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Abstract

The present study proposes the method to improve the per-
ceptual information hiding in image scramble approaches. Image
scramble approaches have been used to overcome the privacy is-
sues on the cloud-based machine learning approach. The per-
formance of image scramble approaches are depending on the
scramble parameters; because it decides the performance of per-
ceptual information hiding. However, in existing image scramble
approaches, the performance by scrambling parameters has not
been quantitatively evaluated. This may be led to show private
information in public. To overcome this issue, a suitable met-
ric is investigated to hide PIH, and then scrambling parameter
generation is proposed to combine image scramble approaches.
Experimental comparisons using several image quality assess-
ment metrics show that Learned Perceptual Image Patch Similar-
ity (LPIPS) is suitable for PIH. Also, the proposed scrambling pa-
rameter generation is experimentally confirmed effective to hide
PIH while keeping the classification performance.

Introduction

Recently, the machine learning is used as a high-
performance tool by a wide range of users. Concurrently with
these demands, cloud-based services such as Google Cloud [1]
and Microsoft Azure [2] have attracted much attention because
these services enable the computationally expensive algorithms in
practice. The service users can easily use a large computational
resource with those cloud-based services.

However, these easily-accessible cloud-based machine
learning services has a security issue. For example, during de-
velopment of a new network, the training data may be accessed
by someone else on the cloud server if any appropriate privacy
preserving algorithm are not in place. In the testing phase, the
uploaded test data is open access at least by the service provider
if intended. Even if the user uploads the data through secure com-
munication, the privacy issue remains because the plain data is fed
to the machine learning network for inference. It means that the
cloud service provider can easily access the contents of the data
uploaded by the user.

To overcome this security issue, image scramble ap-
proach [3, 4, 5, 6] and homomorphic encryption [7, 8, 9, 10, 9,
11, 12] have been proposed. In this paper, we focus on the image
scramble approach to overcome the security issue of an image
classification task because the homomorphic encryption requires
huge computational power and memory despite its mathematical
rigorousness.
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Figure 1. Image scramble approach. Plain training images are scrambled
with a scrambling parameter to sent to the cloud server. On the server-side,
a third party constructs a classification model with the adaptation network. In
the test phase, the inference result of a scrambled image is sent back to a
user.

Now, we consider two types of image information; percep-
tual information and non-perceptual information. We define the
perceptual information is the information which human can per-
ceptually understand. The non-perceptual information is the in-
formation which human can not perceptually understand, but ma-
chines may be possibly able to recognize. In the image scram-
ble approach as shown in Fig. 1, a plain image is scrambled to
hide the perceptual information. The image scramble can hide the
perceptual information while the scrambled image still keeps the
non-perceptual information. One of the keys to the image scram-
ble approach is an adaptation network. The adaptation network
is put before the classification network to improve classification
accuracy. In other words, the adaptation network can extract the
non-perceptual information.

A perceptual information hiding (PIH) is performed by the
image scramble. The image scramble usually has a scrambling
parameter. The image scramble with different scrambling pa-
rameters yields a different scrambled image. If one knows the
scrambling parameter, the scrambled images can be easily re-
stored to the plain image. Therefore, the scrambling parameter
is sometimes used as a simple key. It is empirically known that
the scrambling parameter affects the PIH performance. However,
quantitative analysis for the scambling parameter and the PIH per-
formance has not been addressed on the image scramble approach
in the previous studies [3, 4, 5, 6].
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Figure 2. Learnable image encryption [3] for image scramble, where {P;, Ps} is the scramble parameter.

Therefore, we propose an effective scrambling parameter
generation to improve PIH because the parameter is emperically
known as a key of the PIH performance. Our metric com-
parison shows the Learned Perceptual Image Patch Similarity
(LPIPS) [13] is better to evaluate the PIH performance, than any
other metrics evaluated. Then, we propose an effective scram-
bling parameter generation to improve PIH based on the LPIPS
metric. We demonstrate that the proposed approach can improve
PIH while keeping the classification accuracy.

Related Works
Image Scramble Approach

As mentioned in Introduction, the image scramble ap-
proaches [3, 4, 5, 6] have been proposed to overcome the issue
of machine learning with the untrusted cloud service. The image
scramble includes several operations. Figure 2 shows the image
scramble pipeline in the learnable image encryption [3]. The input
image is divided into blocks. Then, the intensity values specified
by the parameter P; are inverted. In each block, the intensity loca-
tion is shuffled with the parameter Ps. Then, the output scrambled
image can be obtained by integrating the blocks.

Here, we consider the block size is fixed. Then, parame-
ters of the scramble operation are {F;,Ps}. We refer those pa-
rameters to scrambling parameter. If one knows the scrambling
parameter, one can restore the scrambled image to the plain im-
age. Then, the scrambling parameter can be used as a simple
key. It is empirically known that the PIH performance depends on
the scramble parameter. However, in the exisiting algorithm, the
performance is only validated by the human. To the best of our
knowledge, there is no research to quantitatively analyze the PIH
performance.

Image Quality Assessment Metrics

An image quality assessment is an important research field
in image processing. There are two types of image quality assess-
ment metrics; a full-reference metric and a non-reference met-
ric. The full-reference metric requires the true image for the
image quality assessment, while the non-reference metric does
not require the true image. RMSE (root mean square error) and
PSNR (Peak Signal-to-Noise Ratio) are known as a classical full-
reference metric. SSIM (Structural Similarity) become popu-
lar [14, 15]. Recently, the full-reference metrics which evaluate
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the difference in the feature domain of deep network have been
proposed [16, 17, 13]. The non-reference metrics [18, 19, 20] ba-
sically evaluate the naturalness of the target image. The above
image quality assessment metrics have been proposed to evaluate
the goodness of the image. In this paper, we try to find a suitable
metric to evaluate the PIH performance.

Metric Selection for Perceptual Information
Hiding

This section describes a detail of LPIPS and a metric com-
parison to show that LPIPS is a suitable metric for perceptual
information hiding (PIH). It aims at verifying a suitable metric
for PIH on the proposed scramble parameter generation. A de-
tail of LPIPS is first explained, the metric comparison is, then,
conducted using nine metric candidates.

LPIPS (Learned Percptual Image Patch Similarity)

To evaluate the perceptual information hiding, we experi-
mentally confirm the LPIPS (Learned Perceptual Image Patch
Similarity) [13] is a suitable metric. LPIPS is a network-based
image similarity metric to estimate the similarity between the
two input images, which was developed to imitate the human
perception-based image patch similarity [13]. First, feature maps
are extracted from input images with a pre-trained model such as
VGG [21], SqueezeNet [22] or AlexNet [23]. Then, a discrimi-
nator or a regressor is trained to estimate the human perception-
based patch similarity. For that training, they use Berkeley-Adobe
Perceptual Patch Similar-ity (BAPPS) Dataset which includes im-
age patch triplets and associated human perception [13]. In this
paper, we used pre-trained LPIPS with AlexNet.

Metric Comparison

Before conducting experiments for our proposed scrambling
parameter generation, we first evaluated nine metric candidates
to demonstrate that LPIPS is the most suitable one for perceptual
information hiding. The candidates are:

* MSE: Mean Squared Error

* PSNR: Peak-to-Signal Noise Ratio

* SSIM: Structure Similarity Index Measure [14]

* BRISQUE: Blind/Referenceless Image Spatial Quality
Evaluator [18]

NIQE: Natural Image Quality Evaluator [19]
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Figure 3. Different metrics scores and corresponding intensity inversion ratio.

* PIQE: Perception based Image Quality Evaluator [20]

* VGG: MSE in VGG’s feature domain [17]

* FID: Fréchet Inception Distance [16]

e LPIPS: Learned Perceptual Image Patch Similarity [13]

A pixel-based image scramble method [6] was used to eval-
uate the candidate nine metrics because it can control the PIH
performance by the single parameter of the inversion ratio. In
the pixel-based image scramble method, the image scramble is
performed by inverting some intensity values. The scrambling
parameter determines combination of channels and intensities to
be inverted. Moreover, the PIH performance can be controlled by
changing the inversion ratio. We assumed 50% of the inversion
ratio has a higher PIH because the scrambling parameter has been
coventionally set to the same value of their inversion ratio. It is
expected that the PIH performance is the best at the inversion ratio
of 50% and becomes worse at a smaller or larger inversion ratio
than 50%. Note that humans can recognize the intensity-inverted
images. In this sense, the scrambled image with the inversion ra-
tio closer to 100% shows a lower PIH performance. We used the
CIFAR-10 dataset [24]. 50,000 images from training dataset were
scrambled by the pixel-based image scramble method with differ-
ent scramble parameters changing the inversion ratio. The mean
value of each metric is plotted in Fig. 3, where the experiments
were iterated ten times for each inversion ratio. From compar-
isons in Fig. 3, we can find that BRISQUE, FID, and LPIPS have
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Algorithm 1 Proposed scrambling parameter generation

Input: Images {x;}, Number of trials N
1: Randamly generate the scrambling parameter Py,
2 py < p(Pus{xi})
3: for j=2to N do
4 Randamly generate the scrambling parameter P i
50 pj<pPi{xi})
6: if py < p; then
T PMm < pj
8 Py — Pj
9: Return the scrambling parameter Py,

more suitable properties for PIH metric, which have the highest
value at 50% inversion ratio and lower as closer to 0% or 100% of
the inversion ratio. LPIPS has the sharpest shape compared with
BRISQUE and FID. Then, in this paper, we used the LPIPS as
PIH metric.

Table 1 shows examples of scrambled images with differnt
inversion ratios and the associated LPIPS values. One can find the
scrambled image at 50% of the inversion ratio is the most difficult
to recognize. The LPIPS values correspond to those difficulties.
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Table 1. Visualization of scramble images with different intensity inversion ratio (IIR) and corresponding LPIPS score.
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Figure 4. Average PIH metric at different number of scrambling parameter
selections.

Proposed Scrambling Parameter Generation
Considering PIH

In the existing scramble approaches [3, 4, 5, 6], the scram-
bling parameter is just randomly generated although the PIH per-
formance depends on the scramble parameter. The randomly gen-
erated parameter may possibliy result in a poor PIH performance.
Therefore, we proposed an algorithm to generate a reliable scram-
bling parameter considering the PIH performance. Our proposed
scrambling parameter generation is based on the PIH metric in
the previous section.  Algorithm 1 shows a pseudo-code of the
proposed scrambling parameter generation. We provide a set of
images to be used in PIH metric evaluation and the maximum trial
number. Then, the algorithm provides us the scrambling param-
eter with the highest PIH metric. The proposed method can be
applied to any kind of scramble approaches. In algorithm 1, we
evaluated the PIH metric by calculating the LIPIS value between
the plain image and the scrambled image. Here, the PIH metric p
based on LPIPS can be expressed as

M
p(P:{x}) = %ZLPIPS(x,-,f(xi;P)), M
i=1

where P is the scramble parameter, {x;} is a set of images, M
is the number of images, f(-;P) is the image scramble operation
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Figure 5.  Standard deviation (SD) of PIH metric at different number of
scrambling parameter selections.

with the scrambling parameter P, and LPIPS represents the LPIPS
network.

Experiments

The experiments were conducted on the training dataset of
CIFAR-10 to evaluate the proposed scrambling parameter genera-
tion in a realistic setting with the following four image scrambling
approaches:

» PE: Pixel-base image Encryption [6]

* EtC: Encryption-then-compression [25]
* LE: Learnable encryption [3]

* ELE: Extended learnable encryption [5]

These scrambling approaches are mainly used for privacy-
preserving machine learning which aims to understand by ma-
chine, but not by human.

The reproduction code is publicly avaliable online !.

PIH Improvement

The proposed scrambling parameter generation were com-
puted in the four exsisting image scramble approaches: PE, EtC,
LE, and ELE. We iterated ten times for each trial number. Then,

I'The code will be avaliable after acceptance.
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Table 2. Mean and standard deviation (SD) of classification accuracy and PIH metric of the original four image scramble approaches
and those with the proposed scrambling parameter generation.

Original Proposed scrambling parameter generation
ELE EtC PE LE ELE EtC PE LE
Acc. (mean) 6949 7942 9340  93.75 7138 7847 9358 93.05
Acc. (SD) 1.6205 29198 0.3114 0.2620 | 3.1268 3.3404 0.1201 0.8164
PIH metric (mean) | 0.3000 0.1482 0.3161 0.2880 | 0.2999 0.1513  0.3420 0.3016
PIH metric (SD) 0.0026  0.0033  0.0038 0.0091 | 0.0030 0.0014 0.0075 0.0046

Table 3. Predicted class, corresponding posterior probability
and LPIPS by PE and LE with the proposed scrambling param-
eter generation.

Plain image PE LE
(proposed) (proposed)

pred. class
probability
LPIPS

automobile
0.9971
LPIPS 0

pred. class
probability

horse
0.9992
0.3130

horse
0.9997
0.4070

horse
0.9994
LPIPS 0

pred. class
probability

the average and the standard deviation of the PIH metrics were
evaluated. Figure 4 shows the average PIH metrics. Comparing
the original approach, the PIH metric is slightly improved by the
proposed scrambling parameter generation in terms of the average
value, except ELE algorithm. The original ELE already has a very
high PIH metric value. As discussed in the next section, the ELE
algorithm has lower classification accuracy. It implies that there
is a trade-off relationship between classification accuracy and PIH
performance.

Figure 5 show the standard deviation of the PIH metic. This
result demonstrates the proposed scrambling parameter genera-
tion effectively decreases the standard deviation of the PIH met-
ric while the PIH performance of the PE algorithm is significantly
unstable. The PIH performance depends on the trial number. In
this paper, we set 20 for the trial number from Fig. 5.
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Classification Accuracy and PIH

For the classification network, we used the shakedrop net-
work [26]. We also adopted the adaptation network before the
classification network. The adaptation network is proposed in
each image scramble approach [3, 4, 5, 6]. The datasets used
for the evaluation were CIFAR-10. The mini-batch size was 64
during training and testing. The SGD with the Nesterov was used
as the optimizer, where the momentum was 0.9. The network
was trained with 100 epochs of iterations. The learning rate was
scheduled as 0.1 for 0-to-50 epochs, 0.01 for 50-to-75 epochs, and
0.001 for 75-to-100 epochs.

Table 2 shows the mean and standard deviation of classifi-
cation accuracy and PIH metric of the original four image scram-
ble approaches and those with the proposed scrambling parameter
generation. The mean accuracies of The ELE and EtC of both the
original and with the proposed scrambling parameter generation
are lower than those of PE and LE. Then, we focus on PE and
LE. The proposed scrambling parameter generation improves the
PIH performance of the PE and LE, while the accuracies of them
are comparable. The standard deviations of the PIH of PE and LE
are decreased by the proposed scrambling parameter generation.
It means that the proposed scrambling parameter generation can
constantly generate the good PIH performance of the scrambling
parameter.

Table 3 shows examples of the scrambled images and associ-
ated LIPIS values of the PE and LE algorithms with the proposed
scrambling parameter generation. The proposed PE and LE of
predicted class and corresponding class probability are same as
plain images. However, it is very difficult for the human to recog-
nize the scrambled images in Table 3.

Conclusion

In this paper, we have investigated a suitable metric to eval-
uate the perceptual information hiding (PIH) on the scramble ap-
proach. Then, we have shown the LPIPS metric has better prop-
erties to evaluate the PIH performance. Based on the PIH metric,
expeirmental comparisons demonstrate that the proposed scram-
bling parameter generation can improve the PIH performance.

Furthermore, we have experimentally verified that the image
scramble approach can provide a reasonablly good classification
performance with the proposed scrambling parameter generation
in order to hide the perceptual information of the image.
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