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Abstract: Computer simulations of an extended version of a neural model of lightness perception [1,2] are presented. 
The model provides a unitary account of several key aspects of spatial lightness phenomenology, including contrast 
and assimilation, and asymmetries in the strengths of lightness and darkness induction. It does this by invoking 
mechanisms that have also been shown to account for the overall magnitude of dynamic range compression in 
experiments involving lightness matches made to real-world surfaces [2]. The model assumptions are derived partly 
from parametric measurements of visual responses of ON and OFF cells responses in the lateral geniculate nucleus of 
the macaque monkey [3,4] and partly from human quantitative psychophysical measurements. The model’s 
computations and architecture are consistent with the properties of human visual neurophysiology as they are currently 
understood. The neural model's predictions and behavior are contrasted though the simulations with those of other 
lightness models, including Retinex theory [5] and the lightness filling-in models of Grossberg and his colleagues [6]. 
 
Introduction 

This paper reports some new theoretical results 
that are part of an ongoing project to model achromatic 
color percepts (“lightness,” for short) with a 
computational theory constrained by both 
psychophysical and neurophysiological data. Because 
the theory conforms to known visual physiology, I 
refer to it as a “neurocomputational” model of 
lightness. The results reported here extend work that 
was reported at the 2020 Electronic Imaging 
Conference and later published in extended form [2]. 
Other related modeling can be found in [1,7,8] as well 
in preceding papers cited in those works. 

 
Fig. 1. Diagram of the neural lightness model 
showing its response to the stimulus used in the 
experiments modeled. See text for details. 

 
The basic framework of the neural lightness 

model is illustrated in Fig. 1. The model assumes the 

existence of populations of “lightness” and “darkness” 
neurons at Level 2 of the model—possibly 
corresponding to documented “brightness” and 
“darkness” neurons located in area V4 of primate 
visual cortex [9]—that spatially integrate the outputs 
of local, directionally-selective contrast detectors (red 
and blue nodes) at Level 1 of the model. The contrast 
detectors half-wave rectify their  spatially-oriented 
odd-symmetric receptive field outputs. At model 
Level 3 (not shown), achromatic color is computed at 
each retinal position by subtracting the output of the 
darkness neuron located at that position in the Level 2 
network from the output of the lightness neuron 
located at the same position. Level 0 is the input. 

In this one-dimensional depiction of the model, 
only two types of these odd-symmetric receptive fields 
exist: those that detect luminance increases in the 
direction of the receptive field centers (in retinal 
coordinates) of the lightness neurons that spatially 
integrate their outputs, and those that detect a decrease 
in luminance in the direction of the receptive field 
centers of the darkness neurons that spatially integrate 
their outputs. However, in the 2D model described 
here, the local contrast detectors exist at many 
different orientations, and spatial scales.  

A critical assumption of the model is that the 
local contrast detector neurons that detect local 
luminance increments have different sensory gains 
than the local contrast detector neurons that detect 
luminance decrements. An explanation of exactly how 
this is accomplished is one of the contributions of the 
work reported here and will be explained below. The 
receptive field shapes of the lightness and darkness 
neurons at Level 2 that separately integrate the outputs 
of the local contrast detectors at Level 1 are assumed 
to be identical.  

It follows from the model assumptions that the 
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achromatic color assigned to any point in the spatial 
color map at Level 3 of the model (i.e. in the model 
output, which models the achromatic color percept) 
will be computed from a long-range spatial sum of 
local spatially-filtered luminance steps or gradients 
(with luminance measured in log units) [1]. 
Furthermore, the influence of a luminance step or 
gradient that is located at a distance z from the point to 
which the color is assigned will depend on the product 
of two independent factors: 1) the distance z of the step 
or gradient from the point in the image to which the 
final achromatic color is assigned at Level 3; and 2) 
the contrast polarity of the step or gradient measured 
along a vector directed from the local contrast element 
to the image point to which color is assigned. This fact 
is expressed by the following equation, which 
specifies the total weight given to a small luminance 
step or gradient element in the computation of 
achromatic color as a product of a spatial weighting 
factor 𝜔(𝑧) that depends only on the distance z of the 
step or gradient element from the point to which 
achromatic color is assigned, and another weighting 
factor np that depends only on the contrast polarity of 
the step or gradient element: 

 
																													𝑤(𝑧, 𝑝) = 𝜔(𝑧)𝑛!	.																	(1) 

On the basis of data on the neural response of ON- and 
OFF-cells in the lateral geniculate nucleus of macaque 
monkey [3,4], I have argued [2] that 𝑛" = 0.27 and 
𝑛# = 1.0, where “+” denotes the visual response to an 
increment and “-“ denotes the visual response to a 
decrement. 
 

Development of the 2D Neural Model 

In this section, I present the main new results, the 
goal of which is to specify plausible neural 
computations that could instantiate the model and to 
do this in a way that could at least potentially predict 
pointwise lightness judgments. Although the 
developments reported will result in a model that 
computes lightness at every point in the image, I will 
here apply the model only to a single simple 
psychophysical experiment described below. It will be 
left to future work to apply the model to a larger array 
of psychophysical data. Since the results of the single 
experiment modeled here consist of unitary lightness 
judgments that apply to whole surfaces, I will take the 
computed achromatic color at the center of the target 
patch or surface This assumption might be questioned 
and requires empirical verification, but it suffices for 
the purposes at hand. I will return to this issue in the 
discussion. 

2D Model Description 

Level 1: Half-wave Rectified and Spatially-oriented 
“Barbell” Filters 

Neurons at Level 1 of the model consist of 
directional contrast detectors with spatially-oriented 
receptive fields that detect local changes in luminance 
within some spatial frequency band. These neurons 
can detect either sharp luminance steps (edges) or 
gradual luminance changes (gradients). In the 
computer simulations reported here, pairs of either ON 
cells, or OFF cells, were separately combined for this 
purpose to create filters that I will refer to as “barbell” 
filters (BBFs) because of their shape (Fig. 2). Each 
BBF was created by half-wave rectifying the 
responses of two 2D difference-of-gaussians (DOG) 
filters, both of which modeled either an ON or an OFF 
cell response. To model each individual ON cell in a 
pair, a surround Gaussian in the pre-rectification filter 
was subtracted from the center Gaussian. The standard 
deviation 𝜎$	of the surround Gaussian was 6 times as 
large as the standard deviation 𝜎%	of its corresponding 
center gaussian. To model each individual OFF cell, a 
center Gaussian was subtracted from the surround 
Gaussian. The dimensions of the center and surround 
Gaussians were the same as for the center and 
surround Gaussians associated with the ON cells. In 
both cases, the area under each Gaussian was 
normalized to 1.0. The DOGs that models the 
receptive fields of the ON and OFF cells were 
multiplied by the neural gain factors assumed for that 
cell type: 𝑛" = 0.27 in the case of ON cells, and 𝑛# =
1.0 in the case of OFF-cells, prior to half-wave 
rectification. 

To model ON-BBFs, the response of an ON 
cell—call it ON2—whose receptive field center was 
located 1.808 x √2(𝜎%) the receptive field center of 
another ON cell—ON1—was subtracted from the 
response of ON1. The difference in the two separately 
rectified filter responses was then itself rectified. This 
produced a filter response selective only for luminance 
increments in the direction of the receptive field center 
of ON1 within the shared spatial frequency band of the 
two ON cells, whose DOG receptive fields were equal 
in size. The receptive field center of ON1 defined the 
location in the Level 1 map of the resulting ON-BBF 
constructed in this way (Fig. 2). The offset distance 
1.808 x √2(𝜎%) was chosen because it produced the 
optimum degree of overlap in the receptive fields of 
the two ON or OFF cells comprising a BBF. To model 
OFF-BBFs, the response of a spatially offset OFF cell, 
OFF2, was similarly subtracted from the response of 
another OFF cell OFF1. The resulting difference filter 
was then rectified to produce an OFF-BBF selective 
for luminance decrements in the direction of the 
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receptive field center of OFF1, which defined the 
location of the OFF-BBF in the Level 1 map (Fig. 2). 

 
Fig. 2. Four example barbell filters. The filter 
labelled “BB INC-Left” responds only when 
luminance increments to the left in the input image, 
and similarly for the other filters shown. 

The computer simulations described below were 
based on a bank of 16 such ON-BBFs and 16 OFF-
BBFs that encoded 16 different angular directions of 
luminance increments and decrements, spaced at 
intervals of 22.5 deg in orientation angle.  

Level 2: Directional Integration of BB filter Outputs 
by Lightness and Darkness Neurons 

As illustrated in Fig. 1, separate populations of 
parallel pathway lightness (L) and darkness (D) at 
Level 2 of the model spatially integrate the outputs of 
directionally-sensitive local contrast neurons existing 
at Level 1. Each L neuron spatially integrates the 
outputs of ON-BBFs that encode luminance 
increments in the input image (Level 0) that are 
directed towards the L neuron’s receptive field center, 
while each D neuron spatially integrates the outputs of 
OFF-BBFs that encode luminance decrements in the 
image that are directed towards the D neuron’s 
receptive field center. 

The ON-BBFs and OFF-BBFs described above 
model the local contrast detectors that encode 
spatially-directed luminance increments or 
decrements at Level 1. To understand how the L and 
D neurons at Level 2 spatially integrate the ON- and 
OFF-BBFs responses in 2D, it may help to envision 
this spatial integration in reverse: that is, in terms of 
how the outputs of the ON- and OFF-BBFs project to 
L and D neurons, respectively, at Level 2. It was 
assumed here that the neural projection of an ON-BBF 
or OFF-BBF to an L or D neuron at Level 2 neurons is 

strongest along an axis defined by a vector directed 
from the ON2 or OFF2 cell (defined above) to the ON1 
or OFF1 cell that defines the location of the ON-BBF 
or OFF-BBF in the Level 1 map (as indicated by the 
red dots in Fig. 2). Level 2 neurons whose receptive 
field centers do not lie directly along this axis can also 
be activated by a BBF output, but their level of 
activation is reduced as a function of the angle of the 
vector from the BBF location to the L or D neuron’s 
location relative to vector from ON2 or OFF2 to ON1 
or OFF 1 described above. In particular, the neural 
activation produced by a particular BB-filter input to a 
particular L or D neuron was modeled by the equation: 

𝑐!(𝑥", 𝑦") = 𝑒#$%('!#'")!)(*!#*")!𝑐𝑜𝑠+𝜃,	...⃗ ,𝐵𝐵!(𝜃,	...⃗ , 𝑥0, 𝑦0)

⊗ 𝐼(𝑥, 𝑦)𝑑𝑥𝑑𝑦,																																(2) 

 
where 𝑐!(𝑥&, 𝑦&) represents the contribution to the 
output of either an L neuron (subscript p = +) or a D 
neuron (subscript p = -) located at point (𝑥&, 𝑦&) in the 
retinal image; a is a constant that determines the rate 
of spatial falloff in the exponential receptive fields of 
the Level 2 neurons; (𝑥', 𝑦') is the location in the 
retinal image of the BBF whose output is integrated; k 
is a constant that determines the directional specificity 
of the population of network projections from Level 1 
to Level 2 (the larger is k, the more directional the 
activations); 𝜃(	***⃗  is the angle of a vector directed from 
(𝑥', 𝑦') to (𝑥&, 𝑦&) relative to a vector directed from 
the ON2 or OFF2 receptive field center to the ON1 or 
OFF2 receptive field center (𝑥', 𝑦') of the BBF whose 
output is being integrated; and 𝐵𝐵!(𝑥', 𝑦') represents 
the activity of the ON-BBF (p = +) or OFF-BBF (p = 
-) at (𝑥', 𝑦') whose response is being spatially 
integrated by either an L or D neuron at (𝑥&, 𝑦&). Note 
that the symbol ⨂ in Eq. (3) denotes “operates on.” It 
is used here in place of multiplication because the 
BBFs are not linear filters due to the fact that the filter 
itself, and the separate ON- or OFF- filters on which 
they are based, are each half-wave rectified. 

It follows from Eq. (2) that the total activation of 
an L or D neuron located at (𝑥&, 𝑦&) is given by  

 

𝐶!(𝑥", 𝑦")

= 4 𝑒#$%('!#'")!)(*!#*")!𝑐𝑜𝑠+𝜃,	...⃗ ,𝐵𝐵!(𝜃,	...⃗ , 𝑥0, 𝑦0)
1#	%%%⃗ ,'",*"

⊗ 𝐼(𝑥, 𝑦)𝑑𝑥𝑑𝑦.																																														(3) 

 
Level 3: Combining L and D neuronal activations to 
determine the percept 

At model Level 3 (output level), neurons whose 
activities represent the perceived achromatic color 
corresponding to a location (𝑥,, 𝑦,) in the retinal 
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image combine the outputs of L and D neurons at that 
location according to the formula 

												𝑃(𝑥,, 𝑦,) = 𝐶"(𝑥&, 𝑦&) + 𝐶#(𝑥&, 𝑦&)	.								(4) 

To avoid potential confusion due to ambiguities 
surrounding the definitions of lightness, brightness, 
and achromatic color in the literature, in Eq. (4) I have 
used the symbol “P,” for percept, to represent the 
pointwise function that represents the perceptual 
output of the model.  

Computer Simulation of a Psychophysical 
Lightness Matching Experiment 

Background change experiment  

Rudd [7] performed a lightness matching 
experiment in which two 1.06 deg X 1.06 deg squares, 
each with a luminance of 0.5 log cd/m2, were 
presented on an LCD monitor, separated by a distance 
of 8.5 deg center-to-center. Each square was 
surrounded by 1.0 log cd/m2 frame but the frame 
surrounding the right square was much narrower (0.19 
deg) than the frame surrounding the left square (1.78 
deg). Two observers adjusted the luminance of the left 
square to match the right square in lightness. This task 
was performed at 12 different levels of background 
luminance, ranging from a luminance well below that 
of the two squares, to a luminance well above the 
common luminance of the two frames. 

The neural model asserts that the lightness of 
each square should depend on a sum of weighted steps 
in log luminance at the inner and outer edges of each 
frame with the weights given by Eq. (1). When the 
square luminances on the two sides are identical—as 
they were at the start of each experimental trial—the 
only thing that is different in the formula for the square 
lightness on the two sides of the display is the 
contribution of the outer edges of two frames. That 
edge was closer to the square on the right side of the 
display so, according to the model assumptions, a 
change in the background luminance should have a 
greater influence on the lightness of the right square 
than on the lightness of the left square. To achieve a 
lightness match between the two squares, an observer 
in the experiment must therefore compensate for a 
change in the background luminance by adjusting the 
left square luminance. 

As the background luminance is increased, we 
expect the observer to decrease the luminance of the 
left (matching) square to compensate for the fact that 
the incremental luminance at both outer frame edges 
is decreasing, which will darken right square at a faster  
rate than the left square.  Furthermore, the rate of 
change in the left square luminance adjustment as a 
function of the background luminance is predicted to 

be smaller when the outer frame edges both increment 
in the direction of the squares (that is, when the 
background luminance less than the frame luminance) 
than when the outer frame edges both decrement in the 
direction of the squares (background luminance 
greater than the frame luminance). This is because any 
incremental luminance directed towards a target 
region is assumed by model to be encoded by ON 
cells, while any decremental luminance directed 
towards a target region whose lightness is computed is 
encoded by OFF cells. Since the contrast polarity-
dependent gain factor 𝑛! is assumed here to be only  
0.27 times as large for ON cell mediated lightness 
computation as for OFF cell mediated lightness 
computation, the neural model predicts that the rate of 
change in the left-square luminance settings required 
for a match to be about 0.27 as large when the 
background intensity is less than the common frames 
luminance as when it is greater than the common 
frames luminance. Fig. 3 illustrates the stimuli used in 
the background change experiment and the lightness  
matches made by the two observers. The average 
results for the two observers are consistent with the 
model predictions. 

 
Fig. 3 (top). Stimuli used in the background change 
experiment. Six sample background luminances 
are shown for illustration purposes, but twelve 
were used in the actual experiment. (bottom) 
Lightness matches plotted against the background 
luminance. 
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Details of the Simulation 

The simulation was performed in the MATLAB 
programming language (Version 9.9, R2020b) on a 
16-inch Apple MacBook Pro laptop computer (2019) 
with an 8-Core Intel Core i9 processor.  

The system of equations described in the 
previous section were simulated using discrete 
approximations in which the functions 𝐼(𝑥-, 𝑦-), 
𝐵𝐵!(𝑥', 𝑦'), 𝐶!(𝑥&, 𝑦&), and 𝑃(𝑥,, 𝑦,), were 
represented by discrete two-dimensional arrays, each 
of size 905 x 905. These sizes were chosen such that 
100 pixels represented 1 deg of visual angle. A (small) 
exception was made for the sizes of the central 
squares, which were 105 x 105 pixels (1.05 deg x 1.05 
deg) instead of 1.06 deg x 1.06 deg, as in the actual 
experiment. This change was made so that the 
simulation output (i.e. the percept) could be evaluated 
at a pixel corresponding to the square centers.  

The experimental data were modeled by 
separately simulating the model’s response to the left 
and right square-and-frame stimuli in the experiment 
for 12 values of background luminance, which was 
varied in the simulation from 0.2-1.52 log cd/m2 in 
steps of 0.2 log cd/m2. The luminance of both frames 
was fixed at the value 1.0 log cd/m2, and the luminance 
of the right square was fixed at the value 0.5 log cd/m2, 
as in the original experiment. The width of the right 
frame in the simulation was 19 pixels (0.19 deg) and 
the width of the left frame was 178 pixels (1.78 deg). 

To model each barbell filter, the center-to-center 
distance between the receptive field centers of the 
ON1 (OFF1) and ON2 (OFF2) cells from which the 
ON-BBFs (OFF-BBFs) were constructed was set to 
the value 1.808√2𝜎., where 𝜎. is the standard 
deviation of the Gaussian function defining the center 
mechanism of the DOG function that modeled the 
receptive field of each ON or OFF cell. That standard 
deviation was set to the value 1.0 and only one scale 
of DOG function was used in the simulations reported 
here (though the model, more generally, has been 
programmed to include multiple spatial scales of DOG 
filters, spaced in octaves).  

The only model parameter that was free to vary 
in the simulations was the spatial decay constant a of 
the exponential receptive fields of the L and D neurons 
at model Level 2 (Eqs. (2) and (3)). By appropriately 
adjusting a, a successful lightness match was achieved 
by the model at all background levels.   

To model the perceptual response to the right 
square-and-frame configuration, the background 
luminance was varied and the Level 3 activity at the 
location of the right square center 
(𝑃/0(453,453))	was recorded at each of the 12 
simulated background levels. To model the perceptual 
response to the left square-and-frame configuration, 

the left square luminance was varied along with the 
background luminance according to the average 
lightness matches of the two observers in the original 
experiment. This variation corresponded to the 
equations: log Sleft = 0.56465 – 0.0625 log B when the 
background luminance B was less than the frames 
luminance, and log Sleft = 0.7463 – 0.2460 log B when 
the background luminance B was greater than the 
frames luminance (see regression models in Fig. 3). 
Over repeated trials of the simulation, the space 
constant a of the Level 2 neurons was adjusted until 
the neural activity at model Level 3 at the location of 
the left square center (𝑃10(453,453))	matched the 
neural activity at the right square center (that is, until 
𝑃10(453,453) = 	𝑃/0(453,453) at all values of the 
background luminance). A satisfactory match was 
achieved when a = 0.7866 deg-1 (see Fig. 4). 

 

Fig. 4. Simulated results for the background 
change experiment. 
 
General Discussion 

It has been shown here that a neurally plausible 
model of human lightness computation can account for 
key features of lightness matching data from a 
psychophysical experiment utilizing simple square-
and-frame stimuli presented on a computer monitor. 
The two primary mechanisms that the model employs 
to explain the perceptual data are: 1) separate encoding 
of luminance increments and decrements by parallel 
ON and OFF channels characterized by differing 
inherent neural gains, and: 2) independent spatial 
summation of neural responses to increments and 
decrements by large-scale receptive fields of separate 
populations of lightness- and darkness-encoding 
neurons which are subsequently combined to produce 
a unitary achromatic color percept. 

The model was able to fit the average lightness 
matches from two observers made to a square-and-
frame stimulus with by varying on one parameter: the 
common spatial decay constant of the exponential 
receptive fields of the lightness and darkness neurons. 
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Setting this parameter to the value a = 0.79 resulted in 
an excellent fit to the perceptual data.  

I am currently adapting the neural model 
described here to account a more extensive data set of 
lightness matches made to Staircase Gelb and related 
stimuli. These data were previously fit with a less fully 
elaborated version of the neural model [2]. To fit the 
Gelb data with the current model requires that the form 
of the distance-dependent component 𝜔(𝑑) of the 
edge weighting function be more complex than the 
simple exponential function used here. Motivating this 
more sophisticated model of 𝜔(𝑑) and applying it to 
the Gelb results requires considerably more space than 
is available in this short Proceedings paper, so a full 
report of this work will be saved for a subsequent 
paper. 

One advantage of the present approach over the 
one taken in previous work on the model [2] is that the 
current version of the model can, in principle, make 
predictions not only about the perceived lightness of 
surfaces, but also about the pointwise lightness of 
small surface elements: hence the title of this paper. 
An important assumption made in the simulations 
reported here was that the lightness matches made by 
the actual psychophysical observers in the background 
change experiment were equivalent to matching the 
pointwise lightnesses at the centers of the two squares. 
Whether this is what human observers actually do 
when they match surfaces lightnesses is an open 
question. But a theory that makes quantitative 
predictions regarding pointwise lightness 
computations provides a valuable tool for helping to 
answer this important research question. 
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