
Micro-Expression Recognition with Noisy Labels
Tuomas Varanka, Wei Peng, Guoying Zhao∗

Center for Machine Vision and Signal Analysis, University of Oulu, Finland
firstname.lastname@oulu.fi
∗ corresponding author

Abstract
Facial micro-expressions are quick, involuntary and low in-

tensity facial movements. An interest in detecting and recognizing
micro-expressions arises from the fact that they are able to show
person’s genuine hidden emotions. The small and rapid facial
muscle movements are often too difficult for a human to not only
spot the occurring micro-expression but also be able to recog-
nize the emotion correctly. Recently, a focus on developing better
micro-expression recognition methods has been on models and
architectures. However, we take a step back and go to the root of
task, the data.

We thoroughly analyze the input data and notice that some
of the data is noisy and possibly mislabelled. The authors of the
micro-expression datasets have also acknowledged the possible
problems in data labelling. Despite this, no attempts have been
made to design models that take into account the potential mis-
labelled data in micro-expression recognition, to our best knowl-
edge. In this paper, we explore new methods taking noisy labels
into special account in an attempt to solve the problem. We pro-
pose a simple, yet efficient label refurbishing method and a data
cleaning method for handling noisy labels. The data cleaning
method achieves state-of-the-art results in the MEGC2019 com-
posite dataset.

Introduction
As opposed to the typical macro-expressions each of us is

confronted every day, micro-expressions (MEs) have a signifi-
cantly lower intensity and a quicker duration [17]. The motivation
for studying micro-expression arises from the fact that they are in-
voluntary, meaning that micro-expressions show a person’s gen-
uine feelings. The ability to see person’s true feelings has tremen-
dous applications in psychotherapy, medical applications, busi-
ness negotiations, lie detecting, security and marketing research
[17].

However, due to the characteristics of MEs (low intensity,
rapidness and involuntary) the task is not easy. In fact, the task is
even difficult for humans. A micro-expression training tool [17]
was developed to teach people how to spot and recognize emo-
tions, but even after the training the accuracy was a mere 50%.
Due to the potential applications and the difficulty of the task for
humans, there has been an increasing amount of works that try
to solve the problem of recognizing micro-expressions automati-
cally.

Previous works on ME recognition have mainly focused on
modelling and architectures. A problem that has been completely
neglected to the best of our knowledge is the reliability of the
datasets—more precisely the reliability of the labels for the sam-
ples. The authors of the ME datasets [28, 2] have acknowledged

Figure 1. Mean of the optical flow aggregated based on the emotion class.

The images showcase the different characteristics of different emotions. Top:

The three channels from OF (Vx,Vy,ε). The movement is shown in red. Bot-

tom: Only the optical strain channel ε is displayed for clarity. The movement

in shown in green and yellow.

the difficulty and ambiguity of the labelling process. In fact, the
inter-coder variability of labelling the AUs (action units) is only
around 80% [28, 2]. The labelling is ambiguous as the same set of
AUs may correspond to different emotions [30]. Another reason
is the subjectivity of emotions, the personal feelings of the subject
may not correspond to the labels of the annotator.

To see the extent of ambiguities, we manually go through
the datasets to observe if the datasets contain ambiguous data.
We find that there are indeed many ambiguous samples, including
possibly mislabelled samples within the datasets. These misla-
belled samples are often referred to as noisy labels in the literature
[6, 21].

Motivated by these findings, we propose to use noisy label
methods from the literature in an attempt to solve the problem.
However, we found that the methods presented in the literature
of noisy label methods did not work as effectively as expected.
We hypothesize that this is due to the methods being designed
for vastly different datasets with injected label noise, whereas we
have a real world dataset. A similar finding was done in [5], where
the authors notice the differences between synthetic datasets and
real-world datasets. Therefore, we propose our own methods that
are more suitable for ME data, but also potentially for similar
datasets with the characteristics of a small number of samples
and ambiguous data (as opposed to easily identifiable mislabelled
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samples).
In this paper, we perform a qualitative analysis of ME data

and develop noisy label methods for the potentially mislabelled
samples. We conduct extensive experiments using multiple dif-
ferent noisy label methods and compare our developed methods
to the state-of-the-art results in ME recognition.

Related Work
A Micro-expression analysis system can be divided into

two parts. Firstly, the objective is to spot the occurring micro-
expression. The output of spotting should be the onset and offset
frame positions in which the ME is occurring. Secondly, after ob-
taining the sequence in which the ME is occurring, the task is to
recognize the emotion with its corresponding category. In this pa-
per, we only consider the latter task of recognizing the emotions,
due to the complexity of the task. We will also look at the noisy
label problem and the methods developed in an attempt to solve
the problem from literature.

Micro-expression recognition methods
Previous work on ME recognition has been mainly in two

categories: traditional methods and deep learning methods. The
traditional methods refer to feature extraction by hand and they
can be further split into two categories, appearance features and
movement features. Many of the appearance-based methods are
based on LBP (Local Binary Pattern). One of the most common
benchmarks is the LBP-TOP (LBP on Three Orthogonal Planes)
[31]. LBP based methods have further been explored by LBP-SIP
(LBP with Six Intersection Points) [25], LBP-MOP (LBP with
Mean Orthogonal Planes) [24] and ELBPTOP (Extended LBP-
TOP) [4]. These methods focus on the pixel intensities, while
movement based methods rely on the optical flow (OF). OF cal-
culates the difference between two frames to find the movement
between them. Methods using this strategy are HOOF (Histogram
of Oriented Optical Flows) [1], MDMO (Main Directional Mean
Optical Flow) [15], MDMOSparse [14] and Bi-WOOF [11, 8].
The deep learning methods instead use an automatic technique
to extract the features. Methods from this section include Off-
ApexNet [3], STSTNet [9] and NMER [13]. The deep learning
methods have only recently become the state-of-the-art methods,
due to the lack of data in ME datasets.

Noisy labels
Noisy labels refer to samples with incorrect labels. There

are two main categories and common reasons for the mislabelled
samples. 1) Massive datasets that have been generated without
the supervision of humans. An example of this is WebData that is
created by crawling images from the internet and labelling them
based on the text around the image [21]. 2) Datasets with am-
biguous samples. These are often smaller datasets and have been
annotated by multiple humans, but due to the innate difficulty and
ambiguity of the samples, there may be mistakes. Examples in-
clude medical datasets and ME datasets.

We formally define the noisy label problem here. Let X ⊆
Rd be the space of inputs and the space Y = {1, . . . ,c} be the
label space, where d is the dimension of the inputs and c is the
number of classes. In a typical case, we hope for the training set
to consist of clean tuples of (x,y) ∈ (X ,Y ), but in a noisy label
case we have (x, ỹ) ∈ (X , Ỹ ), where Ỹ is the set of noisy labels.

Table 1. Distributions of emotion classes for MEGC2019

Emotion class Positive Negative Surprise Total
SMIC 51 70 43 164

CASME II 32 88 25 145
SAMM 26 92 15 133

Combined 109 250 83 442

The task is to use the noisy set (X , Ỹ ) to learn the dataset as well
as possible.

Noisy labels in micro-expressions
The noisy labels in micro-expressions may be caused by sev-

eral possibilities. The labels are obtained from a convex combina-
tion of the following: 1) the subjects’ own feelings, 2) the emotion
from the eliciting video and 3) the annotator’s subjective opinion.
Any of these options are subject to mistakes. For example, differ-
ent subjects may respond differently to a scary video—some find
it scary but others just disgusting. In addition, the annotator may
think of the emotion as something different, giving us a total of
three different labels from each source. Further details on the am-
biguity of the samples and noisy labels in micro-expressions can
be found from [22].

Small-loss trick
A crucial finding that is commonly used throughout the dif-

ferent noisy label methods, named as the small-loss trick by [21].
The loss of a single sample is determined by the DNNs predic-
tion. For example, the frequently used categorical cross-entropy
−∑n∈N yn log(ŷn) measures the difference between two distribu-
tions, where N is the set of possible classes. If the distribution
of the predicted label ŷ is similar to that of the real label y, the
loss will be small. If the distributions are different, then the loss
will be high. For representative and unambiguous clean samples
we would expect the loss to be small at the end of the training.
For difficult clean samples, the loss may be high as the network is
not able to fully match the distributions. For samples with noisy
labels, we expect the loss to be high, as the network is predicting
a distribution that does match the real label’s distribution.

Noisy label methods
The noisy label methods can be roughly split into six differ-

ent categories: loss functions, label cleaning, label refurbishment,
transition matrices, loss reweighting and training procedures. The
small-loss trick is utilized by q-percentile [6], which sorts the
losses and discards q% of the samples with the highest losses.
Generalized cross-entropy [29] uses a convex combination of `1
loss and the cross-entropy loss, as the `1 loss is able to find sam-
ples with high loss values, while cross-entropy keeps the training
stable. T-revision [26] initially estimates the transition matrix T
between the real labels y and the noisy labels ỹ, using the pre-
dictions from the used network and the matrix is later revised by
adding a slack variable to the initial estimation. Meta-Weight-Net
[19] uses meta-learning to learn the weighting function of loss
values, as opposed to manually selecting it like focal loss or self-
paced learning. Manifold mixup [23] is a general regularizer that
has also been used for noisy label learning. It creates new sam-
ples by a convex combination of samples’ hidden layers and their
labels.
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A look at the data
This section provides a qualitative analysis of the ME data,

where we will look at the the OF (optical flow) between the on-
set and the apex frame from the samples in the MEGC2019 [18]
dataset. MEGC2019 is a composite dataset consisting of SMIC
[7], CASME II [28] and SAMM [2]. The reason for combining
the datasets is the sheer lack of samples, which can be seen from
Table 1. Each sample consists of three channels: the horizontal
component of OF, the vertical components of OF and the opti-
cal strain denoted by the triple (Vx,Vy,ε). We observe the OF
domain as spotting and recognizing emotions from the original
RGB videos is too difficult. Most recent works also use the OF
as their input, as methods with RGB video input have not been
nearly as effective as OF.

Figure 1 shows the mean samples of each emotion class. The
surprise emotion has mainly movements on the forehead and eye-
brows. The positive emotion mainly has movement on the left
(from the participant) cheek. By looking at the optical strain, the
movement seems to be on both cheeks and the mouth area. The
negative emotion does not seem to have any distinct movements,
there are some movements around the eyebrows, but also near
the mouth. We believe this is due to the aggregated classes, as
the MEGC2019 negative contains multiple other subclasses. The
eyes are highlighted on all classes due to blinking. We will use
these distinct movements of each class to search for any inconsis-
tencies in the dataset.

Figure 2 shows the first 12 samples of MEGC2019. We can
immediately observe that many of the samples contain noise at
some level. An interesting discovery can be made from samples
eight, nine, ten and eleven. All of these samples look similar, but
one of them is labelled as positive while the others are labelled as
surprise. Sample number eight also contains some movements on
their cheeks which may have been the reason for the label posi-
tive, but so does sample number ten and it has not been labelled as
positive. This is a typical example of an ambiguous sample, where
there could even be two correct labels, as the sample contains two
distinct movements for two different emotions. However, con-
firming that this sample has a noisy label is difficult as we do
not have an expert to confirm the finding and since this is only
the apex of the OF, many more things could be happening in the
other frames in the original domain. Nevertheless for the model
performing the classification this sample will most likely be clas-
sified as surprise due to the distinct movements in the forehead.
We find more similar samples by going through the dataset and
hypothesize that these are samples that have been labelled incor-
rectly.

Methodology
In this section we will introduce our developed methods ini-

tial data cleaning (IDC) and iterative label correction (ILC) to deal
with the noisy labels. In addition we provide a neural network ar-
chitecture based on the related work.

Initial data cleaning (IDC)
It was found in [6] that only using clean data (10% of the

full data) can lead to a better performance than using the whole
dataset, including the noisy samples. Inspired by this, we manu-
ally go through the dataset to find clean samples similarly to the
previous section. From the 442 samples of MEGC2019 we find

Figure 2. First 12 samples of MEGC2019. The title of each image consists

of the emotion class | the subject number | the sample number.

a total of 240 clean samples and 202 samples that are noisy, have
a potentially incorrect label, ambiguous or do not fit the typical
characteristics of MEs found in the previous section.

However, after experimentation, we found that the perfor-
mance had decreased when only training with the clean samples.
A finding in [21] points out that data cleaning methods may be
cleaning too many samples, discarding samples that are crucial
for the training. In the work [12] the authors find that regularizing
the network early significantly prevents the network from memo-
rizing the noisy labels in the later stages of the training. Inspired
by this we propose a warm-up period during which the network is
only trained with clean labels for some duration of epochs, hence
the data cleaning is only done initially. After the warm-up period,
the network has access to all of the data.

Loss thresholding with moments (LTM)
We introduce loss thresholding with moments here as it is

used as a sub method in ILC. We use an alternative way of per-
forming the q-percentile also based on the small-loss trick. One of
the downsides of q-percentile is the need for a warm-up period as
the small-loss trick does not apply at the beginning of the training
when the losses are essentially random. In [6] the authors propose
to store the mean µ and standard deviation σ of the losses of the
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most recent 100 training samples. Then they threshold the values
if the loss value is higher than µ + 1.5σ . We use the same idea
but set the coefficient to be a hyperparameter α , thus the threshold
value is then given by

t = µ +ασ . (1)

The hyperparameter α behaves similarly to q and is required as
different datasets have different levels of noise. The number of
training samples from which the mean and standard deviation are
calculated is set to be equal to the number of samples in a batch.
This allows us to perform an update based on the most recent loss
values and have enough samples to calculate the moments. In
addition, by calculating the moments from the batch samples, we
can avoid more complex implementations. The value may have to
be adjusted depending on the size of the dataset and if the ratio of
noisy labels is small. We refer to the method as loss thresholding
with moments (LTM) as we use the first and second moments of
the distribution to formulate the threshold value.

The set of samples with clean labels

C = {(x,y) ∈ (X ,Y ) |L ( f (x;θ),y)< t} (2)

is then obtained by thresholding the loss values obtained from an
arbitrary loss function L of each sample, where the network f
gives the prediction. Then, the samples with high loss values are
ignored when updating the parameters of the network θ and only
the set of clean samples is used in the update. The benefit of
using LTM over q-percentile is that there is no need for a warm-
up period at the start of the training. As the threshold value t is
given as a function of the moments of the loss distribution, the
number of discarded samples is adaptive and there is no need for
a warm-up period.

RefurbishedNoisy
labels

Detect
noisy
labels

Figure 3. The figure depicts Iterative label correction. (Left) We start with

a set of noisy labels. (Middle) We detect the noisy labels similarly to LTM.

(Right) The samples that are detected as noisy labels are refurbished by the

network’s most recent prediction and we are left with the clean set C and the

corrected set R given by Equation (3). By correcting the labels we are left

with the same amount of samples that we started with.

Iterative label correction (ILC)
An issue with LTM, and overall with methods discarding

samples, is that the discarded samples may be important for the
training in small datasets. We can include the detected samples
with noisy labels by refurbishing the noisy label with a corrected
one as shown in Figure 3. Our method is similar to SELFIE [20],
but instead of using q-percentile we apply the LTM for finding the
noisy labels. The refurbished label is given by the current predic-
tion of the network instead of a uncertainty condition employed
by SELFIE. ILC only corrects the labels of samples that have been

detected as high loss samples, while SELFIE also includes some
of the clean samples.

The set of samples with corrected labels

R = {(x, ŷ) | (x,y) ∈ C c, ŷ = f (x;θ)} (3)

is given by the predictions of the network for samples that were
not found to be clean, i.e., the complement of C . The parameters
θ are then updated using the set C ∪R.

The correction of labels can be risky however. If the network
has not learned the dataset correctly, it is not able to distinguish
between the samples and the corrected labels may be incorrect.
Giving the high loss samples incorrect labels could lead to an in-
crease in the number of noisy labels.

Shallow Single Stream Network
We introduce SSSNet (Shallow Single Stream Network) that

is motivated by Off-ApexNet [10], STSTNet [9] and from the
findings in [27]. One of the problems with Off-ApexNet and
STSTNet is that they have a separate stream for each of the input
channels (Vx,Vy,ε). This does not allow the network to combine
the learned information from each of the channels until the fusion
of the features. We simplify the network by only using a single
stream that contains all input channels. The structure of the net-
work can be seen in Figure 4. We refer to SSSNet24 as the model
in which the number of filters in the second convolutional layer is
changed to 24.

Experiments
This section presents the experimental settings and the re-

sults of our experiments. We first start by comparing different
noisy label methods, next we analyze the results and the effec-
tiveness of the methods and lastly compare our methods to the
state of the arts.

Evaluation methods
The evaluation is performed using the LOSO (leave-one-

subject-out) protocol. In LOSO the data is split into training and
testing data such that the testing set only contains samples from a
single subject and the training set contains the rest. This is done
as emotions are highly subject dependent. The performance is
measured by the unweighted

F1 =
1
C

C

∑
c=1

2T Pc

2T Pc +FPc +FNc
(4)

and the

UAR =
1
C

C

∑
c=1

T Pc

Nc
, (5)

where C is the number of classes and N is the number of samples,
as the classes are imbalanced.

Comparison with noisy label methods
Table 2 showcases the results from different noisy label

methods. SSSNet24 is used for the baseline, as well as the back-
bone for the other methods. In the middle part of the table we
showcase the results using methods from the literature. All of
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Figure 4. Network architecture of SSSNet. The architecture consists of two convolutional layers, two pooling layers and two fully connected layers. Batch

normalization and dropout are used to regularize the model.

Table 2. F1-scores from different noisy label methods. The
baseline and backbone for all the methods is SSSNet24

Model
F1

MEGC2019 SMIC CASME II SAMM
Baseline 0.7415 0.7005 0.8739 0.6302

q-percentile 0.7489 0.6792 0.8844 0.6601
Man. Mixup 0.7472 0.6901 0.8686 0.6639

Gen. CE 0.7507 0.7103 0.8796 0.6341
T-revision 0.7322 0.6574 0.8389 0.6699

Meta-W-Net 0.7527 0.6861 0.8442 0.7008

LTM 0.7553 0.6895 0.8838 0.6738
ILC 0.7639 0.6919 0.8995 0.6829
IDC 0.7707 0.6979 0.8996 0.6919

the methods are able to outperform the baseline for MEGC2019
except for T-revision. We hypothesize that since the matrix transi-
tion methods model the transition of classes, it is better suited for
methods with a high number of noisy labels and larger datasets. In
addition, the transition matrix only mitigates the effects of noisy
labels, but we found that the data also contains samples with noise
in the data itself, which the other methods are also able to detect.
The other methods are able to increase the performance of the
baseline, but quite moderately. In the bottom section of the table,
we have the proposed methods. These methods were found to bet-
ter perform for ME recognition, as they are specifically designed
for the task. The initial data cleaning method is able to increase
the baseline by 4%, while the loss thresholding with moments and
iterative label cleaning fall a bit short of that.

The success of multiple different noisy label methods indi-
cates the presence of noisy labels in the dataset. The relative in-
cremental increases in performance can be explained as some of
the methods are designed for larger datasets with higher amounts
of noisy labels. In addition, a recent work from [5] discusses
the differences between real-world label noise and synthetically
generated label noise and finds the distributions to be relatively
different. And since most of the noisy label methods in the lit-
erature have been developed using synthetically generated noise,
they may fall short with real world data. Probably the biggest rea-
son as to why the improvements are only incremental compared
to what the noisy label methods are able to achieve in their own
benchmarks, is that we do not have access to clean validation data.
Due to the constraints of the LOSO protocol, all samples have to
be tested. This means that even if we were able to perfectly detect
all noisy samples, the improvement would be marginal as the test-
ing data still contains noisy labels. However, the improvements
achieved here are still a sign that the methods are able to better
generalize and do not overfit to noisy labels as heavily.

(a) A UMAP projection to two dimensions from the last hidden layer. Each sam-

ple has been colored by their respective class. The red crosses mark samples

that exceed the threshold and are thus determined to be high loss samples.

(b) Similar to the figure (a), but the high loss samples have been refurbished

using ILC.

Figure 5. UMAP projections from the last hidden layer of SSSNet24.

Figure 5a shows a projection from the last hidden layer of
SSSNet24 to two dimensions using UMAP (uniform manifold ap-
proximation and projection) [16]. The classes cluster relatively
well and the class borders can be roughly drawn. Some samples
seem to be in the wrong clusters, which we have been able to
detect using loss thresholding with moments. Unfortunately, not
all samples that seem to be in the wrong clusters have been de-
tected. In addition, samples with a correct label may also have
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Table 3. Comparison to the state-of-the-art methods

Model
MEGC2019 SMIC CASME II SAMM

UAR F1 UAR F1 UAR F1 UAR F1
LBP-TOP [31] 0.5785 0.5882 0.5280 0.2000 0.7429 0.7026 0.4102 0.3954
MDMO [15] 0.5782 0.5881 0.5511 0.5587 0.7925 0.8014 0.3073 0.3065

Off-ApexNet [10] 0.7164 0.7176 0.6972 0.7039 0.8094 0.8159 0.6172 0.6126
STSTNet [9] 0.7125 0.7095 0.6726 0.6618 0.8132 0.8325 0.6257 0.6176
NMER [13] 0.5936 0.5936 0.5555 0.5607 0.6929 0.7624 0.4894 0.6389
RCN-A [27] 0.7138 0.7168 0.6619 0.6590 0.7894 0.8109 0.6531 0.6547

SSSNet24 0.7505 0.7415 0.7071 0.7005 0.8739 0.8716 0.6417 0.6302
SSSNet24 + LTM 0.7647 0.7553 0.7009 0.6895 0.8814 0.8838 0.6848 0.6738
SSSNet24 + ILC 0.7729 0.7639 0.6979 0.6919 0.9051 0.8995 0.6919 0.6829
SSSNet24 + IDC 0.7794 0.7707 0.7090 0.6979 0.9060 0.8996 0.6990 0.6919

been marked as high loss samples as can be seen with samples
marked at the classification border of negative and positive.

Figure 5b shows the same projection, but the labels from the
samples that were detected as high loss samples have now been
corrected with ILC. Here we can see that essentially all of the
samples were corrected to a label that best represents their neigh-
boring points. Once more, some arguments can be made about
the samples in the classification border of negative and positive.

Comparison to state of the arts
We compare our methods to the state-of-the-art methods

from the literature in Table 3. At the top we have the two tra-
ditional methods LBP-TOP and MDMO. Both of the methods
achieve similar results at around 0.58 F1. In the middle we have
the current state-of-the-art methods for ME recognition that have
been evaluated using the MEGC2019 dataset. SSSNet24 with the
proposed methods are presented in the bottom of the table. The
IDC method is able to achieve the state of the art for ME recog-
nition of 0.77 in the F1-score. Both the ILC and IDC are very
close to breaking the 0.90 mark for F1 in the CASME II dataset.
Significant increases can be seen in both CASME II and SAMM
compared to the previous state-of-the-art methods.

Conclusions
We have showcased the effectiveness of using noisy label

methods for micro-expression recognition, although previous ME
recognition methods have ignored the ambiguity of the data. We
started off by observing the labelling process of the datasets and
by looking at individual samples, in order to better understand the
problem of noisy labels. We proposed two new methods: initial
data cleaning and iterative label correction, to address the issue of
noisy labels. In initial data cleaning, we manually go through the
dataset to find clean samples and only use the clean samples in
the initial stages of the training. Iterative label correction finds
noisy samples using loss thresholding with moments and then
corrects the noisy labels using the network’s predictions. We per-
form experiments using noisy label methods for micro-expression
recognition and find that nearly all of the methods are able to in-
crease the performance, indicating the existence of noisy samples
in micro-expressions datasets. Besides, we achieve the state of
the art for MEGC2019 with an F1-score of 0.77 by using the ini-
tial data cleaning method showing its effectiveness. As a future
work, we hope to study the relationship between subjective facial

emotion perception and the proposed methods for finding samples
with noisy labels.
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