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Abstract
Omnidirectional video (ODV) streaming has become

widespread. Since the data size of ODV is extremely large, tile-
based streaming has been developed to compress the data. In this
coding technology, high-quality tiles encoded at a higher bitrate
for the users’ viewing direction and low-quality tiles encoded at
a lower bitrate for the whole environment are sent to the client,
and a player decodes these tiles. As a result, quality degrades
due to coding, streaming, and the client’s buffer. Therefore, to
provide high-quality tile-based ODV streaming services, quality-
of-experience needs to be monitored by comprehensively evaluat-
ing the quality degradations. By taking into account the quality
degradation due to the low-quality tiles, the ITU-T Recommenda-
tion P.1203 model, which can be used for monitoring the quality
of 2D video streaming services, is extended to tile-based ODV
streaming services. Our model is demonstrated to estimate qual-
ity with sufficiently high accuracy.

Introduction
Due to advances in camera, display, and video-processing

technologies, omnidirectional video (ODV) streaming services
have recently become widespread. Although ODV provides a
highly immersive viewing experience, it has a larger amount of
data than 2D video. Therefore, during the streaming, image-
quality degradation due to coding, and quality adaptation and
stalling often occur due to the throughput being reduced and the
buffer being depleted. To monitor the normality of a service, the
quality at end-clients must be monitored. To do that, a quality-
estimation model needs to be developed.

To reduce the bitrate in ODV, tile-based streaming has been
proposed [1, 2] and standardized [3], as shown in Fig. 1. In tile-
based streaming, high- and low-quality tiles are streamed to a
head-mounted display (HMD). The entire image is divided into
multiple tiles for creating high-quality tiles, which are basically
displayed on the HMD, and the entire image is downsized to low-
quality tiles with a smaller resolution than the original and is dis-
played on the HMD when users change their viewing direction
(i.e., viewpoint). The quality of high- and low-quality tiles de-
pends on the employed resolution, framerate, and bitrate, like 2D
video streaming or non-tile-based ODV [4, 5]. In addition, the
display time of low-quality tiles (hereafter, the delay) also affects
quality. Therefore, users perceive quality degradation due to en-
coding and upscaling [6, 7, 8, 9]. Like in 2D video streaming,
MPEG-DASH [10, 11] is used in ODV streaming services. Video
data with a suitable bitrate for the current throughput and buffer
size is requested and downloaded. Therefore, the quality is adap-
tively changed due to the throughput and buffer fluctuation. Since
the usage of the terminal buffer fluctuates, stalling sometimes oc-

curs due to the throughput being reduced and the buffer being
depleted [12, 13]. To develop a quality-estimation model, these
quality-influencing factors need to be taken into account.

To monitor the quality of tile-based ODV streaming services
at end-clients, this paper proposes extending ITU-T Recommen-
dation P.1203 mode 0 model (hereafter, P.1203 model), which is
used to estimate the quality of 2D video streaming services, to
tile-based ODV streaming services by taking into account quality
degradations due to the display of low-quality tiles. Concretely,
three types of model are investigated: model A) information about
high- and low-quality tiles and the delay is taken as input, model
B) information about high and low-quality tiles is taken as input,
and model C) information about only high-quality tiles is taken
as input. Two subjective quality-assessment experiments are con-
ducted to compare the quality-estimation accuracy of the three
models.

Related work
In this section, issues of conventional quality-estimation

models for tile-based ODV streaming are described, and ITU-
T Recommendation P.1203, which is the base of the proposed
model, is explained.

Conventional quality-estimation models
In 2D video, many quality-estimation models have been pro-

posed [14, 15, 16, 17, 18] and ITU-T Recommendation P.1203
was standardized [19, 20, 21], where the P.1203 model is de-
scribed in the next sub-section.

Alberti et al. [14] proposed a quality-estimation model that
takes the bitrate, framerate, quantization parameter (QP), stalling
frequency, stalling average duration, and quality change rate as in-
put. The first and last three are the parameters used for estimating
short- and long-term quality, respectively. Tran et al. [15] pro-
posed a quality-estimation model that takes encoding parameters
such as QP, frame rate, or resolution. Duamu et al. [16] proposed
a quality-estimation model for estimating encoding quality by us-
ing full reference models and evaluating the effect of stalling and
the temporal effect on quality by pooling strategies on the basis
of an auto-regressive model. However, when quality is estimated
at end-clients, the models using bitstream-layer information such
as QP are not suitable because it is encrypted, and models using
pixel information are not suitable because of their computational
power.

Ghadiyaram et al. [17] focused on estimating continuous-
time quality and evaluated the temporal effect of stalling by using
the Hammerstein-Wiener models. Yamagishi and Hayashi [18]
proposed a quality-estimation model that takes meta-data (such
as the bitrate, resolution, and stalling information) as input and
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Figure 1. Quality degradation due to changes in viewing area

calculates the quality. With these 2D models, the effect of quality
fluctuation and stalling can be evaluated, but tile-based VR im-
age quality cannot. When these 2D quality-estimation models are
applied to tile-based ODV, an issue remains: how to take into ac-
count the impact of the high- and low-quality tiles and the delay
on quality.

A tile-based ODV quality-estimation model was proposed
[8] that evaluates quality using latitude (viewing angle), tiling,
stalls, and quality changes. However, it does not take bitrate ac-
count as input. Since the bitrate of each quality level varies among
service providers, this model cannot be used for evaluating qual-
ity degradation affected by the change in bitrate. The display time
of low-quality tiles (the delay) is also not taken into account.

From these investigations, a quality-estimation model needs
to be developed that can be used for calculating the impact of the
high- and low-quality tiles and the delay.

Recommendation P.1203 model
In 2D video streaming services, the P.1203 model has been

standardized and is known to have sufficiently high quality-
estimation accuracy. Therefore, the P.1203 model should be ex-
tended to a quality-estimation model for ODV streaming services.
To do that, the P.1203 model is introduced in this section.

The P.1203 model consists of three modules. One is an
audio-quality-estimation module that estimates short-term audio
quality. Another is a video-quality-estimation module that esti-
mates short-term video quality. The other is a quality-integration
module that integrates time-series coding quality of video and au-
dio, and this module takes the length of stalling time and position
as input and estimates the quality for the media session.

The audio-quality-estimation module calculates audio qual-
ity per second, O.21, as follows.

O.21 = MOS f romR(QA), (1)

QA = 100−QcodA, (2)

QcodA = a1A · exp(a2A ·Bitrate)+a3A (3)

where Bitrate is the audio bitrate in kbps and the coefficients a1A,
a2A, and a3A are constant. The variable QcodA is the amount of
quality degradation related to audio encoding.

The video-quality-estimation module calculates video qual-
ity per second, O.22, as follows.

O.22 = MOS f romR(100−min(D,100)), (4)

D = Dq+Du+Dt, (5)

Dq = 100−R f romMOS(MOSq), (6)

MOSq = q1 +q2 · exp(q3 ·quant), (7)

Du = u1 · log10(u2 · (scaleFactor−1)+1),(8)

scaleFactor = max
(

disRes
codRes

,1
)

(9)

where Dq is the amount of quality degradation related to the quan-
tization calculated from quant, which is a variable related to the
quantization parameter and calculated from the bit amount per
pixel and bitrate. The coefficients q1−3 are constant. The variable
Du is the amount of quality degradation related to the resolution
of the encoding, scaleFactor is a parameter capturing upscaling
degradation, disRes is display resolution, and codRes is coding
resolution. The coefficients u1 and u2 are constant. The vari-
able Dt is the amount of degradation related to the frame rate.
MOS f romR converts the mean opinion score (MOS) from the
psychological value R of 0 − 100, and R f romMOS converts R
from MOS. The details of these two functions can be found in
Annex E of ITU-T Recommendation P.1203.

In the quality-integration module, audio-visual (AV) quality
O.34 is calculated first by using O.21 and O.22 as follows.

O.34t = av1 +av2 ·O.21t +av3 ·O.22t

+av4 ·O.21t ·O.22t (10)

The subscript t is time, and av1−4 are coefficients.
Next, by using the time series data of O.34, the integrated

quality O.35 is calculated as

O.35 = O.35baseline −negativeBias

−oscComp−adaptComp, (11)

O.35baseline =
Σtw1(t) ·w2(t) ·O.34t

Σtw1(t) ·w2(t)
, (12)

w1(t) = t1 − t2 · exp
((

t −1
T

)
/t3

)
, (13)

w2(t) = t4 − t5 ·O.34t , (14)

where the variables negativeBias, oscComp, and adaptComp are
the effect of the range and frequency of the quality change due
to the throughput fluctuation on quality of experience (QoE), T is
the duration of the media session, and t1−5 are coefficients.

The model has a machine-learning part that is a random for-
est and based on 14 features. The features are related to stalling
duration, stalling frequency, O.21, and O.22 and are listed as fol-
lows. 1) Total number of stalling events occurring in the media
session, excluding the initial stalling event. 2) The sum of the du-
rations of all stalling events. 3) Frequency of stalling events: the
number of stalling events (excluding the initial stalling) divided
by the length of the media. 4) Ratio of stalling duration: The ratio
of stallDur to the total media length. 5) The time elapsed from
the start of the last stalling event to the end of a video. The initial
stalling event is excluded from the calculation of this feature. The
value of this feature is set to T if there is no stalling in the ses-
sion. 6-8) The average of all the O.22 scores that correspond to
the first, second, and last thirds of the O.22 score vector. The av-
erage of all the O.22 scores of the second third of the O.22 score
vector. 9-11) The first, fifth, and tenth percentiles of O.22. 12)
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All the O.21 scores corresponding to the first half of the session
are averaged. 13) All the O.21 scores corresponding to the sec-
ond half of the session are averaged.14) The length of the media.
From the random forest outputs, quality values are estimated as
RFPrediction.

Finally, the media session quality O.46 is calculated using
O.35, stalling information, and RFPrediction.

O.46 = 0.02833052+0.98117059 ·O.46temp, (15)

O.46temp = 0.75 · (1+(O.35−1) ·SI)

+0.25 ·RFPrediction, (16)

SI = exp
(
−numStalls

s1

)
· exp

(
− tatalStallLen

T · s2

)
·exp

(
−avgStallInterval

T · s3

)
, (17)

where numStalls is the number of stalling events, totalStallLen
is the total stalling time, avgStallInterval is the average stalling
interval, T is media session time, and s1−3 are coefficients.

Extensions of P.1203 model
This section explains the proposed video-quality-estimation

modules, which take high- and low-quality tiles and delay related
information. Since the P.1203 model calculates 2D video qual-
ity O.22, it can conceivably be used to estimate the quality of
high- and low-quality tiles. When users change their viewing di-
rection, they perceive quality degradations due to the quality of
low-quality tiles and the delay. Therefore, the delay needs to be
taken into account in the video-quality-estimation module.

To investigate the improvement of quality-estimation accu-
racy, three types of O.22 calculation models are developed. The
simplest model (model C) takes the quality of the high-quality
tiles as input. To take into account the quality degradation due
to the low-quality tiles, the second model (model B) uses the
weighted sum of video quality of high- and low-quality tiles. To
take into account the quality degradation due to the delay, the third
model (model A) takes the delay in addition to the input of model
B.

A) High- and low-quality terms with delay (model A)
O.22 = ω ·O.22H +(1−ω) ·O.22L, (18)

ω = d1 ·delay−d2 (19)
B) High- and low-quality terms without delay (model B)

O.22 = ω1 ·O.22H +(1−ω1) ·O.22L (20)
C) Only high-quality term (model C)

O.22 = O.22H (21)

O.22H and O.22L are based on the video-quality estimation mod-
ule of the P.1203 model and are calculated using the bitrate, reso-
lution, and framerate of high- and low-quality tiles, respectively,
where q1−3 in (7), ω1, and d1−2 were derived using the experi-
mental data described in next section.

The coefficients av1−4 in (10) were also re-optimized by us-
ing the experimental data because the video quality (O.22) and
audio quality (O.21) may affect the AV quality (O.34) of ODV
differently from that of 2D video streaming.

Since the impact of stalling on ODV quality might differ
from that on 2D video quality, the coefficients for stalling (s1−3)
in (17) were also derived using the experimental data described in
next section.

The calculation of O.46temp to O.46 in (15) is for adjust-
ing the heterogeneity of the results of experiments conducted by
multiple organizations. For this reason, (15) was not used in this
study.

Subjective experiments
Two subjective quality assessment experiments (Experi-

ments 1 and 2) were conducted to develop proposed models and
to validate their quality-estimation accuracy.

Source reference sequences
Since the coding efficiency depends on source reference se-

quences (SRCs), 11 SRCs were used, as shown in Figure 2. In
Experiment 1, SRC 11-14 and SRC C1 and C2 were used. In Ex-
periment 2, SRC 21-25 and SRC C1 and C2 were used. SRC C1
and C2 are used as common sequences to compare results of the
experiments. SRC C1 is a video shot from the side of a crane car
with a small amount of movement. SRC C2 is shot in a botani-
cal garden at a fixed position and has many edges and a medium
amount of movement due to wind. SRC 11 is shot from inside a
car driving on a mountain road with a large amount of movement.
SRC 12 shows a women dancing in a dance studio and has few
edges and a medium amount of movement. SRC 13 shows a man
playing music in a room and has few edges and a small amount
of movement. SRC 14 is shot from the side of a waterfall and has
medium amounts of edges and movement. SRC 21 is shot from
a sunroof or inside a car driving on a mountain road with a large
amount of movement. SRC 22 shows a women dancing in a park
and has medium amounts of edges and movement. SRC 23 is shot
in a botanical garden at a fixed position and has many edges and a
small amount of movement. SRC 24 shows men practicing soccer
and has a small amount of movement. SRC 25 is shot in a church
at a fixed position and has few edges and almost no movement.
The resolution of the SRCs was 7680× 3840, and the framerate
was 30 fps. The SRCs lasted 60 seconds.

Experimental conditions and processed video se-
quences

To develop a quality-estimation model that can be used for
calculating the impact of the high- and low-quality tiles and the
delay, the bitrates of high- and low-quality tiles and the delay need
to be varied.

Tile-based coding was used, as shown in Fig. 3. In these
experiments, H.265/HEVC (Main Profile/Level 5.0, GoP: M=3,
N=15, 1-pass encoding) was used for high- and low-quality tiles.
The chunk size was 0.5 seconds. The SRCs were divided into
1920×1920 regions and encoded as high-quality tiles. The num-
ber of high-quality tiles was 60 (12×5). That is, tiles adjacent in
the horizontal direction overlapped by 1280 (= 1920−7680/12)
pixels, and tiles adjacent in the vertical direction overlapped by
1152 (= 1920−3840/5) pixels. The low-quality tiles were down-
sized from the source videos from 7680× 3840 to 1920× 1920,
and those tiles were displayed at the original resolution on the
HMD.

To vary the quality due to encoding, delay, adaptivity, and
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Figure 2. Source contents

Figure 3. Tile encoding

stalling events, the parameters are used as follows. Eight quality
levels (QL10-17) were used in Experiment 1, and ten (QL20-29)
were used in Experiment 2. The bitrate pairs (high-quality tiles,
low-quality tiles) for each quality level are shown in Table 1. To
align the quality ranges of the experiments, the best quality levels
(QL10 and QL20) and the worst (QL17 and QL29) were used
as common conditions. The bitrate of high-quality tiles is the
value for 1 tile out of 60, and low-quality tiles cover the whole
environment. The delay was 1 to 8 seconds and was controlled by
changing the player’s buffer length. The experimental conditions
were set so that the cases with and without bitrate fluctuation and
stalling could be confirmed. The number of bitrate changes was 0
to 2, the number of stalls was 0 to 2, and stalling duration was 4
to 12 seconds per stalling event.

The number of processed video sequences (PVSs) was 48 in
Experiments 1 and 2. In Experiment 1, SRC 11-14 and SRC C1
and C2 were used eight times. In Experiment 2, SRC 21-25 were
used eight times, and SRC C1 and C2 were used four times.

The numbers of PVSs for combinations of stalling and qual-
ity changes are listed in Table 2. To show the same stalling events
for all participants, the events were simulated by inserting frames
that were stopped in the videos.

Table 1. Bitrate pairs (Mbps) for each quality level (QL)

QL 10 11 12 13 14 15 16 17
High 16 16 8 8 4 4 2 2
Low 16 8 8 4 4 2 2 1
QL 20 21 22 23 24 25 26 27 28 29

High 16 9 9 7 7 5 5 3 3 2
Low 16 7 3 5 1 5 3 2 1 1

Table 2. The breakdown of the PVSs

Stalling Quality change Experiment 1 Experiment 2
- - 16 16
x - 8 8
- x 12 12
x x 12 12

Experimental environment
The participants used HTC Vive Pro, which is a virtual-

reality headset with two glasses-like screens (1440 × 1600 pixels
each), to watch ODVs. After the video is mapped onto a sphere,
it is cropped and displayed in accordance with the viewing angle.
The device displayed ODVs for both eyes with pseudo-parallax.
The digital file level of -26dBov was set to an acoustic listening
level of 18dBPa. The participants could freely change the viewing
directions during the test.

Assessment method
Before the subjective test, participants took visual acuity and

color vision tests, read the instructions (i.e., rating scale and vot-
ing procedure), and participated in a subjective test training that
involved watching four videos. The video-quality-evaluation pro-
cedure followed the absolute category rating (ACR) methodology
using a five-point scale. The participants wore a HMD, watched
the videos, and evaluated the quality in a booth.

Participants take a short break (about 2 minutes) after watch-
ing the 4 videos (1 set) and took a longer break (about 10 minutes)
after every three sets. The experiments lasted about 3 hours in-
cluding instruction, visual acuity and color vision tests, training,
and breaks. The presentation order of PVSs was randomized.

Participants
In both experiments, 32 participants took part: 16 males and

16 females with visual acuity of 1.0 or more with contact lenses
or the naked eye. All the participants passed the visual acuity
and color vision tests. They were naive participants who had not
participated in subjective quality assessment experiments of ODV
streaming in the previous six months. In Experiment 1, the partic-
ipants were 18 to 35 years old (average age: 21.7). In Experiment
2, the participants were 18 to 26 years old (average age: 21.2).

Quality-estimation accuracy
Before investigating the quality-estimation accuracy, the sta-

bility of the subjective test was investigated on the basis of a 95%
confidence interval (CI). Table 3 shows the mean, standard devi-
ation, minimum values, and maximum values of the CIs. These
mean CIs were almost the same as the mean CI (0.312) in Robitza
et al. [20]. Since the CIs were not high, the stability can be said to

161-4
IS&T International Symposium on Electronic Imaging 2021

Human Vision and Electronic Imaging 2021



Table 3. Summary statistics of the confidence intervals

Mean Standard deviation Minimum Maximum
Experiment 1 0.318 0.043 0.193 0.402
Experiment 2 0.317 0.049 0.232 0.474

be high enough. Comparing the MOSs of the common sequences
in the two experiments, the MOSs tended to be slightly higher
in Experiment 2 than in Experiment 1. The linear mapping is as
follows:

y = 0.9297x+0.4184, (22)

where x is MOS of Experiment 1 and y is MOS of Experiment 2.
The Pearson correlation coefficient (PCC) was 0.957.

To investigate the quality-estimation accuracy of the three
models (Models A, B, and C), the coefficients (q1−3, av1−4, ω1,
d1−2, s1−3) were optimized by using the Experiment 1 results and
Microsoft Excel Solver. Table 4 shows the root mean squared
errors (RMSEs) and PCCs. By comparing models A, B, and C in
Table 4, quality-estimation accuracy is shown to be improved by
adding low-quality terms and the delay.

For proposed model A, cross-validation is conducted to as-
sess the quality-estimation accuracy for test data by using the re-
sults of Experiments 1 and 2. To adjust the heterogeneity of the
results of the experiments, the MOSs were transformed by using
(22). Table 5 shows the PCCs and the RMSEs of model A for test
data. In either case, the quality-estimation accuracy of model A
was maintained and was better than that of model B in Table 4.
Figures 4 and 5 show the scattered plots between estimated and
subjective MOSs when using the results of Experiments 1 and 2
as test data, respectively. These results reveal proposed model A
achieves a sufficient quality-estimation accuracy.

Some investigations should be noted to explain the results of
proposed model A in detail. Table 6 shows the RMSEs for PVSs
of each SRC. SRC 21 had higher RMSE than the others because
SRC 21 is a video with a large amount of movement and many
edges. In fact, the QP values of SRC 21 were higher than others
for each bitrate. This estimation error is inevitable because the
proposed model cannot take content features (e.g., QP or pixels)
as input. To improve the quality-estimation accuracy, bitstream
information such as QP or media signals could be required as in-
put.

Next, the effects of stalling and quality changes on quality-
estimation accuracy are investigated. Table 7 shows the RMSEs
for four combinations of stalling and quality changes. Model A
exhibited high quality-estimation accuracy even when there was
stalling but low accuracy when there was only quality changes
without stalling. As described above, since the impact of SRC on
quality could not be calculated in the proposed model, the quality-
estimation accuracy degraded when quality changed. Under the
conditions with stalling, SRC had little effect and could be esti-
mated with relatively high accuracy.

Conclusion
In this paper, to monitor the normality of tile-based omnidi-

rectional video (ODV) services, an extension of the ITU-T Rec-
ommendation P.1203 mode 0 model to tile-based ODV streaming

Table 4. PCCs and RMSEs of each model for Experiment 1

Model PCC RMSE
A) High- and low-quality terms with delay 0.85 0.40
B) High- and low-quality terms without delay 0.75 0.49
C) Only high-quality term 0.71 0.52

Table 5. PCCs and RMSEs of model A for test data

Training data Test data PCC RMSE
Experiment 1 Experiment 2 0.77 0.47
Experiment 2 Experiment 1 0.76 0.45

services is proposed. To evaluate its quality-estimation accuracy,
subjective quality assessment experiments were conducted.

Results show the quality-estimation accuracy can be im-
proved by taking into account the delay and quality of high- and
low-quality tiles. Cross-validation was conducted to assess the
quality-estimation accuracy of the proposed model (model A) for
test data. The quality-estimation accuracy was maintained and
was better than the quality-estimation accuracy of simpler mod-
els with training data. The quality-estimation accuracy was high
for several videos but low for the video with a large amount
of movement and many edges. The proposed model’s quality-
estimation accuracy was high for stalling conditions but not for
quality-change conditions without stalling.

In the future, subjective quality assessment tests with a large
variety of video sources will need to be conducted to further op-
timize the coefficients and evaluate the proposed model because
only 11 video sources were used in these experiments. In addi-
tion, if the impact of source on the quality needs to be calculated,
a bitstream-based or pixel-based model will need to be investi-
gated.
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