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Abstract 
We describe the development of a multipurpose haptic stimulus 
delivery and spatiomotor recording system with tactile map-
overlays for electronic processing This innovative multipurpose 
spatiomotor capture system will serve a wide range of functions in 
the training and behavioral assessment of spatial memory and 
precise motor control for blindness rehabilitation, both for STEM 
learning and for navigation training and map reading. Capacitive 
coupling through the map-overlays to the touch-tablet screen 
below them allows precise recording i) of hand movements during 
haptic exploration of tactile raised-line images on one tablet and 
ii) of line-drawing trajectories on the other, for analysis of 
navigational errors, speed, time elapsed, etc. Thus, this system will 
provide for the first time in an integrated and automated manner 
quantitative assessments of the whole ‘perception-cognition-
action’ loop – from non-visual exploration strategies, spatial 
memory, precise spatiomotor control and coordination, drawing 
performance, and navigation capabilities, as well as of haptic and 
movement planning and control. The accuracy of memory 
encoding, in particular, can be assessed by the memory-drawing 
operation of the capture system. Importantly, this system allows for 
both remote and in-person operation. Although the focus is on 
visually impaired populations, the system is designed to equally 
serve training and assessments in the normally sighted as well. 

   

Introduction 
We describe the development of a multifunctional system to 
provide for effective spatiomotor rehabilitation in blindness and 
visual impairment. For those who have lost vision, the eye-hand 
coordination normally available for the manipulation of objects for 
everyday activities is unavailable and has to be replaced by 
information from other senses. It becomes crucial to activate cross-
modal brain plasticity mechanisms for functional compensation of 
the visual loss in order to develop robust non-visual mental 
representations of space and objects. Such nonvisual ‘mental 
maps’ are needed to guide spatiomotor coordination, reasoning and 
decision-making. Our multidisciplinary approach to this problem 
(Likova, 2012; 2013; 2016; 2020) overcomes the shortcomings of 
traditional rehabilitation training, which can be both tedious and 
expensive.  

To bridge this gap, Likova has developed an effective 
rehabilitation tool, the Cognitive-Kinesthetic (C-K) training 
approach to bridge the gap to wide spectrum blind rehabilitation by 
employing an integral task (drawing) that can affect ‘at one stroke’ 
a wide vocabulary of core abilities that are building blocks for 
numerous everyday tasks. For optimal implementation of this form 
of training, we have developed a multifunctional tactile/kinesthetic 

stimulation delivery and spatiomotor recording system for the 
enhancement of spatial memory functions through non-visual 
stimulation and recording devices.  Understanding the behavioral 
and neural adaptation mechanisms underlying the rehabilitation of 
vision loss will also meet the broader goal of providing for a well-
informed learning approach to functional rehabilitation.  
 

Cognitive-Kinesthetic training 
The novel Cognitive-Kinesthetic (C-K) Drawing Method 
implemented in this system (Likova, 2012, 2013, 2014, 2015, 
2018) is based on the spatiomotor task of drawing, because 
drawing – from artistic to technical – is a ‘real-life’ task that 
uniquely incorporates diverse aspects of perceptual, cognitive and 
motor skills, thus activating the full ‘perception-cognition-action 
loop’. Drawing engages a wide range of spatial manipulation 
abilities (e.g., spatio-constructional decisions, coordinate 
transformations, geometric understanding and visualization), 
together with diverse mental representations of space, conceptual 
knowledge, motor planning and control mechanisms, working and 
long-term memory, attentional mechanisms, as well as empathy, 
emotions and forms of embodied cognition (e.g., Likova, 2012; 
2013). The Cognitive-Kinesthetic Drawing Method makes it 
possible to use drawing as a ‘vehicle’ for both training and 
studying training-based cross-modal plasticity throughout the 
whole brain, including visual areas activated by non-visual tasks. 

The innovative philosophy of this methodology is to develop 
an array of cognitive mapping and enhanced spatial memory 
capabilities to provide those with compromised vision to develop – 
in a fast and enjoyable manner - precise and robust cognitive maps 
of desired spatial structures independently of a sighted helper; 
moreover, to develop the ability to use these mental representations 
for precise motor planning and execution.  The trainees learn 1) to 
access a high-functioning cognitive mapping capability, 2) how to 
haptically explore tactile maps and encode them in memory to 
reach a high level of precision and stability of the cognitive maps 
3) to store and recall spatial route trajectory information to high 
precision in the form of a spatially specific cognitive map, 4) to 
make flexible coordinate transformations, 5) on this basis, to be 
able to make complex navigational decisions, such as identifying 
an optimal route by ‘seeing’ and manipulating the cognitive map in 
in their ‘mind’s-eye’, i.e., on the amodal spatial memory sketchpad 
(Likova, 2012, 2013), and 6) to recognize and resolve minor 
departures from the map structure, such as road works and 
scaffolding obstacles, so as to be able to recover an optimal route 
when diverted. Note that we use ‘map’ here in the broader sense of 
any ‘spatial line-image’ in general. 
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Multipurpose Spatiomotor Capture System for 
Haptic and Visual Training and Testing1  
This innovative multipurpose capture system will serve a whole 
range of functions in both the training and behavioral assessment 
of spatial memory and motor control for both navigation and 
manual performance. Capacitive coupling through the map-
overlays to the touch-tablet screen below them will allow precise 
recording of i) haptic exploration and ii) drawing trajectories, will 
facilitate a broad range of in-depth analyses along the full 
trajectory of learning and rehabilitation. 

Thus, this system will ensure unprecedented rigor in the 
quantitative assessments of spatial memory, drawing performance, 
and navigation capabilities, as well as of haptic exploration 
strategies and movement planning and control. The accuracy of 
memory encoding, in particular, will be assessed by the memory-
drawing module on the capture system, which also allows the 
automated recording of the exploration of the tactile map overlay 
on one tablet and the drawing of the learned map or route 
trajectory on the other tablet.  
 

 
 
Figure 1. Schematic view of the in-person capture system. 1. Tablet ‘Explore’ 
with a tactile-map raised-line overlay for haptic exploration. 2. Tablet ‘Draw’ to 
record memory drawing. 3. Operator’s screen. The data are stored on the 
operator’s computer. The operator can either sit beside the participant for 
training purposes or across the table for observation during testing sessions. 

 
In more detail, the multipurpose spatiomotor capture system 

consists of two touchscreen tablet computers (e.g., Microsoft 
Surface Pros) that share a common second display, keyboard and 
mouse via wireless connections (Fig. 1). The participants sit before 
the pair of tablets and being blind, visually impaired or 
blindfolded-sighted, cannot visually process the stimuli, or the 
exploration or drawing trajectories. Instead, they explore the 

 
 
 
1 Patent pending. 

raised-line image structure with the fingers. The pixel coordinates 
of the finger and button status on the touchscreen surfaces are 
recorded at 400 Hz. The left touchscreen is used for the ‘Explore 
and Memorize’ tasks, where a sheet with a raised-line tactile image 
is placed over the touchscreen and the time course of exploration 
of the tactile content is recorded by the tablet. After tactile 
exploration of the raised-line content, a variety of memory-guided 
drawing tasks are performed on the right tablet with data similarly 
recorded. The drawing may be done either with a finger or with an 
active stylus. The position of the two tablets can also be switched 
to accommodate participants of different handedness. For the 
integrated system, the tablet computers sit in recessed cut-outs in 
an adjustable-angle drawing board which is secured to a table. The 
recessed rectangles provide a tactile cue for the boundaries of the 
touchscreens, as well as holding of the tactile sheets in place on the 
left-hand side. The operator can sit on the same or on the opposite 
side of the table from the participant and control both tablets via a 
common keyboard, video monitor, and mouse. Custom software 
developed for the project provides a graphical user interface 
allowing for selection of which particular tactile stimuli are being 
presented as well as for initiation of data acquisition of the 
participant’s drawing movements.  

Data acquisition is started and stopped by the operator with a 
keystroke on the keyboard. While data are being acquired, an 
image of the stimulus being either explored or drawn from memory 
is shown on the operator’s display. Overlaid on the stimulus image, 
the exploration or drawing data are visualized in another color as 
they accumulate to give the operator real-time feedback for how 
well the participant is performing. The haptic exploration, or 
memory-guided or ‘observational’ drawing data are stored for 
offline analyses of speed, accuracy and other features of hand-
motion trajectories such as exploration strategies and speed-
accuracy trade-offs at different stages of the learning process. 

Advantages 
While the main system description is oriented toward non-sighted 
application for those without sight or with low vision, the 
multipurpose capture system is advantageous for use in a wide 
variety of other applications and populations: 

Haptic Rehabilitation Training  
A key application of the system is for the haptic training of 
pictorial recognition and non-visual spatial memory for graphic 
materials such as those encountered in STEM learning contexts. 
Images and diagrams converted to raised-line tactile images may 
be explored and understood by haptic exploration with one or more 
fingers. In many cases, this is a novel medium for blind users 
familiar with exploration of objects as three-dimensional 
structures, as they learn to appreciate how objects such as faces can 
be represented in two dimensions. Once the images are encoded, 
the multipurpose capture system provides for the iterative 
exploration and drawing procedure, based on the capture of the 
drawing of the image on the second tablet by the hand that was not 
involved in the exploration. The switch between hands is an 
important advantage of the two-tablet system because it enforces 
the development of an accurate spatial memory of the image 
structure rather than simply relying on motor memory, as would be 
possible if done with the same hand. 
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Supervised/Unsupervised Functionality 
Another advantage of the system is its use in either supervised or 
unsupervised modes. In the supervised mode, the operator sits 
adjacent to the participant and guides them through the procedures, 
based on the principles of the Likova Cognitive-Kinesthetic 
Training methodology. Briefly, these involve activating the 
perceptual-cognitive-motor loop through an elaborate supervised 
training process. In the unsupervised mode, the participant 
works directly with the system after brief initial instructions on its 
operation. An automated feedback is this mode is provided by the 
Computerized Recognizability Index (CRI), developed in our lab, 
which compares the drawn motor configuration with the initial 
line-image and provides a measure of its accuracy (after affine 
transformations are taken into account). Its criteria are slightly 
different from human assessments of the accuracy, but it provides 
a quantitative index of improvement to guide the participant 
towards perfect accuracy. 

Remote operation 
Based on the requirements of the COVID-19 pandemic, which 
made it impossible to work with human subjects in the lab, it is 
often necessary to conduct such training under remote operational 
conditions. There are many other situations that also greatly benefit 
from a remote operation, such as when participants experience 
difficulties to travel every day during the 5-day Cognitive-
Kinesthetic Training. A remote version of the system has therefore 
been developed to allow the training station to be installed in the 
participant’s domicile while the operator has remote access for the 
supervised training via an internet connection, as diagrammed in 
Fig. 2. This configuration requires a third tablet computer with a 
camera to allow the operator to communicate verbally with the 
participant and observe the participant’s movements and facial 
expressions to be able to provide the optimal feedback for effective 
training. The camera view needs to be wide angle for this purpose, 
so the standard camera view is enhanced by the addition of a 
fisheye lens mounted in front of the computer camera. 
 
 

 
 

Figure 2. Schematic view of the remote three-tablet online architecture. 1: 
Explore computer. 2: Draw computer. 3: Communication computer. 4: Host 
computer. 5: Wifi hotspot. The data are saved on computers 1 and 2 for 
transmission and storage on the host computer.  

 

The information about the participant’s activities from all three 
sources is transferred by internet connections to the host computer 
or a server for storage and analysis. The control of the three-tablet 
system at the participant’s station is managed by a remote control 
application on the host computer, and the two-way interchange of 

verbal and visual information between the operator and the 
participant is provided by a virtual communication application, 
such as Zoom. 

The system has been constructed on an adjustable table-top 
drawing table housing side-by-side Microsoft Surface tablet 
computers, which are conveniently programmable for the 
presentation and recording of the navigation learning and drawing 
of the learned trajectories for subsequent trajectory analysis. The 
experimenter’s control is facilitated by the integration of a third 
monitor into the system for real-time monitoring of the output 
trajectories 
 

 
 

Figure 3. Schematic front (left panel) and side (right panel) views of the 
Remote Three-Tablet online capture system. 1: Raised-line-image explore 
computer. 2: Drawing tablet computer. 3: Communication computer. 4: 
Fisheye lens. 5: Drafting table. 6: Wifi hotspot. 7: Participant’s chair. 8: 
Raised-line image holder. 9: Lighting stand. The data are temporarily stored 
on computers 1 and 2. The participant’s online location is remote from the 
operator’s site. 

Visual Training of Spatial Memory 
A further application of the two-tablet system is for visually-
guided training in the same manner as the haptic/motor training, 
implementing a visual version of the Likova Cognitive-Kinesthetic 
Drawing Training.  In this case, the procedure can all be carried 
out on a single tablet computer (with a second one for the remote 
monitoring and training interchanges if being conducted remotely).  
STEM or art images or maps can be presented visually on the 
screen and explored visually rather than tactilely, and can be 
removed to show a blank screen for the memory-guided drawing 
phases. The drawing can be done either entirely from memory with 
no visual feedback, or in the manner of a conventional drawing in 
which the image appears progressively as it is being drawn, 
providing continuous feedback of the drawing result to be 
compared with the internal memory of what has to be drawn. 
Although conventional, this approach should be less effective at 
training accurate spatial memory than the approach with no 
immediate feedback, guiding the entire drawing trajectory from 
memory according to principles of the Cognitive-Kinesthetic 
Training, then comparing the finished result with the original to 
provide global feedback about its success. In this way, the 
vividness and practical applicability of spatial memory can be 
maximally enhanced in only a short period of training. 

Conclusion 
Our Multipurpose Spatiomotor Capture System for Haptic and 
Visual Training and Testing in the Blind and the Sighted is a 
powerful novel conceptualization and a tool for both research and 
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applied purposes, such as neurorehabilitation or enhancement of 
learning and memory. It makes it possible to implement advanced 
training procedures, such as the unique Cognitive-Kinesthetic 
drawing and spatial memory training; and, moreover, to implement 
it both in-person and in a remote mode of operation in a wide 
range of populations – from the totally blind to the fully sighted.  
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