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Abstract. Feature-Product networks (FP-nets) are a novel
deep-network architecture inspired by principles of biological
vision. These networks contain the so-called FP-blocks that learn
two different filters for each input feature map, the outputs of which
are then multiplied. Such an architecture is inspired by models
of end-stopped neurons, which are common in cortical areas V1
and especially in V2. The authors here use FP-nets on three
image quality assessment (IQA) benchmarks for blind IQA. They
show that by using FP-nets, they can obtain networks that deliver
state-of-the-art performance while being significantly more compact
than competing models. A further improvement that they obtain is
due to a simple attention mechanism. The good results that they
report may be related to the fact that they employ bio-inspired design
principles. c© 2021 Society for Imaging Science and Technology.
[DOI: 10.2352/J.Percept.Imaging.2021.4.1.010402]

1. INTRODUCTION
In recent years, we witnessed a staggering increase in the
consumption and distribution of visual content, primarily
in social media, streaming platforms, and digital television.
Apart from the extension of digital infrastructure, the
technology of digital cameras further evolved as well.
Nevertheless, distortions coming from all kinds of sources
can still deteriorate the image quality. Thus, the need for
efficient and effective image quality assessment (IQA) is
growing. The desired application could be, for example, a
quality score that is computed with every taken image, or
a quality ranking of a set of images. Obviously, approaches
with high efficiency, low computational cost and memory
consumption, would be beneficial for running IQA on
mobile devices and embedded systems. Several datasets with
artificial [23, 32, 35] or natural distortions [10, 16] and
human ratings of image quality are available. These datasets
usually pose IQA as a regression problem: given an image,
one has to assess the level of distortion either compared to an
undistorted reference image or with no-reference (NR-IQA,
blind IQA). We focus on the harder task of IQA without a
reference image.

Many of today’s state-of-the-art IQA approaches use
convolutional neural networks (CNNs). CNNs have been
derived from models of human vision, which is one reason
why they are remarkably successful. Thus, the incorporation
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of further principles of human vision should be beneficial for
CNNs in general and IQA in particular.

Originally, the CNNs had been designed to mimic
orientation-selective simple- and complex cells of the
primary visual cortex (V1). A typical CNN thus contains
a multitude of convolution layers that are followed by a
pointwise nonlinearity, most often a rectified linear unit
(ReLU). Convolution layers operate on tensors with a certain
height, width, and depth. For example, when applying CNNs
to images, the first input tensor is the image with a depth of
three, since it contains three color channels. These channels
are often referred to as feature maps, containing the features
that are extracted by the filters of the convolution layers.
A filter is a three-dimensional (3D) weight matrix with a
small height and width, and a depth that, in most cases,
matches the number of incoming channels. It is applied to all
image patches of the input tensor. The dot product between
each patch and the filter is computed, resulting in the filter’s
output feature map. This computation simulates a neuron
that is excited by certain stimuli yielding large outputs in
certain areas of the feature map. It is important to note that
the mentioned filter processes a tensor patch with its entire
depth and it is not applied to only one image channel or
feature map. A convolution layer can contain up to several
thousand filters. Hence, the output is another tensor being
a stack of several feature maps. Oriented filters, inspired
by V1 neurons, reduce the entropy of natural images by
encoding oriented straight patterns (1D regions) such as
edges of different orientations [45]. Therefore, the filters are
used for image compression and IQA, and often emerge in
the convolution layers of CNNs when trained with natural
images [21].

In cortical area V2, however, many cells are end-stopped
to different degrees [15]. These cells are more selective
and are thought to detect two-dimensional (2D) regions
such as junctions and corners, or, more general, deviations
from straight edges and lines. Since 2D regions are unique
and sparse in natural images [1, 30, 45], they have the
potential of representing images efficiently. A standard way
of modeling end-stopped cells is to multiply outputs of
orientation-selective cells [43, 44]. This leads to the idea
behind Feature-Product networks (FP-nets), which are CNN
architectures with additional FP-blocks [11]. In FP-blocks,
for each feature map of an input tensor, two filters with a
depth of one are applied, i.e., the two filters only operate
on one feature map, a single channel. This results in two

J. Percept. Imaging 010402-1 Jan.-June 2021
IS&T International Symposium on Electronic Imaging 2021 Human Vision and Electronic Imaging 2021

mailto:gruening@inb.uni-luebeck.de


Grüning and Barth: FP-nets for blind image quality assessment

Figure 1. Examples for the LIVE in the Wild dataset. The dataset consists of authentic images captured by mainly using mobile devices. The examples
show motion blur (top left), underexposure and noise (top right), overexposure (bottom left) and blurring (bottom right).

new feature maps that may, for example, contain edges
and lines with certain orientations depending on what kind
of two filters are learned. The multiplication of these two
feature maps yields a feature map with high activation in
areas where both filters yield large activations. An idealized
corner detector is a typical example: one filter may react,
for example, to horizontal lines and edges, the other only
to vertical ones. The multiplication, or an alternative AND
operation, leads to a feature map that represents corners
consisting of a vertical AND a horizontal edge segment.
Regarding IQ, a reasonable argument is that if human vision
is focussing on edges and corners, the models used for IQA
should also be able to focus on edges and corners. This
principle is here applied twice by using (i) a 2D saliency
measure and (ii) FP-blocks that explicitly allow for 2D
selectivity.

Meanwhile, deep networks are defining the state of the
art when it comes to predicting subjective image quality
[4, 6, 27, 38]. We therefore expect that if we use such deep
networks as reference and include FP-blocks, we could create
more efficient networks. Here, we report state-of-the-art IQA
results for FP-nets. The benefit of using FP-nets is that they
are significantly more compact with less than 40% of the
parameters of their deep CNN counterparts, in our case a
ResNet-32 and a ResNet-50 [13].

2. RELATEDWORK
For the FP-nets presented here, the multiplications are a
key component. With CNNs, multiplications are also used
in reweighting channel distributions [14, 41]. Li et al.
[26] presented a bio-inspired architecture called Selective
Kernel Networks, where neurons are able to adjust their
receptive field size based on the input. Zoumpourlis et al.
[49] introduced nonlinear convolution filters and show that

augmenting the first layer of a CNN with quadratic forms by
using a Volterra kernel [40] can improve generalization. Our
FP-block can also be interpreted as a second-order Volterra
kernel, but it has far fewer parameters and there are no
constraints as to where in the network we can place it. Before
the advent of deep learning, second-order terms have been
explored in related fields [2, 3].

Multiplicative terms are also used with the so-called
bilinear CNNs, first presented by Lin et al. [24], where
the outer product of two feature vectors (coming from two
separate CNNs) is computed. The resulting combined feature
vector is a pooled version of local pairwise interactions, and
the approach can yield better performance in fine-grained
recognition. Apparent drawbacks are that the number of
parameters is doubled at least and that the dimension of the
feature vector increases quadratically. Derivations of bilinear
models are used in several different applications [7, 9, 37],
including IQA [47]. Li et al. [25] presented a factorized
version of the approach mentioned above. Different layers,
including convolutions, can be extended by their method,
to increase the respective layer’s capacity. Their results show
that bilinear features work best in high-level layers of a CNN.
However, using more than one layer of bilinear features
decreases performance. In the FP-net versus bilinear CNN
Section below, we show that FP-nets can be seen as a special
case of a factorized bilinear CNN. However, the architectures
differ and so do the results.

Several algorithms for IQA and several benchmarks
have already been proposed (for an overview, we refer to
Zhai and Min [46], and Kim et al. [19]). We evaluated our
algorithms for blind IQAon the LIVE legacy dataset (Legacy)
with artificial distortions and the two datasets with natural
distortions LIVE in the Wild (LITW), and Kon-IQ (see
Figure 1 for LITW examples).
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Figure 2. Example from the Legacy dataset: a reference image is distorted by different operations. Image quality is encoded by a number between 1 (high)
and 100 (very poor), the ground truth is the mean score of several annotators. Top left: reference; top right: white noise; bottom left: jpeg compression;
bottom right: Gaussian blur.

Apart from CNN-based approaches, researchers have
used handcrafted or unsupervised features in combination
with regression models BRISQUE [29], for example, is based
on the statistics of locally normalized luminance coefficients
and CORNIA [42] on a dictionary learned from image
patches. Tu et al. [36] created anNR-video quality assessment
model by carefully selecting a subset of statistical features
used in other state-of-the-art algorithms. Pei et al. [33]
presented a full-reference IQA model based on difference of
Gaussian features paired with a random-forest regressor.

For the Legacy dataset (see Figure 2 for an example),
Kang et al. [18] first presented promising results using
CNNs with only two convolution layers. They estimated the
quality on small 32× 32 patches and combined the resulting
scores (patch-based fusing). Although it was assumed that
high-level features do not contribute much to the visibility
of image distortions, Bosse et al. [5] showed that deeper
networks can yield better results. Even deeper models [19,
38] and the use of pre-training [4] were explored further. Liu
et al. [27] used unlabeled data to pre-train a VGG16 [34]
network on a large IQA-related dataset. Cheng et al. [6]
showed that the prediction errors of a model are higher in
patches of homogeneous areas (see Figure 3). Therefore, they
used saliency toweight each patch. Similarly, we use themore
salient patches with a simple saliency measure based on the
structure tensor [17]. For datasets with authentic distortions,
like LITW and Kon-IQ, successful CNN approaches use
deeper and wider networks with larger input patches, and
CNNs pre-trained on the ImageNet [8] dataset. Kim et al.
[19] used pre-trained networks such as the ResNet-50 [13]
and fused scores of several random patches of typical
ImageNet inputs sizes (224× 224 or 227× 227). They argue
that the features learned (on ImageNet) to represent natural

images are also viable in characterizing natural distortions
but not artificial distortions. Bianco et al. [4] increased their
model’s performance by first training it on ImageNet and
the Places [48] dataset. This pre-trained network was then
fine-tuned on a different version of the LITW database by
using a classification task and support vector regression on
the resulting feature vector. Varga et al. [38] used a similar
fine-tuning step with a spatial pyramid pooling layer and a
multilayer perceptron. Zhang et al. [47] introduced the use
of bilinear CNNs for IQA. Ma et al. [28] trained a multi-task
CNN to compute a quality score by assigning each input
image to a specific distortion class.

3. METHODS
In this section, we first explain the patch-based fusing
approach that is typically used when employing CNNs in
IQA. To determine the quality of one image, the network
(used for regression) is presented with several image patches.
For each patch, a score is computed and these values are
combined to one global score, in our case by averaging.
Selecting specific patches that are more salient can further
enhance the results. To this end, we include an attention-
based patch selection. After explaining how the FP-block
is realized within a deep-learning framework, we compare
FP-blocks with bilinear CNNs. Finally, we explain how
FP-net architectures are created based on FP-blocks.

In blind IQA, the desired output for an input image
is a score for subjective quality. In our case, a CNN is
trained to directly predict the score. The network is presented
with a subset of images, a batch, and predicts the scores.
Each network has a number of parameters, for example,
the weights for convolution. These parameters are updated
to fit the labels of each batch via backpropagation. As
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Figure 3. Illustration of saliency-based sampling: for the image on the left, the right panel shows the differences between the prediction and the ground
truth for local patches (for white pixels the absolute difference is > 25). Note that predicting the image quality in a homogeneous area is more difficult.
Therefore, we sample patches (see example blue box in the left image) with high structural information (blue crosses show patch centers) using the structure
tensor.

loss function, we use the absolute difference of the CNN’s
prediction and the ground truth. To ensure that all images of
a batch have the same dimension, only patches with constant
height and width are processed.

In the testing phase, we follow the typical approach of
fusing patch-based predictions as illustrated in Figure 4: to
determine an image’s quality, the trained network processes
several image patches, yielding one score for each patch.
These scores are then averaged to create the final output.
When using this patch-based approach, one important
design choice is the actual patch size: how much context
is needed to predict the overall quality? Research indicates
that smaller patches are needed for artificial distortions,
while natural distortions require a larger input size [19].
Moreover, good results could only be achievedwith sufficient
pre-training on large-scale datasets such as ImageNet. This
shows that the quality assessment of natural distortions is a
more demanding task that needs a larger amount of data. So
far, no IQA dataset exists that comes close to a million or
more samples, which is not surprising, since label acquisition
for IQA is a more intricate task compared to, for example,
label acquisition for classification.

The fusing of patch-based predictions relies on the
assumption that the scores of the individual patches capture
the score of the whole image. This assumption is convenient
since one can use several hundred crops per image to train

a model, but it is not necessarily valid for all patches.
Accordingly, some patches are better suited for prediction.
We enhanced our results by selecting patches using an
attention model based on the structure tensor.

4. ATTENTIONMODEL
For artificial distortions, we can assume that small patches
already contain sufficient information about perceptual
quality. However, the predictive quality of a particular patch
heavily depends on the image structure in that patch. The
left side of Fig. 3 shows an example of how the predictive
quality of patches can vary for jpeg 2000 compression. The
right side of Fig. 3 shows the patchwise absolute distance
between the ground truth and the local prediction of a CNN.
One problem that can be observed is that blurring and
compression effects do not alter homogeneous areas, and
therefore, no information can be gained there. Hence, one
should focus on patches that contain more structure. To this
end, we present an effective strategy to sample such patches
by using the structure tensor [17]

J =
∫
�

[
Ix Ix Ix Iy
Ix Iy Iy Iy

]
d�. (1)

Ix and Iy are the image derivatives in horizontal- and
vertical directions; d� is a local region. High values of
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Figure 4. Patch-based processing and fusing for IQA. To infer the score for one image, the CNN is presented with a number of image patches. For each
patch a score is predicted. The final score for the whole image is the mean value of all individual scores. For the datasets with authentic distortions, we
select patches randomly. For the Legacy dataset, we compare an attention-based patch selection to random selection.

Table I. Pseudo-code of the attention-based inference method. For random cropping,
steps 1 to 4 are substituted by ‘crop n patches randomly’.

(1) For the input image I , compute the determinant of J for each pixel (x, y )
(2) Apply non-maximum suppression
(3) Find the top n pixels (xi , yi ), i = 1, . . . , n with the highest saliency value
(4) Crop patches pi with (xi , yi ) in the center
(5) For each pi compute the network prediction zi = f (pi )

(6) Return the score of I as F (I )=
1
n

n∑
i=1

f (pi )

the determinant of J indicate areas with 2D structure. In
our implementation, we first convolved the input image
with a Gaussian filter with σpre = 3. We computed the
derivatives using Sobel filters. After computing the product
terms Ix Ix , Ix Iy , and Iy Iy , we filtered the product terms
with a Gaussian filter with σpost = 5 (integration over a
local region). We computed the determinant and applied
non-maximum suppression in a window of 15 pixels to
obtain a featuremap, where each pixel encodes the amount of
structure (an example is shown in Figure 5). To select the best
n patches, we use the top n saliency values and crop patches
around the respective center pixel. The pseudo-code for the
method is given in Table I. The invariants of the structure
tensor have already been used successfully to model human
attention and saliency [39], i.e., areas where humans tend to
look in an image.

5. FP-BLOCKS
Multiplications of oriented filters, and in general AND
operations, can lead to more efficient representation of
images [43–45]. Accordingly, we investigated whether AND
operations can be helpful in CNN architectures and intro-
duced FP-blocks as additional building blocks for CNNs [11].
Similar to a convolution layer, the input of an FP-block is a
3D tensor with a certain height, width, and depth (number
of feature maps). The output is another tensor with possibly

a smaller height and width, and usually, an increased depth.
A schema of an FP-block is shown in Figure 6 on the right.
The input depth din is expanded to q · dout , the desired output
depth of the block times an expansion factor q. These new
feature maps are created by weighted sums over the input
feature maps, an operation implemented by the so-called
1× 1 convolutions that actually convolve with kernels of size
1× 1× din.

Subsequently, the expanded tensor is convolved by
two depthwise separable (DWS) convolutions that are then
multiplied. In deep-learning jargon, DWS convolutions are
convolutions that operate only on one feature map (channel)
and not across feature maps. After multiplication, the
signal is z-scored (batch normalization without re-scaling)
to reduce the risk of vanishing or exploding values. An
additional 1 × 1 convolution (weighted summations over
feature maps) creates the final output tensor of the FP-block
with dout feature maps.

To illustrate how the multiplication of two linear filters
can lead to end-stopping, consider an image of a rectangle
with horizontal and vertical edges, and two linear filters,
one selective to horizontal edges and one to vertical edges.
At the corners, both filters would be activated and thus
the product would differ from zero. The horizontal edges,
however, would only activate the horizontal filter, the vertical
edges only the vertical filter, and thus the product would be
zero for all straight edges. For a full account on how tomodel
end-stopped neurons based on multiplications of oriented
filters see [43].

6. FP-NETS VERSUS FACTORIZED BILINEAR CNNS
The essential function of an FP-block is that it multiplies
two filtered versions of the same input. In vectorized form,
a patch Ep, and a filter-pair (Efa, Efb) ∈ Rk2 , k being the kernel
size, determine the value g (Ep) of the patch’s center pixel as

g (Ep)= (Efa
T
Ep)
(
Efb
T
Ep
)

(2)
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Figure 5. Left top and bottom panels show the horizontal and vertical derivatives of an image and the middle panel the pixelwise multiplication of the
two derivatives. The determinant of the structure tensor (right) is used to encode the amount of structure in a local area.

g (Ep)=

 k2∑
i=1

f i
a pi

 k2∑
j=1

f j
b pj

 (3)

g (Ep)=
k2∑
i=1

k2∑
j=1

w ijpipj = EpTW Ep. (4)

The output is a weighted sum of k4 possible pixel pairs.
In a factorized bilinear layer, as presented by Li et al. [25],
the output of each neuron depends on a linear part (not
shown here) and a weighted combination of pairwise terms
across feature maps. Let Ex ∈ Rn be the vectorization of the
d-dimensional input patch P ∈ Rk x k x d , and n = k2d . The
quadratic part of an output neuron is computed by a scalar
product of a vector Em0 ∈ Rn2 and the vectorized version of
the outer product of x with itself

y = EmT
0 vec(ExEx

T )= ExTMEx. (5)

M ∈ Rn×n is a reshaped version of Em0 that can be
expressed by a factorized matrix V ∈Rc×n

y = ExTV TV Ex =
n∑

i=1

n∑
j=1

(EvTi Evj)x
ix j (6)

y =
n∑

i=1

n∑
j=1

mijx ix j, (7)

with Evi being the ith column of V . Arguably, Eq. (7) can
be seen as a general case of Eq. (4). However, instead of
computing a weighted sum across all feature maps and
summing over k4d2 values, we restrict the generation of

multiplicative terms to only one feature map at a time.
Thus, FP-nets differ from bilinear CNNs in a way similar
to how CNNs differ from multilayer perceptrons (MLPs).
In addition, the combination of two different filters can
result inmatrixesW that cannot be reproduced by factorized
matrixesM . For example, Efa = (1, 0)T and Efb = (0, 1)T yield
the symmetric 2× 2 matrix W = 1

2 (
EfaEf Tb + EfbEf

T
a ) that has

zero entries on the main diagonal and 1
2 on the top-right and

bottom-left positions. No combination of V TV can create
such a matrix.

6.1 FP-net Architectures
FP-nets are CNNs that contain one or more FP-blocks.
In principle, CNNs can approximate AND terms required
for more efficient representations with a succession of
convolutions and ReLUs. However, explicit incorporation of
AND terms via multiplication should lead to more efficient
networks. Accordingly, FP-nets should require fewer layers
and parameters at equal performance. To test this hypothesis,
we compared a baseline ResNet-32 [13] with two modified
ResNets that contain FP-blocks (FP-net I and FP-net II).
Fig. 7 shows the ResNet-32 architecture that was used by
He et al. [13] on the Cifar-10 [22] dataset. We trained our
networks on patches of size 32 × 32, which is the size of
Cifar-10 images. For the ResNet-32 (see Fig. 7), the input
was first processed by a 3× 3 convolution and then by three
stacks each consisting of five basic blocks. For the second
and third stack, the first block downsampled the spatial
tensor dimensions by using a stride of two. Finally, the tensor
was reduced to a 64-dimensional vector by global average
pooling, and the vectorwas then linearly combined to a scalar
value that was normalized to the range [0, 1] by a sigmoid
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Figure 6. Comparison of the Cifar-10 ResNet basic block and our FP-block [44]. The left panel shows the architecture of the main building block used in
the baseline model (see Figure 7). The right panel shows the novel FP-block based on feature products. Rectangles and layers depict the operations that
are applied. Each rectangle’s first line describes which operations are used (in sequence from left to right). BN: batch normalization; DWS: depthwise
separable convolution; 3×3: convolution with a kernel of size 3×3; q: expansion factor. The second line denotes the input and output depth.

function. Fig. 6 shows, on the left, the ResNet’s basic block
that contains a residual connection. For our FP-net I, we
substituted the last stack, i.e., five basic blocks, with three
FP-blocks (see Figure 8). The expansion factor was q = 2.
After the first FP-block, the signal was downsampled using
max-pooling with a stride of 2 and a kernel size of 2.

Simply replacing an entire stack with a set of FP-blocks
is just one variant of enriching a typical CNN architecture.
Accordingly, this approach may not always be optimal, and
combinations of FP-blocks within a stack may yield better
results. In order to find a suitable architecture, we ran several
experimentswith different FP-nets onCifar-10 and evaluated
them.Wewidened the search space to different convolutional
blocks and adopted the basic block and bottleneck block
structure presented in Han et al.’s [12] Pyramid Residual
Networks. Finally, we found one architecture (displayed
in Figure 9) that performed particularly well with even
fewer layers and parameters. We compare this architecture,
denoted FP-net II, to the original FP-net I. For the FP-net II,
we found that pre-training on Cifar-10 was not beneficial.
Furthermore, each FP-block was augmented with shortcut
connections, which were not used in the FP-net I. A shortcut
connection adds the input to the output of a block. Again, an
expansion factor q= 2 was used.

Models dealing with authentic distortions (LITW and
Kon-IQ dataset) require larger input sizes and pre-training

on larger datasets such as ImageNet. To evaluate FP-nets for
this more challenging task, we compared a ResNet-50 to a
corresponding FP-net, both pre-trained on ImageNet (for
more information see Grüning et al. [11]). The architecture
of the FP-net is similar to the one presented in Fig. 7.
However, the input size is now 224× 224, and four stacks
are used. Basic blocks are substituted with bottleneck blocks,
and the network uses more feature maps. A comparison of
the ResNet-50 and FP-net architectures is given in Table II.
Here, the expansion factor was equal to one.

7. EXPERIMENTS
We tested different approaches using FP-nets for three
blind IQA datasets. The Legacy dataset contains artificial
distortions of high-quality reference images. The LITW and
Kon-IQ dataset contain images with natural distortions.
For all three benchmarks, the FP-nets were trained on
image patches. To infer the overall quality of an image, the
values obtained for different patches were averaged. The
approaches used for the artificial and authentic datasets
differ in the size of a patch, the way patches are selected,
the use of pre-training, and the network size. An overview
is given in Table III. All experiments were conducted using
PyTorch [31].
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Figure 7. Schema of the ResNet-32 architecture used on the Cifar-10 dataset (output adapted for IQA-regression). The input size of the images is 32×32;
s= 2 denotes a convolution stride of 2, 16→ 32 denotes a change in the number of channels from 16 to 32 feature maps. The input is first processed
by a 3×3 convolution layer with batch normalization (BN) and ReLU. The subsequent operations are grouped in 3×5 basic blocks (see Fig. 6, left).
Global average pooling transforms the processed input into a 64-dimensional feature vector. The output score is a weighted sum of the vector’s entries that
is normalized by a sigmoid function.

Figure 8. Schema of a FP-net I architecture based on the ResNet-32. For the third stack, we substituted five basic blocks of the ResNet with three FP-blocks.
The number of parameters is reduced to less than 40% of the original network.

7.1 LIVE Legacy Dataset
We report results for 10 random 80/20 splits of the LIVE
legacy database [35], which contains 981 distorted images
obtained from 29 reference images (see Fig. 2 for an
example). Each image was rated by up to 29 subjects on a
continuous scale ranging from ‘poor’ to ‘excellent’ quality.
With these ratings, a score in the range [1, 100]was calculated

for each image with 1 for best quality and 100 for bad quality.
As in Bosse et al. [5], we used 17 images for training, 6 images
for validation and early stopping, and 6 images for testing.

For training, we randomly cropped patches of size
32 × 32 from the images that were furthermore flipped
along the vertical axis with a probability of 50%. Each patch
was divided by 255. Subsequently, each color channel was
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Figure 9. Schema of the FP-net II architecture: using compositions of convolutional blocks and FP-blocks, we can further reduce the number of blocks and
parameters while improving the performance of the network. Here, we used the basic blocks and bottleneck blocks of PyramidNets.

Table II. Comparison of the ResNet-50 and FP-net architectures. For rows 2 to 4, the
first convolution downsamples the input with a stride of 2. If a FP-block is involved, the
output of the FP-block is downsampled by using max-pooling with a kernel size of 2 and
a stride of 2.

Output size ResNet-50 FP-net

112 7× 7, 64, stride 2

56 3× 3 max pool, stride 21× 1 64
3× 3 64
1× 1 256

× 3

28

1× 1 128
3× 3 128
1× 1 512

× 4
1× FP-block

(256→ 512), q = 1
2× 2 max pool, stride 2

14

1× 1 256
3× 3 256
1× 1 1024

× 6

7

1× 1 512
3× 3 512
1× 1 2048

× 3
1× FP-block

(1024→ 2048), q = 1
2× 2 max pool, stride 2

1 Global average pooling, linear, sigmoid

subtracted with the ImageNet mean (0.485, 0.456, 0.406) and
divided by the ImageNet standard deviation (0.229, 0.224,
0.225) for RGB. The presented networks were trained for
100 epochs with a learning rate of 0.001, a batch size of
128, and a weight decay of 0.001, using the Adam optimizer.
The training loss function was the absolute error between
the sigmoid output of the network and the target score
divided by 100. The ResNet-32 and the FP-net I were
pre-trained on Cifar-10, see He et al. [13]. The FP-net II
was trained from scratch. For validation and early stopping,
we randomly sampled 32 patches of each validation image.

Table III. Overview of the performed experiments.

Name Patch size Patch selection Dataset Distortions Pre-Training

ResNet-32 32× 32 Random Legacy Simulated Cifar-10
FP-net I 32× 32 Random Legacy Simulated Cifar-10
FP-net II 32× 32 Random Legacy Simulated None

ResNet-32 (J) 32× 32 Attention-based Legacy Simulated Cifar-10
FP-net I (J) 32× 32 Attention-based Legacy Simulated Cifar-10
FP-net II (J) 32× 32 Attention-based Legacy Simulated None
ResNet-50 224× 224 Random LITW/ Kon-IQ Authentic ImageNet
FP-net-50 224× 224 Random LITW/Kon-IQ Authentic ImageNet

The scores obtained for the patches were averaged, and
then the Pearson linear correlation coefficient (PLCC) and
the Spearman’s rank order correlation coefficient (SROCC)
between the prediction scores and the validation scores were
computed. For testing, we used the model with the highest
validation PLCC. We compared the baseline ResNet-32 to
the FP-nets for two sampling strategies: random sampling
and attention-based sampling, i.e., for each test image,
we either sampled 128 samples randomly, or we selected
the 128 samples with the highest saliency (defined by the
determinant of J ).

8. DATASETSWITH AUTHENTIC DISTORTIONS
With LITW, Ghadiyaram and Bovik [10] compiled a de-
manding benchmark containing 1,162 images with 350,000
scores from over 8,100 human observers. The images were
captured mainly by using mobile devices in everyday life
situations. Thus, apart from distortions due to the device’s
processing chain, image quality can be impaired by the
photographer himself, due to over- and underexposure,
motion blur, and other sources; see Fig. 1 for examples.
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Table IV. Results for the LIVE legacy dataset (mean values). J denotes the use of the
attention model. N . Param. (M ) denotes the number of parameters in millions.

Model PLCC SROCC N. Param. (M)

Ref. [29] 0.942 0.940 –
Ref. [42] 0.935 0.942 –
Ref. [18] 0.953 0.956 0.72
Ref. [5] 0.972 0.960 4.97
Ref. [20] 0.977 0.975 0.40
Ref. [6] 0.978 0.974 4.82
Ref. [4] 0.98 0.97 21.58
Ref. [38] 0.98 0.98 >44.7
Ref. [47] 0.971 0.968 >138
Ref. [27] 0.982 0.981 138
ResNet-32 0.971 0.959 0.46
ResNet-32 J 0.975 0.963 0.46
FP-net I 0.973 0.962 0.17
FP-net I J 0.976 0.965 0.17
FP II 0.973 0.961 0.14
FP II J 0.977 0.965 0.14

The currently largest labeled dataset with authentic
distortions is Kon-IQ [16], containing 10,073 images with
1,2M quality ratings from 1,459 annotators. We trained and
evaluated on the small image sizes (512× 384).

We used the same approach for both datasets: as with
the Legacy benchmark, we trained and tested CNNs for 10
different 80/20 splits. On LITW, Kim et al. [19] obtained
good results with a pre-trained ResNet-50 and we therefore
compared a ResNet-50 with a corresponding FP-net, both
pre-trained on ImageNet. We trained both networks for 100
epochs with the Adam optimizer and with learning rate
0.0001 and weight decay 0.001. After the 40th and 80th
epoch, the learning rate was reduced by a factor of 0.1.
For the 2048-dimensional feature vector right before the
linear mapping to the quality score, we used a dropout
layer with p = 0.5. Each training mini batch contained 32
patches of size 224× 224, roughly a quarter of the 500× 500
dimensional input images. As before, we used the L1-norm
as the loss function, vertical flips for data augmentation, and
the same normalization as for the Legacy dataset. Due to the
large patch size, attention-based patch selection yielded no
benefit. Instead of 128 patches, each test image score was
predicted with 25 random patches.

To better evaluate the generalization capabilities of the
models, all networks trained on LITWwere tested on the full
Kon-IQ dataset and vice versa.

In addition to the performance scores, we report
the number of parameters in millions (M) to compare
for efficiency. If possible, we determined the number of
parameters from the respective paper’s description. In many
cases, the CNNs used in the literature are large and were
combined with even larger MLPs. In those cases, we report
only the CNN’s standard size as a lower bound. A ‘‘>’’

Table V. Comparison of different approaches on the LIVE in the Wild (LITW) dataset.
Results for [29] and [42] are reported from Kim et al. [19].

Model PLCC SROCC N. Param. (M)

Ref. [29] 0.607 0.585 –
Ref. [42] 0.618 0.662 –
Ref. [4] 0.908 0.889 21.6
Ref. [47] 0.869 0.851 >138
Ref. [38] 0.93 0.91 >44.7
Ref. [19] 0.849 0.819 23.5
ResNet-50 0.859 0.843 23.5
FP-net 0.856 0.839 14.1

Table VI. Comparison of different approaches on the Kon-IQ dataset. All results, except
for ResNet-50, FP-net, and [38], are reported from Hosu et al. [16].

Model PLCC SROCC N. Param. (M)

Ref. [29] 0.707 0.705 –
Ref. [42] 0.808 0.780 –
ResNet-50 0.920 0.909 23.5
FP-net 0.918 0.907 14.1
Ref. [38] 0.95 0.92 >44.7
DeepBIQ 0.886 0.872 >18.1
(VGG16)
DeepBIQ 0.911 0.907 >60
(Inception)
KonCept512 0.937 0.921 >60

denotes that the size is even larger due to, for example, an
additional MLP. Note that with the FP-nets, no additional
regression models were used. We do not report the number
of parameters for BRISQUE [29] and CORNIA [42].

Figure 10 presents results for all configurations tested
on the Legacy dataset. First, note that our simple attention
model (denoted by J ) increased the median PLCC by 0.2%
for the ResNet, and by 0.4% for the FP-nets I and II (with
% we denote an absolute increase of 1/100, for example,
0.975 with an 0.2% increase yields 0.977). Also, note that
the FP-nets with attention model outperformed the ResNet
by 0.2%. As shown in Table IV, the fact that FP-nets yield
results comparable to the state of the art is remarkable
since the number of parameters is reduced by a substantial
amount. Furthermore, wewere able to outperform the FP-net
I in terms of mean PLCC by 0.1% using the FP-net II
architecture (the minimum and maximum PLCC values
also increased) with even fewer convolution layers and
parameters. Note that the SROCC scores of both FP-nets are
better than the ResNet-32’s and that the attentionmechanism
increased the SROCC scores of all three architectures.
The results for the ten splits of the LITW dataset are
shown in Figure 11. Here, the FP-net has a higher variance
(0.021 versus 0.015) with a lower minimum and a higher
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Figure 10. Results for the Legacy dataset obtained for ten different 80/20 splits. The first three boxes are obtained with the random sampling method
for the ResNet-32 (blue, architecture shown in Fig. 7), the FP-net I (orange, architecture shown in Fig. 8), and the FP-net II (green, architecture shown in
Fig. 9). The results for attention-based patch selection, marked with a (J), are illustrated with the last three boxes. Red dots indicate the actual test values
obtained for each split.

Table VII. Cross-database results. For the LITW column, the networks were trained on
Kon-IQ and tested on LITW, and vice versa. All results, except for ResNet-50 and FP-net,
are reported from Hosu et al. [16].

Model LITW (PLCC/SROCC) Kon-IQ

Ref. [29] 0.598/0.561 –
Ref. [42] 0.644/0.621 –
ResNet-50 0.790/0.786 0.799/0.744
FP-net 0.786/0.782 0.793/0.738
DeepBIQ 0.747/0.742 –
(VGG16)
DeepBIQ 0.821/0.804 –
(Inception)
KonCept512 0.848/0.825 –

maximum score. The mean value is decreased by 0.3%
(0.859 versus 0.856), the median value is decreased by 0.2%
(0.860 versus 0.858). Nevertheless, these results show that a
comparable performance is possible with fewer convolution
layers and significantly fewer parameters. Table V shows
results for further state-of-the-art approaches on the LITW
dataset.

Regarding the Kon-IQ results shown in Table VI, the
FP-net performed on par with the ResNet-50 baseline. A
similar outcome can be observed for the cross-database
results in Table VII. Here, the differences between the mean
PLCC and SROCC values are within one standard deviation
(that was equal for the ResNet-50 and the FP-net). When
trained on LITW and evaluated on Kon-IQ, the standard
deviation was 0.01. When trained on Kon-IQ and evaluated
on LITW, the standard deviations were 0.005 and 0.004 for
PLCC and SROCC, respectively.

Figure 11. Results for the ResNet-50 and the corresponding FP-net on the
LITW dataset.

9. DISCUSSION
We used FP-nets to model perceptual image quality and
obtained state-of-the-art results with fewer parameters and
fewer layers. This increased efficiency was obtained by
substituting generic convolutional blocks with the so-called
FP-blocks that employ multiplications of feature maps.

FP-blocks are inspired by characteristics of end-stopped
cells in biological visual systems; these cells can be modeled
by multiplications of orientation-selective filters and provide
efficient 2D representations. Since image quality assessment
is based on human perception, models based on principles
of human vision should be beneficial. The effectiveness of
multiplicative terms and salient 2D representations is further
illustrated by the attention model that we use for patch
sampling.
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An additional explanation of why FP-nets work well
may be that they provide a second-order polynomial kernel
that increases the layer’s capacity and therefore reduces the
number of layers needed.

We conclude that inspiration from research on human
vision can still provide useful ideas for the design of deep
networks beyond just convolutions and pooling. The FP-nets
in particular seemwell-suited for predicting subjective image
quality with rather compact network models.
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