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Abstract
Visibility of image artifacts depends on the viewing con-

ditions, such as display brightness and distance to the display.
However, most image and video quality metrics operate under the
assumption of a single standard viewing condition, without con-
sidering luminance or distance to the display. To address this
limitation, we isolate brightness and distance as the components
impacting the visibility of artifacts and collect a new dataset for
visually lossless image compression. The dataset includes images
encoded with JPEG and WebP at the quality level that makes com-
pression artifacts imperceptible to an average observer. The vis-
ibility thresholds are collected under two luminance conditions:
10 cd/m2, simulating a dimmed mobile phone, and 220 cd/m2,
which is a typical peak luminance of modern computer displays;
and two distance conditions: 30 and 60 pixels per visual degree.
The dataset was used to evaluate existing image quality and visi-
bility metrics in their ability to consider display brightness and its
distance to viewer. We include two deep neural network architec-
tures, proposed to control image compression for visually lossless
coding in our experiments.

Introduction
Finding a threshold at which the human eye cannot perceive

changes introduced to an image can be beneficial for computer vi-
sion, computer graphics, and image processing algorithms. Such
threshold can be used, for example, to adjust the image/video
compression level so that the size of the bit-stream is minimized
while the distortions remain mostly invisible. We will refer to
such quantization or quality level of an image/video codec as a
visually lossless threshold (VLT). Such a VLT depends not only
on the image content, but will also vary with the viewing condi-
tions: the viewing distance and display brightness. While all im-
age quality metrics account for image content, very few of them
account for viewing conditions [1, 13, 19, 35]. Such lack of ac-
countability for viewing conditions makes VLT prediction unreli-
able, across different displays and different viewing distances.

The goal of this work is to provide a dataset1 that could be
used to evaluate quality and visibility metrics on the task of find-
ing VLTs under different viewing conditions. We measure VLT
at viewing distances corresponding to 30 ppd (pixels per degree)
and 60 ppd and two peak brightness levels: 220 cd/m2, common
to computer displays, and 10 cd/m2, replicating the brightness of
a dimmed phone. We collect a dataset for two popular compres-
sion methods: JPEG [28] and WebP [26]. We then benchmark
both hand-crafted and data-driven image metrics on the dataset.

The main contributions of our paper are: (i) a visually loss-

1The dataset can be downloaded from https://doi.org/10.
17863/CAM.60354.

less image compression dataset with varying peak display bright-
ness and viewing distance and (ii) performance evaluation of im-
age quality and visibility metrics on the new dataset.

Related work
Image compression

Image and video compression methods can be divided into
three types: lossless, lossy, and visually lossless. Lossless com-
pression methods preserve all information in the decompressed
image [6]. However, their compression rates are much lower
than for lossy compression. Lossy compression methods al-
low for much higher compression rates, but they compromise
on the visual image quality, often introducing noticeable arti-
facts [25,26]. Two commonly used lossy image compression stan-
dards are JPEG and WebP. Both methods have an adjustable qual-
ity factor (QF). The QF varies between 0 (lowest visual quality
and highest compression rate) and 100 (highest visual quality and
lowest compression rate). Visually lossless compression meth-
ods introduce distortions but it is ensured that they are unlikely
to be noticed [17]. Visually lossless compression requires finding
a VLT — the maximum compression level at which distortions
are invisible to most observers. In this work, we choose the VLT
for which at most 25% of observers can perceive the compression
artifacts.

Most compression algorithms rely on hand-crafted methods
with a relatively small number of adjustable parameters. With
the advent of machine learning, deep neural networks, capable
of learning complex relations in an automated manner without
the need for explicit assumptions, have also been used for image
compression [18]. Their results, however, rely on the quality and
quantity of training data.

Image quality and visibility assessment
To evaluate compression algorithms, it is necessary to mea-

sure the quality of the decompressed image. Two types of metrics
can be used for that task: image visibility metrics [19, 35] and
image quality metrics [30, 31, 37]. The latter are also known as
image fidelity or image impairment metrics and are typically used
to evaluate image and video codecs. These metrics produce a
single value representing the magnitude of the distortion for the
entire image. They are meant to predict clearly visible (supra-
threshold) distortions and can be less accurate for barely visible
(near-threshold) distortions. By comparison, visibility metrics,
are meant to predict near-threshold distortions. They produce a
visibility map with local information about the probability of de-
tecting a difference between two images. Similar to compression
algorithms, image quality and visibility metrics can be divided
into two categories: hand-crafted [30, 31, 37], and trained using
machine-learning methods [4, 10, 11, 20, 24, 35, 38]. Both quality
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and visibility metrics have been adapted to operate under different
display luminance [1, 19, 20, 35].

Several works have focused solely on predicting the VLT.
For example, authors in [3] proposed SUR-Net, a deep Siamese-
CNN architecture predicting the satisfied-user-ratio (SUR) curve.
For each compressed image, their model predicts the proportion
of the population, which would not notice the distortion. The au-
thors first pre-trained the network to predict image quality and
then fine-tuned on a smaller dataset to predict SUR. The authors
later extended the work to SUR-FeatNet [14], where the pre-
trained Inception-V3-CNN is used to extract the features from the
images, which are then fed into a smaller network trained to pre-
dict the SUR curve. Authors in [15] took a different approach and
trained a deep binary classifier. Which, given the distorted and
undistorted source image, predicts whether the distortion would
be noticed or not.

Existing datasets
To train and test image metrics to predict VLT, one requires

a benchmark dataset where, at each quality level, the visibility
of distortions is judged by a group of observers. While sev-
eral image quality and visibility datasets are available, they either
do not contain VLTs [23, 34, 35], or present images compressed
only with JPEG codec at a single luminance level with at a fixed
viewing distance. As such, the authors in [9] collected a sub-
jective dataset, called MCL-JCI, with visually lossless thresholds
for images compressed with JPEG codec. The dataset contains
50 source images, with VLTs identified by 30 observers for each
image. Overall the dataset was collected with 150 observers. Sim-
ilarly, authors in [16] created a dataset with VLTs for panoramic
images compressed with JPEG codec. Each of the 40 panoramic
source images was inspected by at least 25 observers, using a
head-mounted display.

Unlike exisiting datasets, the presented dataset in this work
consist of VLTs for images compressed by not only JPEG but also
WebP standard. More importantly, the proposed dataset includes
VTLs based on different viewing distance and display brightness.

Proposed dataset
Our goal was to create a dataset with VLTs for images de-

picting a varied selection of contents and compressed with two
codecs (JPEG and WebP), which were viewed on monitors of dif-
ferent peak luminance (10 cd/m2 and 220 cd/m2), and at different
viewing distance (30 ppd and 60 ppd). We captured 20 images
with 1920⇥ 1281 resolution, which were obtained from DSLR
RAW images and stored in a lossless format. Half of the images
were compressed with JPEG (libjpeg2) and the other half with
WebP (libwebp3). Since it was more important for us to capture
the variety of content than to compare both codecs, we did not
attempt to collect VLT for the same contents and both codecs. To
ensure that the observers could find the distortions in a reasonable
amount of time, we cropped the stimuli to 512⇥512 pixels. Ex-
amples of the images from the dataset are given in Figure 4. To
uniformly cover the entire range of compression quality values at
a reasonable number of points, we incremented QF from 2 to 100
in steps of 2, where 100 is an image compressed with the highest

2https://github.com/LuaDist/libjpeg
3https://github.com/webmproject/libwebp

(a) VLT experiment stage 1 (b) VLT experiment stage 2
Figure 1: Two stages of visually lossless compression experiment.
The images were displayed at the native display resolution with-
out upscaling (images are shown out of scale for better legibility).

quality and also the highest bit-rate.

Procedure
To improve the accuracy of the VLT measurements, we com-

bined the method of adjustment and 4-alternative-forced-choice
(4AFC) protocol, controlled by an adaptive procedure. In the first
method-of-adjustment stage, observers were presented with ref-
erence and compressed images presented side-by-side and were
asked to adjust the QF of the compressed image until they could
not distinguish it from the reference (Figure 1a). A half-a-second
blank with a middle-gray background was displayed when chang-
ing compression levels to avoid observers relying on temporal
changes to guide their choice. The compression level found in
the first stage was used as an initial guess for the 4AFC proce-
dure [8], in the second stage. Observers were shown three copies
of an undistorted reference image and one distorted image in a
random quarter, as shown in Figure 1b. They were then asked to
choose the distorted image by clicking on the spots where they
could see the distortions. The location of those mouse clicks for
all four viewing conditions are shown in Figure 4. The next value
of the QF parameter for the distorted image was then selected
with the QUEST adaptive procedure [32]. We collected between
20 and 30 4AFC trials per observer for each image. To find the
VLT for each image we fitted a psychometric function to the col-
lected data.

Display

The experiments were conducted in a dim room (⇠10 Lux).
The screen was positioned to minimize ambient light reflections.
The viewing distance was controlled with a chin-rest. Observers
viewed a 27” Asus PG279Q display (2560x1440) from a dis-
tance of 80 cm (angular resolution: 60 pixels per degree) or
of 40 cm (angular resolution: 30 pixels per degree). For the
bright condition, display brightness was set to its maximum value
(220 cd/m2). For the dark condition, we placed a 1.2 neutral
density filter (Rosco E-Colour 299) in front of the monitor and
adjusted the display brightness so that the effective peak lumi-
nance was 10 cd/m2. We verified that the display color calibration
conformed with ITU-R recommendations [7] and sRGB transfer
function.

Observers

We collected the data from 19 observers aged between 20
and 30 years old, with normal or corrected-to-normal vision. All
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Figure 2: Distribution of visually lossless thresholds across the
population. The shaded regions are 99% confidence intervals (due
to limited sample size). The dashed red lines denote the detection
threshold used to find the VLT.

observers were trained and paid for their participation and were
naı̈ve to the purpose of the experiment.

Data analysis
Before analyzing the data, we removed outliers. For each

scene we followed the standard z-score procedure and removed
VLT measurements which were more than two standard devia-
tions away from the mean.

VLT distribution

We estimate VLT distribution across the population assum-
ing it to be normally distributed, similarly as in [3]. The pro-
portion of the population that can detect the distortion is, thus,
described by the function:

Pdet(l) = 1�F(l; µ,s2) , (1)

where l is the JPEG/WebP quality factor and F(l; µ,s) is the cu-
mulative normal distribution with the estimated mean and vari-
ance of VLT distribution for each condition. The plots of those
functions for each image are shown in Figure 2.

The plots of probability of detection in Figure 2 show a clear
pattern, with the brighter display (220 cd/m2) and shorter viewing
distance (30 ppd) requiring the highest quality factor. The oppo-
site is shown for the darker display (10 cd/m2) seen from a larger
distance (60 ppd). The slope of those curves indicates how the
VLT varied between the observers. The slope is similar for most
tested conditions, with a few exceptions. For example, the slope
is shallower for i7webp with 220 cd/m2 and 60 ppd (red), indicat-
ing a higher variance between the observers. Figure 4 (red dots)

Figure 3: Visually lossless threshold (VLT) for all four viewing
conditions shown in different colors. Note that the color used are
consistent with Figures 2 and 4.

shows that for this image, the distortions were spotted in different
parts of the image for different observers (sky, trees, grass, peo-
ple), which could explain the variability. Therefore, we opt to use
a lower value of Pdet to find a VLT. This way the VLT reflects
the results for the most attentive observers, who could spot the
most critical part of an image. Another interesting case is image
i17jpeg, for which the curves are close together and the slopes
are steep (low inter-observer variance). As seen in Figure 4, the
distortions for that image were consistently detected by most ob-
servers in a large smooth area of the sky.

For each condition the VLT is found by selecting the quality
factor l for which Pdet = 0.25 (less than 25% of the population
can see the difference). Such population VLT values are shown
in Figure 3. The display brightness (circles vs. squares) seems
to have a higher impact on the VLT than viewing distance (con-
tinuous vs. dashed lines). Another interesting observation is that
some images were less affected by the display brightness (i3webp,
i11jpeg, i17jpeg) than the others (i12jpeg, i16jpeg). As shown in
Figure 4, the distortions in less affected images were typically
spotted in bright and smooth regions, for which Weber’s law can
compensate for the loss of display brightness. It is also important
to note that the changes in VLTs between the viewing conditions
are different for each image, suggesting a strong interaction be-
tween image content and viewing conditions.

Evaluation of image metrics
In this section, we evaluate how accurately image quality

and visibility metrics can predict VLTs. The predicted VLTs
then can be used to automatically adjust compression parameters
to achieve a trade-off between image visual quality and bit-rate.
We evaluated both hand-crafted image quality metrics (PSNR,
SSIM [30], MS-SSIM [29], FSIM [36], HDRVQM [22]) and one
metric based on machine learning (deep photometric image qual-
ity metric: PU-PieApp) [20]. Additionally, we evaluate two vis-
ibility metrics: a high dynamic range visible difference predictor
(HDRVDP3) [19,21], and a CNN-based deep photometric visibil-
ity metric (DPVM) [35]. Note that for the HDRVDP3, we report
the results of both the visibility predictor (labelled HDRVDP3V)
and the quality predictor (labelled HDRVDP3Q). We could not
include metrics intended for VLT prediction in [15] and [3], as
we could not access the trained models. Furthermore, correspon-
dence with the authors revealed that the models were trained on
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i0webp i1webp i2webp i3webp

i4webp i5webp i6webp i7webp

i8webp i9webp i10jpeg i11jpeg

i12jpeg i13jpeg i14jpeg i15jpeg

i16jpeg i17jpeg i18jpeg i19jpeg

Figure 4: The images used in the experiment and the distributions
of observer clicks (blue for 10 cd/m2, 60 ppd, green for 10 cd/m2,
30 ppd, black for 220 cd/m2, 30 ppd and red for 220 cd/m2,
60 ppd). Colors are consistent with Figures 2 and 3.
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Figure 5: PU-transform used to transform absolute physical val-
ues (in cd/m2) into approximately perceptually uniform units that
can be used with existing quality metrics. Note, some values are
negative – to ensure that the luminance range of a typical (sRGB)
monitor of 1 cd/m2 to 80 cd/m2 is mapped to the range 0–255.

very small datasets and thus could not generalize well beyond the
training data.

Luminance-aware metrics
Hand-crafted image quality metrics, PSNR, SSIM, MS-

SSIM and FSIM were not designed to account for display lumi-
nance. Aydın et al. proposed a simple method for adapting exist-
ing quality metrics to operate on different display luminance lev-
els [1]. The image is first transformed to luminance emitted from
a display assuming a model of that display. The luminance values

are then converted into the Perceptually Uniform (PU) or loga-
rithmic values. In our work, we use the PU transform, as it has
proven to achieve better results than the logarithmic coding [12].
The shape of the PU-transform is shown in Figure 5.

To transform standard-dynamic-range (SDR) images from
gamma-encoded sRGB colors to linear RGB values shown on
the high-dynamic-range (HDR) display, gain-gamma-offset dis-
play model is often used [5]:

Clin = (Lpeak �Lblack)Cg
sRGB +Lblack, (2)

where Clin is the linear color value, CsRGB is the gamma-encoded
color value for one of the channels (R, G or B), and g = 2.2.
In our experiments we set the peak luminance of the display to
Lpeak = 10 cd/m2, or Lpeak = 220 cd/m2, and the black level Lblack
was set to 0.001Lpeak (assuming that the contrast of the display
was 1000:1 and there were no ambient light reflections) for both
cases. We used PU encoding to adapt PSNR, SSIM and FSIM
to different luminance conditions. Other metrics (HDRVDP-3,
DPVM, HDRVQM and PU-PieApp,) are photometric by design,
and thus do not require the application of PU-transform.

Viewing distance-aware metrics
To account for viewing distance in VLT prediction, we fol-

lowed the procedure in [35]. We re-sampled images with angu-
lar resolution of 30 ppd, to the angular resolution of 60 ppd with
Lanczos filter [27] before passing them to the metrics. 60 ppd is
the highest resolution in our dataset and also a reasonable limit
for most visual tasks, since the sensitivity of visual system drops
rapidly below 30 cpd [2]. We did not perform the re-sampling for
HDRVDP3, as it automatically accounts for the viewing distance.

Metrics validation
To validate the metrics, we performed 5-fold cross-

validation. Our goal was to find a mapping between the qual-
ity score predicted by the metrics and the VLTs for Pdet = 0.25.
We also experimented with different threshold Pdet values and ob-
tained similar results (not reported here).

We assume that a metric prediction can be mapped to the
predicted probability of detection P̃det by a monotonic function f :

P̃det = f (M(Tl ,R)) , (3)

where M is the quality metric, R is the reference image and Tl
is the test image encoded at the quality level l. Therefore, the
predicted VLT l̃ can be found as:

l̃ = argmin
l

|| f (M(Tl ,R))�0.25||2 ^ l 2 2,4, ..,100 . (4)

Since we are interested in the single value of VLT rather than
finding the function f , we instead estimate the VLT using a single
(per metric) value qV LT :

l̃ = argmin
l

||M(Tl ,R)�qV LT ||2 ^ l 2 2,4, ..,100 , (5)

which we optimize per metric so that ||l̃ � l||2 is minimized
(where l is the measured VLT). The individual qV LT was found
for each fold so that the results are reported for the testing set.
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Since HDRVDP3V and DPVM produce a map of detec-
tion probabilities, rather than a single quality value, we con-
sider a percentile value from the probability map to be a predic-
tion. For DPVM, similar to [33], we search for the optimal per-
centile that minimizes root-mean-squared-error (RMSE) between
the predicted and measured VLT. The best percentile for DPVM
and HDRVDP3V were 86 and 97 respectively.

Results and discussion

We first explore how well each of the metrics can account
for the viewing distance and the display brightness. The metrics
that use PU transform are prefixed with PU-. For each experiment
we fix one of the viewing conditions and let the metric predict the
VLT, while accounting for another viewing condition (e.g., how
well the metric can account for the viewing distance at a fixed
luminance level of 10 cd/m2). The results of the 5-fold cross-
validation are shown in Figure 6. Metrics, which were designed
to account for the viewing distance (HDRVDP3Q and DPVM)
match the experimental VLT better across different viewing dis-
tances compared to the metrics that used a simple resampling.
When viewing distance is fixed and metrics are trained to account
for the display brightness, DPVM performs the best among the
tested metrics. It is followed by three metrics with comparable
performance: PU-FSIM, HDRVDP3Q and PU-PieApp. In gen-
eral, all metrics better account for the display luminance changes,
compared to changes in viewing distance. In all experiments the
visibility predictor HDRVDP3V performed unexpectedly worse
than HDRVDP3Q. This implies that HDRVDP3V requires fine-
tuning for more accurate perfomance.

Figure 7a shows the results of the 5-fold cross-validation
for all viewing conditions, i.e., each metric needed to account
for both display brightness and viewing distance. The results
show that DPVM is the best performing metric, followed by
five metrics of comparable performance (verified in the paired
ttest): HDRVDP3Q, PU-PieApp, PU-FSIM, HDRVQM and PU-
MS-SSIM. The visibility predictor HDRVDP3V performed worse
than its quality counterpart. It is also worth noting a relatively
good performance of PU-FSIM, as this is a hand-crafted metric
that has not been trained on this task. The RMSE of the DPVM
is 21.9, which is slightly larger, than the average variation of the
VLT across the population – 15.9 (refer to Figure 2). This differ-
ence can be acceptable, and the metric should be robust enough to
adaptively encode images displayed at different luminance levels
and at a different viewing distance in a visually lossless manner.

Figure 7b shows the RMSE per image for the four best
performing metrics. It is worth noting that while DPVM re-
sulted in substantially smaller RMSE for some images, it was
the worst performing metric for others. The performance of the
DPVM did not correlate with the folds. The hand-crafted met-
rics with a few trainable parameters, HDRVDP3Q and PU-FSIM,
tend to be more consistent and vary less in RMSE than machine-
leaning based metrics, PI-PieApp and DPVM. Most metrics (ex-
cept HDRVDP3Q) showed a very large error for images with large
smooth gradient areas (e.g., sky), i3webp,i4webp,i5webp,i13jpeg,
i14jpeg and i17jpeg, suggesting that those metrics could be worse
at modeling contrast masking.

(a) Fixed luminance (10 cd/m2) (b) Fixed luminance (220 cd/m2)

(c) Fixed distance (30 ppd) (d) Fixed distance (60 ppd)
Figure 6: Five-fold cross-validation results for the compared met-
rics under varied viewing conditions. We fix one the viewing con-
ditions and make the metric account for the remaining condition.
In the first row we isolate distance as the component impacting
the VLT and test whether metrics can take it into account under
fixed display luminance. Similarly, in the second row, we fix the
distance, and let the metrics account for the display luminance.
Error bars show the standard deviation.

(a) (b)
Figure 7: (a) Five-fold cross-validation results for the compared
metrics. Error bars show the standard deviation. (b) RMSE per
image.

Conclusions
We carefully collected a novel dataset for visually lossless

image compression under varying display brightness and viewing
distance conditions and compared the performance of the state-
of-the-art image quality and visibility metrics on this dataset. The
results indicate that the display brightness and the viewing dis-
tance can significantly affect the compression level required for
visually lossless coding. We found that, recently proposed deep
photometric visibility metric (DPVM) is the best at matching the
experimental thresholds for the collected dataset.
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