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Abstract

Fish quality is primarily effected by the number of days
elapsed since harvesting, while bad storage conditions can also
lead to quality degradation similar to the impact time. EXxist-
ing approaches require laboratory testing, a laborious and time-
consuming process. In this work, we investigate technologies for
quantifying fish quality though the development of deep learning
models for analyzing imagery of fish. We first demonstrate that
such a quantification is possible, to a certain degree, from multi-
spectral images provided a sufficient number of training examples
is available. Given that, we explore how knowledge distillation
can be utilized for achieving similar fish quality estimation accu-
racy, but instead of using high-end multispectral imaging systems,
using off-the-shelf RGB cameras. Experimental evaluation on in-
dividuals from the Mullus Marbatus family demonstrates that the
proposed methodology constitutes a valid approach.

Introduction

European legislation categorizes fish into four categories
based on their quality value as food, namely Excellent (class A),
Category A (class B), Category B (class C), and Inadmissible
(class C). In the first category, the samples are classified almost
immediately after their catch while in the latter category, they are
unsuitable for human consumption [1]. The classification of each
sample to each class is based on the Posthumous enzyme activ-
ity is responsible for the degradation in fish quality due to the
breakdown of cell membranes and is influenced by several factors
such as the type of fish, the way of extinction, and the method of
preservation.

In this work, we consider the FRESQO platform, a compact
and portable system which will consist of an compact multispec-
tral imaging camera and an embedded processing system, while
the interfacing with the user is achieved through two-way com-
munications to his/her smartphone. The proposed platform offers
sever benefits compared to more traditional approaches such as
the extremely fast evaluation, the ability to perform in-situ esti-
mation, and the non-destructive nature of the method. A detailed
description of the system characteristics and design specifications
is analysed in [10], while an illustration of the platform is shown
in Figure 1.

While the merits of the proposed platform have been pre-
viously discussed, the platform assumes the availability of Hy-
perspectral Imaging (HSI) observation over 25 spectral bands in
the visible to near-infrared range. This requirement imposes hard
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Figure 1. Overview of the FRESQO platform.

constraints on the different imaging options, introducing signifi-
cant costs in developing such as a platform. The aim of this work
is to demonstrate that training data collected from such platforms
can be utilized by deep learning models to offer significant per-
formance improvement when training deep learning models with
a significantly smaller number of spectral bands. We achieve
this objective through a process known as Knowledge Distillation
(KD) [2] which involves transferring part of the feature extraction
from the full spectral resolution network (teach network) to the
limited resolution network (student) as shown in Figure 2.

Teacher network
Input: 25 bands Iiii_ Hﬁ Class: A-D
e
[
Student network Iii_ E
Input: k<25 bands l-rri Class: A-D

Figure 2. Knowledge distillation process where a teacher network is trained
with full spectral resolution observation and a student using both low spectral
resolution examples and features extracted from the teacher network.
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State-of-the-art

Degradation in fish quality is due to the posthumous enzyme
activity which leads to the breakdown of cell membranes which in
turn leads to the exponential increase in the bacterial load, caus-
ing the severe degradation of the skin. Currently, different types
of instruments are available for the quantification of fish fresh-
ness which exploits the alteration of different physiological pa-
rameters. Traditional approaches for estimating the freshness of
a fish either employs human senses like appearance, odor, fla-
vor, and texture or rely on laboratory tests. These techniques
are either subject o a very high degree of subjectivity or require
specialized personnel and are often destructive. During the past
decades, optical imaging technologies have been readily consid-
ered for the evaluation and inspection of food quality, including
multispectral imaging and near-infrared spectroscopy. Different
approaches that have been presented include methods based on
enzyme biosensors, electrochemical biosensors, colorimetric sen-
sors, electronic tongue, and different types of spectroscopy[3].
Multispectral imaging, a particular case of spectroscopy is among
the most prominent solutions for this problem due to the numer-
ous benefits such methods offer including in-situ and real-time
estimation. In this work, we employ Snapshot Spectral Imag-
ing technologies which in addition to the general benefits of
spectroscopy, do not require scanning the item over a conveyor
belt. This technology has been recently employed for classifying
generic objects [7], as well for food quality monitoring including
detecting plant diseases [8] and red-meat classification [9].

Method

The objective of this paper is the demonstration of the ca-
pabilities of state-of-the-art deep learning architectures and more
specifically Convolutional Neural Networks (CNN) in analysing
multispectral images for estimating the freshness of fish. By fish
freshness, we mean the estimation of the apparent days since har-
vest, which may not coincide with the actual number of days in
cases of problematic storage conditions. The targeted scenario
involves a compact and portable system which will consist of
a snapshot spectral imaging system and a mini-pc system like
the NVIDIA Jetson, while the interfacing with the user will be
achieved through transmission of the processed images to his/her
smartphone, as shown in Figure 1.

The proposed system currently consists of a snapshot spec-
tral imaging camera and a data processing pipeline based on ma-
chine learning for estimating the elapsed time between harvest-
ing and imaging. Specifically, observations are acquired over
the visible-near IR range (400-1000nm) using a snapshot spec-
tral camera from Photon Focus (MV1-D2048x1088-HS02-96-
G2), equipped with an IMEC sensor acquiring snapshot spectral
imagery of 2048 x 1088 pixels at 42fps. Unlike traditional lines-
can approaches, can acquire the entire spectral profile of a scene
from a single image (exposure). This capability makes snapshot
spectral cameras ideal for deployment in real-time environments,
removing the need for specialized platforms like conveyor plat-
forms. The quantum efficiency of each band is shown in Figure
3.

We employ a two-step process where we first train a network,
the teacher, using multispectral images as input and then train an-
other network, the student, using RGB imagery. Specifically, the
teacher network is a Convolutional Neural Network (CNN) that
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Figure 3. Quantum efficiency associated with each spectral band.

accepts as input a 25 spectral band cube and predicts one out of
five classes of fish freshness as the classification output. Once,
the teacher network is trained, we train another CNN which ac-
cepted 3 color band cubes as inputs and similarly predicted the
fish freshness class. To explore the knowledge acquired by the
teacher network, the student network trained such that (i) makes
accurate predictions and (ii) the predicted logits are close to the
ones predicted by the teacher network.

Formally, we define a single input example as a three dimen-
sional cube X € R¥*/*kwhere w, h,k are the width, height and
number of bands. The target variable, corresponding to the fish
quality metric, is given by y which is a n-dimensional vector en-
coding the corresponding label in a one-hot encoding scheme. We
define a deep learning network as the function .%, which takes an
input spatio-spectral cube and produces a fish freshness index

y=F(x;w) M

where w are the weights on the network.

The objective in training such a network is to minimize an
appropriately defined loss function, such as the categorical cross-
entropy given by:

N
min — logy 2
i ,; ylog§ @)
where N is the number of training examples.

The goal of this work is to exploit features, extracted from
the neural network when trained using the full spectral resolution
observations from k bands, in order to increase the capabilities of
similar networks when trained on a subsection of the spectral res-
olution k¥’ < k. To that end, define the original network .%# as the
teacher network while the resolution spectral resolution network
¢ as the student network. Furthermore, we define the features ex-
tracted from input x at a particular layer i as .%;(x) for the teacher
and ¥%;(x’) where x’ corresponds to the spectral subsampled ver-
sion of x.

To train the student network, we employ both the categori-
cal cross entropy, as in the teacher, as well as a feature similarity
terms, penalizing the difference between features extracted from
the teacher and the student network given the corresponding in-
puts. Specifically, the student network loss function is given by:

N
min— ) ylog§ + 7||.Fi(x) — %(x)]|2 ©)
i=1
where 7 controls the importance of the knowledge distillation
term.

IS&T Infernational Symposium on Electronic Imaging 2021
Food and Agricultural Imaging Systems 2021



For the particular problem we consider in this work, the ac-
quired spatio-spectral image cube is introduced into a Convolu-
tional Neural Network (CNN) which consists of four Convolu-
tional layers and one Global Max Pooling layer. The specifics of
the considered architecture are shown in Figure 4. A significant
difference between the proposed architecture and typical archi-
tectures employed in image classification is that the spatial size of
the image is rectangular and that the multispectral images consist
of 25 spectral bands, much higher compared to 3 in color imagery.

Layer (type) Output Shape Param #
Input Layer [(None, 216, 409, 23, 1)] 0
Conv3D (None, 216, 409, 1, 8) 192
Batch Normalization (None, 216, 409, 1, 8) 32
Reshape (None, 216, 409, 8, 1) 0
MaxPooling3D (None, 7, 15, 8, 1) 0
Flatten (None, 840) 0
Dropout (None, 840) 0
Dense (None, 4) 3364
Total params: 3,588

Trainable params: 3,572

Non-trainable params: 16

Figure 4.  Network architecture including dimensions for each layer and

associated number of parameters.

Experimental results

We evaluate the method on fish from the Mullus Marbatus
family over four days since harvesting, thus generating the 4 class.
We performed two sets of daily acquisition of multispectral im-
ages from 5 individuals. To train and validate the performance
of the system, individuals from the first set were considered as
training examples and from the second set as validation exam-
ples. Both the training and the validation set images (spectral
cubes) were augmented through geometric transform (translation,
rotation, and clipping) leading to 128 training examples and 32
validation.

In the experimental analysis, we consider three distinct sce-
narios, namely (i) Train/validate Teacher Network with 25 spec-
tral bands (Hyperspectral), (ii) Train/validate of Student with 12
spectral bands (Multispectral), and (iii) Train/validate Student
network with 3 spectral bands (RGB). While for training the
Teacher Network, a single training/validation approach is avail-
able, for the student networks there are two strategies. Specifi-
cally, the two strategies are:

* Naive, where the student is training using only the currently
available data (5 bands in MSI and 3 in RGB).

* Knowledge Distillation (KD), where training utilizes both
using available data, as well as the similarity to features be-
tween student and teacher network.

Training Teacher Network on Hyperspectral data
The first step in applying the proposed KD approach involves

training the teacher network using the full resolution observa-

tions. The overall prediction accuracy is 98.4% for the training
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and 84.3% for the validation.
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Figure 5.  Confusion matrix for training (top) and validation (bottom) set
using 23 spectral bands as the input.

Performance is also presented in terms of confusion matrices
in Figure 5 where one can observe that the majority of misclassi-
fications corresponds to predicting a adjacent class, e.g. instead
of class A, predict class B.

Multispectral

Given a fully training teacher network, we argue that learned
features can be utilized for training the student network. The per-
formance on the validation for the naive and KD students is pre-
sented in Figure 6. These results demonstrate two things, first,
that KD can lead to higher accuracy (78.1%) compared to the
naive approach (71.8%), while for the case of misclassification,
the errors from the KD are more constrained around the diago-
nal of the matrix, i.e., the errors are typically between adjacent
classes.

To further quantify the performance gain of the KD during
the training of the student network, Figure 7 present the accuracy
as a function of training epoch for the naive and KD approach
respectively. Given these results, we can make two observations.
First, both training and validation accuracy is higher when em-
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Figure 6. Confusion matrix on validation set for the naive student (top) and
the KD student (bottom) using 12 spectral bands as the input.

ploying the KD approach compared to the naive method. Second,
the performance for the case of KD, although increasing with
more training epochs, starts from a significantly higher perfor-
mance point compared to the naive case. This demonstrates that
employing the KD can significantly increase performance when
limitations in terms of training resources are present.

RGB

Similar to the previous case, we also explored the cased of
KD for training networks using 3 spectral bands as a representa-
tive example of an RGB-based system. The confusion matrices
for the naive and KD student training are presented in Figure 8
while Figure 9 presents the classification accuracy as a function
of training epoch. Comparing the case of naive and KD student
training, there is a significant increase in terms of classification
accuracy, from 65.6% to 84.3% respectively when employing the
KD approach. For the case of classification accuracy, we can,
similarity to the case of MSI, observe that employing KD can
significantly boost the accuracy achieved when only three color
channels are available.
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Figure 7.  Classification accuracy for the naive student (top) and the KD

student (bottom) using 12 spectral bands as the input.

Conclusions

In this paper, we present our initial results on the utilization
of features extracted from hyperspectral imagery for the estima-
tion of fish freshness from multispectral and typical color images.
To that end, we consider the introduction of knowledge distilla-
tion with a deep learning algorithm for feature transferring. The
results indicate that by introducing information for hyperspectral
data, the system can achieve very high prediction accuracy even
using as little as 3 color channels.
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Figure 8. Confusion matrix on validation set for the naive student (top) and
the KD student (bottom) using 3 spectral bands as the input.
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