing third-party software and enables

users to access the tool using standard URL links.

We can represent our application [16] in three layers. The

lowest layer includes graphics enabling libraries, in our case it is

WebGL. The middle layer builds over the lowest layer libraries to

provide higher level functionalities. Our tool uses Three.js as the

middle layer library. Finally, the last layer contains the custom

application-specific code. The overall interface code is written in

HTML and JavaScript. The layers along with the user interaction

completes our WebGL-based application ecosystem as shown in

Figure 1.

Figure 1. Application Ecosystem: WebGL forms the lowermost layer providing
the basic graphics capability. Three.js uses WebGL to provide higher level
functionalities to manage a rendered scene as a middle layer. The topmost
layer consists of our application code, built over Three.js, to provide
multispectral visualization. The application can be run through an HTTP server
to display multiple spectral bands of an object. The user can then observe and
interact with the rendered object.

A typical Three.js pipeline is shown in Figure 2. An object is

characterized by its geometry and material properties. Sample can

be planar, spherical, or described parametrically, and materials can

vary in their diffuse and specular reflectance and transmittance

properties. These properties together form a Mesh that is added to

a Three.js Scene. The scene also requires an illumination source

and a camera to provide the lighting and viewing angles. Finally,

the Scene is rendered using the WebGL renderer and displayed in

the browser.

Figure 2. Three.js Pipeline: The geometry and material properties of an object

are specified and turned into a mesh that is a component in a scene that
includes lights and a camera. The renderer takes this information and
produces an image. Using Three.js all these steps can be performed in real-
time on a standard web-browser.

The use of 3D computer graphics provides the flexibility of

adding topographical, reflectance, translucency, and other surface

features to the visualization of the object. We represent these

properties in a form of 2D maps with each pixel location denoting

the property value. To use these maps, physically located on the

system, we ask our browser to fetch the files for our rendering. For

security, browsers follow a standard for communication between

different webservers in which it provides the origin of the file

request in its header. Cross Origin Resource sharing (CORS) is the

mechanism that grants access to the resources across origins. When

we try to run our HTML interface directly, without a webserver,

the CORS essentially identifies the origin as Null and does not

permit us to access our image maps. To overcome this problem, we

can either do system level changes to convey the CORS to allow

resource sharing at our local system or we can simply run a local

webserver to mitigate the issue. The server can be a simple Python

HTTP server that can be started by running a command ‘python -m

HTTP. Server 8000’ on the system’s terminal.

Considering all scenarios, we opted for a client-server

configuration for our application. The client is basically the HTML

interface code that runs our visualization tool in a browser and the

server is any basic webserver that serves the HTML application

code. The configuration further provides two possible ways of

running the application:

Local Setup
In the local configuration as shown in Figure 3, both server

and the client run on a local network setup. An user can type the

link to the server (‘ http://localhost:8000/’) on any browser to start

the visualization interface. Any other device in the local network

can also access this tool by typing the relevant address of the

application in their browsers (for e.g. http://<server IP address:

port>).

Figure 3. Local setup: The server and the client run locally (represented by
the outer boundary). The client can be any browser-running device. The client
enters the server’s local address and the port on which it is running, and the
application runs on the client through the http protocol. The user can then
have seamless interaction with the object through the client system.

Remote Setup
The server in the local setup when hosted on a machine that is

accessible over the Web, enables the user to access and visualize

their data remotely. Thus, a user can continue working remotely by

accessing the application, through its URL, on any web-connected

device as shown in Figure 4.

Multispectral Visualization Tools
Our current implementation provides three visualization/view

modes which we call Quad viewer, Multispectral lens, and

Multispectral highlighter. Each of the modes require users to

provide a folder with the target images as input. The application

then takes the first few images in the folder path to initialize the

viewer and populates all the available image options in the

014-2
IS&T International Symposium on Electronic Imaging 2021

Computer Vision and Image Analysis of Art 2021

http://localhost:8000/

dropdown on the GUI. Note that the upload operation does not

share the data to the server. It is always local to the user. The

application supports static files. The displayed band can be

selected from the dropdown and changed on the viewer. The

viewers also provide freedom to add any other geometrical and

material properties along with the spectral data for a richer

representation of the rendered object. Once the server is running,

the user is only required to enter the local or remote URL

(according to the configuration) on a browser to launch any of the

view modes. Figure 5 shows a screenshot of the application

launched on a local device through a webserver hosted on GitHub.

It shows an example of the remote configuration of the application.

The homepage shows all the available modes of visualization and

one can scroll through to see each of them.

Figure 4. Remote Setup: The server and the client are on separate systems
connected over Web. The client runs the application by connecting to the
server through its IP address and its port over http protocol.

Figure 5. Application launched on a user device through a remote
configuration. The homepage lists all the available options for visualization.

The user can click on any of the options to launch the viewer.

Quad Viewer
A Quad viewer enables simultaneous visualization of four

bands of an object captured at multiple wavelengths. Here, we

render multiple scenes simultaneously (one per spectral band) in a

given viewport or browser screen and the renderer then displays

only those spectral bands that are selected by the user. It has four

small GUIs at each corner for managing image displayed in each

quadrant. It has a cyan-colored knob at the center which enables

resizing of each quadrant to dynamically analyze the document at

different spectral bands. A snapshot of the Quad viewer is shown

in Figure 6.

Multispectral Lens Viewer
While the Quad viewer provides simultaneous visualization of

multiple spectral bands through non overlapping quadrants. The

Multispectral lens viewer allows users to visualize different

spectral bands simultaneously through an overlapping region

called as a window or a lens. The GUI on the right corner provides

an option to select a rectangular window or a circular lens shape to

discover information from different bands through it. The

window/lens can be resized and moved around interactively. There

are also options to choose spectral bands to be displayed in the

window or lens as well as in the outer region of the sample.

Snapshots of the Multispectral lens viewer are shown in Figure 7.

Figure 6. Web-based multispectral quad image viewer: To access a
multispectral dataset, a user types its URL into a browser. The browser then
renders the image data and allows the user to interactively split the image into
four quadrants and select the spectral bands shown in each quadrant.

Figure 7. Multispectral lens viewer: In this viewer, the user can specify the
size, position, and spectral properties of a rectangular or a circular region that
acts as a ‘lens’ or filter to reveal particular object properties. This provides
increased flexibility in targeted visualization and analysis over the Quad
viewer.

IS&T International Symposium on Electronic Imaging 2021
Computer Vision and Image Analysis of Art 2021 014-3

Multispectral Highlighter
Both Quad viewer and Multispectral lens viewer have a well-

defined viewing area for managing the spectral bands and the areas

seen. The Multispectral highlighter enables a user to visualize a

segment as small as a touch or a click on the screen in a different

spectral band. The viewing area can be any non-uniform pattern

the user wishes to analyze. It consists of a rendered object in a

given spectral band and a user can touch, stroke or click and drag

over the surface to view that particular portion in a different

spectral band. The user can select the spectral band to display in

the highlight regions. The application also allows the user to

change the width of the strokes at runtime. Figure 8 shows a

snapshot of the Multispectral highlighter.

Figure 8. Multispectral highlighter: Using a mouse or touch screen, user can
specify the sizes, positions, and spectral display properties of multiple image
regions.

Assessment
Web-based frameworks have their own limitations. In this

section, we discuss each of them and justify their validity for our

tool.

Performance
The performance of any web-based visualization application

depends on its ability to handle large data files, and its efficiency

in rendering the data [17]. Three.js uses the Nexus engine [18] that

employs progressive streaming of view-dependent representations

along with data compression to streamline transmission. Since, our

application does not require very complicated 3D scenes, the only

bottleneck should be file size. Very large files (30+ Mb) may slow

the rendering initially but will not affect the user interaction once

an object is rendered. Any image format supported by Three.js

works with the application but PNG (lossless compression) and

JPG (lossy compression) are the formats most used. Power of two

image sizes are preferable as well since it avoids resampling in the

renderer’s texturing operations.

Device Support
Device or hardware support is another important property of

an application. Three.js use WebGL to render the scene and hence

the application can be run on any desktop or mobile browser that

supports WebGL. The latest list includes [5] Google Chrome 9+,

Firefox 4+, Opera 15+, Internet Explorer 11, Safari 5.1+ and

Microsoft Edge.

Security
Security plays a crucial role in installing/using any

application. The browser-based approach protects a user from

security issues related to installation of third-party software.

Browsers operate in a sandboxed environment that makes

accessing the local computer resources very difficult. While, this is

seen as a disadvantage from a developer’s perspective because it

makes operations like writing temporary data to the disk very

difficult, from a user’s perspective, this feature ensures that their

system resources are protected and safe.

Provenance and Intellectual Property Protection
Two of the greatest concerns in the cultural heritage

community about using web-based visualization and dissemination

tools are data provenance and intellectual property (IP) protection.

Our application framework provides support for both of these

concerns. In both the local and remote setups, data is uploaded and

used at the client side. The application just hosts static files that are

not stored anywhere other than temporarily in user’s browser. This

protects the data from being exposed on a network, the user must

ensure that they have the data they want to analyze on the client

system they are using.

Cost and Accessibility
Cost and accessibility are also important factors in using a

visualization tool. Our tool is completely open source and free. We

can also add features to customize for a specific application

domain. For example, the current version supports data from client

side for IP protection, but for open-source projects, the data can be

stored and accessed from a server so that every user can visualize

the data without having a local copy. The code is available freely

on GitHub and can be used by accessing our server at -

https://github.com/snehalpadhye/MultispectralViewer.

Limitations and Future Work
Our tools are currently limited to visualizing planar objects

such that the geometry and material maps are rendered on a planar

surface mesh and the maps can only be in formats that are

supported by WebGL and Three.js. We plan to extend our tools to

support non-planar objects. We also plan to add ability to rotate the

objects in 3D to enhance the rendering of texture and material

features along with simultaneous visualization of spectral bands. If

required, we also plan to add an option for server-side storage for

open-source projects and add image processing features as required

by domain-specific applications.

Conclusion
We have presented a set of browser-based visualization tools

for multispectral image data. They are free and easy to use for a

quick visualization and analysis of multi modal data (geometry,

material, multispectral color) without the problems of installing

software, or concerns about storage and security issues. The tools

are written in HTML and JavaScript and can run on modern

desktop, laptop, and mobile devices with just a URL.

Web-based tools for visualization of multispectral data

provide powerful, simple-to-use, and secure means to for analyzing

and understanding cultural heritage objects. Our hope is that these

tools will allow multispectral imaging to provide greater insights

into the objects under study.

014-4
IS&T International Symposium on Electronic Imaging 2021

Computer Vision and Image Analysis of Art 2021

https://github.com/snehalpadhye/MultispectralViewer

References
[1] F. Imai, M. Rosen, and R. Berns, “Multi-spectral Imaging of a van

Gogh's Self-portrait at the National Gallery of Art Washington DC,”

in Image Processing, Image Quality, Image Capture, Systems

Conference, Society for Imaging Science and Technology, 2001.

[2] R. Easton Jr, K. Knox., and W Christens-Barry, “Multispectral

imaging of the Archimedes palimpsest,” in Proceedings of 32nd

Applied Imagery Pattern Recognition Workshop, IEEE-AIPR, 2003.

[3] A. Campagnolo, E. Connelly, and H. Wacha, “Labeculæ Vivæ:

Building a Reference Library of Stains for Medieval and Early

Modern Manuscripts,” Manuscript Studies: A Journal of the

Schoenberg Institute for Manuscript Studies 4(2), 401-416, 2019.

[4] WebGL API, https://www.khronos.org/webgl/.

[5] Three.js API, https://threejs.org/.

[6] ENVI Software, https://www.l3harrisgeospatial.com/Software-

Technology/ENVI.

[7] MATLAB Software,

https://www.mathworks.com/products/matlab.html.

[8] ImageLab Software, http://www.imagelab.at/.

[9] Opticks Software, https://opticks.org/.

[10] L. Biehl, and D. Landgrebe, “MultiSpec: a tool for multispectral--

hyperspectral image data analysis,” Computers & Geosciences. 28.

1153-1159. 10.1016/S0098-3004(02)00033-X, 2002.

[11] J. Jordan, and E. Angelopoulou, “Gerbil - A Novel Software

Framework for Visualization and Analysis in the Multispectral

Domain, “in Proceedings Vision, Modeling, and Visualization, The

Eurographics Association, 2010.

[12] R. Scopigno, M. Callieri, M. Dellepiane, F. Ponchio, and M.

Potenziani, “Delivering and using 3D models on the Web: Are we

ready?,” in Virtual Archaeology Review, 2017.

[13] Sketchfab, https://sketchfab.com/.

[14] Smithsonian 3D Digitization, https://3d.si.edu/.

[15] M. Potenziani, M. Callieri, M. Dellepiane, M. Corsini, F. Ponchio,

and R. Scopigno, “3DHOP: 3D Heritage Online Presenter,”

Computers & Graphics,Volume 52, 2015.

[16] M. Potenziani, M. Callieri, M. Dellepiane, and R. Scopigno,

"Publishing and Consuming 3D Content on the Web: A Survey",

Foundations and Trends in Computer Graphics and Vision, 2018.

[17] Boutsi, Ioannidis, Soile,” An Integrated Approach to 3D Web

Visualization of Cultural Heritage Heterogeneous Datasets,” Remote

Sens, 2019.

[18] F. Ponchio and M. Dellepiane,” Fast decompression for web-based

view-dependent 3D rendering,” in Proceedings of the 20th

International Conference on 3D Web Technology, 2015.

Author Biography
Snehal A. Padhye is a third year PhD. student in the Chester F. Carlson

Center for Imaging Science at RIT. She received a BS in Electronics from

RCOEM and MS in Signal Processing from COEP, both from India. Her

dissertation research work focuses on designing hardware and software

systems for capturing and visualizing realistic digital models of cultural

heritage objects.

David Messinger is a professor in the Chester F. Carlson Center for

Imaging Science at RIT. He received a BS in Physics from Clarkson

University and Ph.D. in Physics from Rensselaer Polytechnic Institute. His

research interests include developing methods to extract quantitative

information from spectral imagery, use of physics-based signatures to

augment methods of hyperspectral image exploitation and the use of

remote sensing techniques for multi-disciplinary research such as

archeology, disaster management, and analysis of cultural heritage

artifacts.

James A. Ferwerda is an Associate Professor in the Chester F. Carlson

Center for Imaging Science at RIT. He received a B.A. in Psychology, M.S.

in Computer Graphics, and a Ph.D. in Experimental Psychology, all from

Cornell University. The focus of his research is on building computational

models of human vision from psychophysical experiments and developing

advanced imaging systems based on these models.

IS&T International Symposium on Electronic Imaging 2021
Computer Vision and Image Analysis of Art 2021 014-5

• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . . Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org

