
A Polar Coordinate Perspective on Motion Search in Video Cod-
ing
Jingning Han, Paul Wilkins, and Yaowu Xu; Google LLC; Mountain View, CA 94043

Abstract
Video coding heavily relies on motion compensated predic-

tive coding to achieve its compression efficiency. As a central
component, the block matching motion search exploits the trade-
off between encoder complexity and compression efficiency. The
diamond search and its variants are widely used in video en-
coders. They typically start with the largest search step size and
scale down the step size by half at each stage thereafter. To cover
an N×N pixel search region, the diamond search class requires
a search complexity of O(logN) check points. In this work, we
view the motion search as a sampling problem around the ini-
tial reference point in polar coordinates. We modify the sampling
pattern at each search stage to better approximate a circle. The
search radius is scaled down by

√
2 between stages, in contrast

to the factor of 2 used by the diamond search class, such that the
sampling density is increased by a factor of 2 between stages. It
retains a search complexity of O(logN) over an N×N pixel re-
gion, with a linear increment as compared to the diamond search.
It is experimentally shown that the proposed search pattern pro-
vides compression gains at the expense of a modest increase in
encoder complexity.

Introduction
Video codecs use block based motion compensated predic-

tion to remove temporal correlation. To find a pixel block in a
given reference frame that best resembles a current block, one
needs to search N ×N motion vectors in full pixel resolution,
followed by fine tuning at sub-pixel level. For a 1080p resolu-
tion video that is coded with a group of pictures of 16 frames in
length, the motion search empirically needs to cover an area of
129×129 full pixels in order to achieve near optimal motion esti-
mation results. Clearly a brute force search at O(N2) complexity
is computationally prohibitive for encoder implementation.

A two-dimensional logarithmic search pattern was initially
proposed in [1], which starts with the largest step size and checks
4 vertices in a diamond shape and the center point. It then selects
the point which minimizes the sum of absolute difference (SAD)
as the new center and repeats until the minima is the center point.
The next stage reduces the step size by half and searches around
the above center point. This process repeats until the step size
reaches 1. A three-step search (TSS) approach [2] extends the
pattern to cover 8 points around a square at each stage. The point
that yields the lowest SAD value is used as the center point for
next stage, with the search radius scaled down by half. Its name -
three-step search - comes from the assumption that its maximum
radius is 8 pixels, hence it only takes three stages to reach radius at
1 and finish the search. However, the concept can naturally extend
to larger search ranges. The four-step search (FSS) [3] allows TSS
to have multiple hops at the largest radius until the minima occurs

at the center of the square, the rest process is as per the TSS.
The new three-step search (NTSS) exploits the observation that
the optimal motion vector more often sits close to the predicted
motion vector [4]. It hence conducts an additional search over the
nearest neighbors of the predicted motion vector in the first stage
to evaluate the necessity of search at a large radius. All the above
methods allow an O(logN) search complexity.

To enhance the search precision, an unrestricted center-
biased diamond search pattern is proposed in [5], where it con-
ducts an 8-point diamond search at each stage similar to the FSS
above, but re-centers to the predicted motion vector if prior search
stages depart from the center. A hexagon-based search pattern that
allows fewer search points than the diamond shape to cover a tar-
get search region is proposed in [6]. The center-biased search pat-
tern further promotes the importance of selecting the initial search
point (i.e. the center point). In [7], a predictive zonal approach
to motion search has been proposed, which evaluates the spatial
and temporal neighboring blocks’ motion vectors to find the most
probable candidate as the initial point for the diamond search.

The advances of single instruction multiple data (SIMD) in-
struction set over the last decade substantially reduce the CPU cy-
cles needed to compute the block SAD [8]. To compute the SAD
between two 16× 16 8-bit pixel blocks, the latest AVX-512 in-
struction set only requires 4 packed additions and 3 regular scalar
additions [9], plus several instructions to load the pixels into the
vector registers. Such ashift makes the motion search’s contri-
bution to the overall complexity of a video encoder less critical.
Even though a brute force search at O(N2) over a large region is
still computationally prohibitive, relaxing the constraints on the
number of search points in a diamond search with a linear incre-
ment is largely feasible. Recent developments propose to conduct
a motion search, followed by a full rate-distortion cost evaluation,
around each spatial and temporal reference motion vector for im-
proved compression efficiency [10][11].

This work considers the possibility of modifying the mo-
tion search pattern to achieve better compression efficiency with
a modest computational complexity increment. We view the mo-
tion search as a sampling problem around the initial point in a
polar coordinate system. Each search stage corresponds to sam-
pling at a given radius. We depart from the center-biased diamond
search scheme and modify the distribution of sampling points to
better approximate a circle. The diamond search scales down the
radius by a factor of 2 between consecutive stages, which effec-
tively changes the sampling density by a factor of 4. Instead this
work adopts a scaling factor of

√
2 for the radius to make the sam-

pling density change by a factor of 2 between consecutive stages.
The proposed search pattern retains a complexity of O(logN) with
a linear increment from the diamond search.

The perspective from polar coordinate has been previously
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Figure 1. An example of center-biased diamond search. The initial center is

denoted by 0. The first diamond search path is denoted by points marked by

1. The arrows show the shift of search center between stages. A second dia-

mond search is started when the first one steps away from the original center

point and then similarly a third search, each time with a reduced radius.

mentioned in [6] and [12] with a focus on reducing sampling
points needed as compared to the conventional diamond search.
This work proposes a new sampling pattern in both the radius and
circle dimensions and demonstrates the overall compression effi-
ciency gains at a modest encoder complexity increment.

Center-Biased Diamond Search
We briefly recap the center-biased diamond search scheme

and extend it to cover a large search region for better compression
performance. Though outdated, its performance remains the most
competitive and the center-biased diamond search is widely used
in modern video encoders. Therefore we use this modified center-
biased diamond search scheme as our baseline.

The center-biased diamond search scheme is composed of
multiple conventional diamond searches in light of [1]. It starts
the search with the maximum radius around an initial center point.
At the end of each stage it moves the center to the point that min-
imizes the weighted cost between the SAD (or sum of squared er-
ror) and the rate cost of the motion vector difference [13], where
the weight is typically derived from the Lagrangian multiplier
used by the rate-distortion optimization framework. The scheme
then reduces the radius by half to conduct the next stage.

The center-biased method we are using here is depicted in
Algorithm 1. If a diamond search finds a non-center point with
minimum total cost at radius R, the scheme will kick off another
diamond search at the original search center, at a reduced radius of
R/2. Hence it guarantees a dense search around the initial center
point. The effective search complexity depends on the video sig-
nal statistics. In the ideal case, where the SAD cost and the motion
vector form a convex hull, and the initial center point provides a
minimum SAD, the center biased diamond search subsumes to a
conventional diamond search whose complexity is O(logN). In a
worst scenario, the search complexity can go up to O((logN)2).

To illustrate the process, we depict an example in Figure 1.
Clearly the mechanism ensures dense search around the original
center, regardless of the results at larger radius. It is also notewor-
thy that when the radius becomes small, i.e. less than 5 pixels, it is
highly probable that different search routes would have sampling
points that overlap.

Algorithm 1: Center-biased diamond search

1 Start with the maximum search radius R = Rmax.
2 Identify a reference motion vector as the search center

denoted by re f mv.
3 Initialize best sad cost to the cost associated with center

re f mv.
4 Center biased diamond search()

5 while R >= 1 do
77 r, this mv, this sad cost = Diamond search(R,

re f mv)
8 R = r/2
9 if this sad cost < best sad cost

10 then
11 best mv = this mv
12 best sad cost = this sad cost
13 end

Input: Maximum radius R, search center re f mv
Output:
Maximum radius searched around the original center R
Best motion vector found
Associated weighted cost between the SAD and the
motion vector rate cost

1 Diamond search(R, re f mv)
2 while R >= 1 do
44 Check 8 candidate motion vector offsets around

the re f mv:
5 {−R,−R}, {−R,0}, {−R,R}, {R,−R},
6 {R,0}, {R,R}, {0,−R}, {0,R}.
88 Find the one that minimizes the weighted cost.

1010 Update re f mv = re f mv+o f f set
1212 R = R/2.
13 end

We implemented Algorithm 1 in the AV1 framework [14] as
our baseline. Note that we used an 8-point square shape at a given
radius, which experimentally provides slightly better compression
performance than the 8-point diamond shape.

Polar Coordinate Sampling
We take an alternative perspective for the motion search pro-

cess that uses polar coordinates. The reference motion vector sits
on the origin. The search strategy breaks down to sampling in the
radius and circle dimensions respectively.

Radius Scaling
Consider the radius scaling factor between stage n− 1 to n,

denoted by α . We have Rn−1 = αRn, where Rn is the effective
radius used by stage n. A lower stage index corresponds to larger
radius, hence α > 1. In conventional logarithmic search schemes
[1]-[7], this is effectively set as α = 2.

In the diamond search class, the sampling points around the
circle are fixed at each stage. In the above center-biased diamond
search, there are 8 points around the circle (square). To evaluate
the search density, we consider the additional area covered from
stage (n + 1) to stage n and from stage n to stage (n - 1). From
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Figure 2. Radius sampling. (a) Conventional Rn−1 = 2Rn sampling. The

sampling density decreases by 4 times between stage n and stage n-1. (b)

The proposed Rn−1 =
√

2Rn. The sampling density decreases by half between

stage n and stage n-1.

R (0, R)

Figure 3. Square search pattern.

stage (n + 1) to stage n, the additional area covered is

∆Sn = π(α2−1)R2
n+1. (1)

From stage n to stage (n - 1), the additional area covered is

∆Sn−1 = π(α2−1)R2
n = π(α2−1)α2Rn+1 = α

2
∆Sn. (2)

Clearly the sampling density changes between consecutive
stages by α2. A conventional approach setting α = 2 effectively
drops the search density by 4 times from stage n to (n - 1). We
hence propose a simple modification, i.e. setting α =

√
2, such

that the search density goes down by 2 times between stages. To
attain the same maximum radius, this change approximately dou-
bles the number of search points. The sampling densities along
the radius dimension that correspond to α = 2 and α =

√
2 are

shown in Figure 2.

Sampling Around Circle
As discussed in the Section , the center-biased search scheme

would likely provide dense sampling around the original center.
To better tailor to the center-biased search scheme, we propose
two search patterns to be used at different radii. When the radius
is less than 6 pixels, we stay with the conventional square pattern
as shown in Figure 3.

For radius above 6 pixels, we propose to increase the sam-
pling points from 8 to 12 around each circle. The first 8 points
are arranged to be uniformly distributed around the circle in an

R

(-0.41R, R)

(-R, 0.41 R)

(0, R)

Figure 4. Octagon-cross search pattern.

octagon shape as shown by the orange points in Figure 4. The
motion vector entropy coding system uses predictive coding for
each component. A bit is first coded to indicate whether to di-
rectly re-use the predicted motion vector component, or to fur-
ther code a difference. This approach tends to have a structural
bias that assigns a higher probability to zero difference, which
translates into a lower rate cost for zero difference. Hence off-
sets {0,R},{0,−R},{R,0}, and {−R,0} as shown by the blue
points in Figure 4 tend to have a higher probability of achiev-
ing the minimum weighted cost. Therefore we choose the search
pattern such that 8 points uniformly sample the circle and an ad-
ditional 4 points cover the offsets with zero difference in motion
vector component. We refer to it as octagon-cross search pattern.

These two simple modifications in the radius and circle di-
mensions form our proposed center-biased octagon-cross search
scheme as summarized in Algorithm 2.

Experimental Results
The proposed scheme Algorithm 2 was implemented in the

libaom AV1 framework [14]. We evaluated the overall compres-
sion performance across different frame resolutions and target bit-
rates as compared to the center-biased diamond search in Algo-
rithm 1. The baseline used libaom AV1 encoder at speed 1 (i.e.
–cpu-used=1), which was the setting tuned for better compression
efficiency with moderately high encoder complexity. The default
2-pass encoding mode was used. The rate control system used the
default variable bit-rate mode.

All the video clips were in YUV420 format and were tested
with 150 frames. A wide range of the operating bit-rates were
evaluated that covered the average PSNR between 35 dB to 45 dB.
The compression performance was evaluated in PSNR and SSIM.
The BD-rate reduction [15] is shown in Table 1-2. A negative
number means better compression performance. It is evident that
the proposed center-biased octagon-cross search provides consis-
tent compression performance gains, and is particularly advan-
tageous to the video sequences that contained complex motion
activities, e.g., soccer, racehorse, etc.

We next evaluated its impact on the encoder complexity
due to the increased number of search points. We used a clip
BasketballDrill at 480p to demonstrate typical observations at
different operating bit-rates. We ran a single thread encoding and
recorded the overall instruction counts. The actual encoding time
change was closely aligned with the instruction count change.
The results are shown in Table 3. The percentage of encoder com-
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Algorithm 2: Center-biased octagon-cross motion search

1 Start with the maximum search radius R = Rmax.
2 Identify a reference motion vector as the search center

denoted by re f mv.
3 Initialize best sad cost to the weighted cost associated

with center re f mv.
4 Center biased octagon-cross search()

5 while R >= 1 do
77 r, this mv, this sad cost =

Octagon Cross search(R, re f mv)
8 R = r/

√
2

9 if this sad cost < best sad cost
10 then
11 best mv = this mv
12 best sad cost = this sad cost
13 end

Input: Maximum radius R, search center re f mv
Output:
Maximum radius searched around the original center R
Best motion vector found
Associated weighted cost between the SAD and the rate
cost of the motion vector

1 Octagon Cross search(R, re f mv)
2 while R >= 1 do
3 if R < 6 then
4 Check 8 candidate offsets in the square

pattern
5 else
6 Check 12 candidate offsets in the

octagon-cross pattern
7 end
99 Find the one that minimizes the SAD cost.

1111 Update re f mv = re f mv+o f f set
1313 R = R/

√
2.

14 end

plexity increment is slightly lower in a high bit-rate setting, since
the rate-distortion optimization process typically takes more in-
structions to handle non-zero transform coefficient blocks, which
are more common in the high bit-rate cases, whereas the encod-
ing complexity due to motion search remains largely the same at
various operating bit-rates.

Conclusions

We consider the motion search process as a sampling prob-
lem in the polar coordinate. A center-biased octagon-cross search
pattern is proposed based on design modifications in the radius
and circle dimension respectively. The scheme is experimentally
shown to improve the compression efficiency at moderate encoder
complexity increase.

Compression performance gains for 480p resolution dataset
in terms of BD-rate reduction.

PSNR
BD-rate

SSIM
BD-rate

BQMall 832x480 -0.610 -0.659
PartyScene 832x480 -0.121 -0.218
old town cross 480p -0.259 -0.268
snow mnt 480p -0.224 -0.041
soccer 4cif -1.135 -1.345
speed bag 480p -0.061 0.205
station2 480 0.034 -0.089
tears of steel 480p -0.370 -0.332
touchdown pass 480p -0.649 -0.641
crowd run 480p -0.056 -0.255
Flowervase 832x480 -0.100 -0.244
Mobisode2 832x480 -0.024 0.107
sintel shot 854x480 -0.846 -1.238
BasketballText 832x480 -0.319 -0.278
BasketballDrill 832x480 -0.309 -0.323
RaceHorses 832x480 -1.801 -2.040
Keiba 832x480 -2.592 -3.488
harbour 4cif -0.077 -0.156
west wind easy 480p -0.059 -0.006
rush field cuts 480p -0.006 -0.194
ducks take off 480p 0.071 0.005
park joy 480p -0.144 0.006
red kayak 480p 0.027 -0.016
aspen 480p -0.266 -0.313
city 4cif -0.790 -0.893
controlled burn 480p -0.310 -0.319
crew 4cif -0.372 -0.379
ice 4cif -0.569 -0.149
into tree 480p -0.075 -0.149
OVERALL -0.413 -0.467
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