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Abstract
The Rate-Distortion adaptive mechanisms of MPEG-HEVC

(High Efficiency Video Coding) and its derivatives are an incre-
mental improvement in the software reference encoder, providing
a selective Lagrangian parameter choice which varies by encod-
ing mode (intra or inter) and picture reference level. Since this
weighting factor (and the balanced cost functions it impacts) are
crucial to the RD optimization process, affecting several encoder
decisions and both coding efficiency and quality of the encoded
stream, we investigate an improvement by modern reinforcement
learning methods. We develop a neural-based agent that learns
a real-valued control policy to maximize rate savings by input
signal pattern, mapping pixel intensity values from the picture at
the coding tree unit level, to the appropriate weighting-parameter.
Our testing on reference software yields improvements for coding
efficiency performance across different video sequences, in multi-
ple classes of video.

Introduction
Several factors in design allow the x265/HEVC (High Effi-

ciency Video Coder) to have the large coding efficiency gain (sig-
nal data compression) over the prior x264 video codec. As a hy-
brid video encoding system, a mixture of modes are adapted as
needed, with greater granularity/flexibility in decisions than pre-
vious standards in both intra and inter modes. Intra, for encoding
based on spatial info redundancy in the same frame, has more
directional modes than prior codecs, and inter-coding (temporal
multi-picture referencing) has a multitude of new tools, including
a weighted merge-mode mechanism.

To improve in sequences of large picture size (Full-HD, Ultra-
HD 4k video and beyond), a larger basic block size (CTU, or
Coding Tree Unit) is employed, and a multitude of new division
Modes in the comprised CUs (Coding Units) and the associated,
but independently sized, Prediction and Transform Units (PU and
TU) for the Coding Units. Changes to the encoding decision pro-
cess ultimately affect the referencing candidate choices and the
chosen mode/depth for encoding each CU, before the slices of
CTU are transformed[1], quantized and coded per the standard
(see [2]).

Notably, and of interest to us here, the decision making pro-
cess[3] in the Rate-Distortion algorithms of the encoder are based
on more elaborate Lagrangian-weighted cost functions than be-
fore, with a finer-grained control of the Lagrangian λ that is not
solely based on Quantization Parameter (QP) value – the original
approach in [4]. We apply here recent advances from visual Re-
inforcement Learning algorithms to the problem, using a simple
neural architecture for function estimation and control. The goal
is to further optimize the weighted cost functions for improved

compression (efficiency) in all encoding modes and frame refer-
encing levels.

Figure 1: An example of CTU mode decision (block splitting)
flexibility in the current HEVC/x265 scheme.

Rate-Distortion Optimization in H.265/HEVC
Various referential candidate choices in both temporal and

spatial redundancy modes, determine the ultimate mode decisions
and overall prediction structure of every independent coding block
in MPEG codecs (x263, x264, x265); here we focus on the func-
tion particulars of HEVC/x265 in recent versions [5], [6].

At the heart of the Rate-Distortion Optimization procedures
of the encoder, several cost functions are used to determine best
candidate picks, refinement of motion estimation (inter mode), or
other courses of action (CU splitting depth or shape). Our focus
is on the cost functions JSSE and JSAD:

JSAD = DSAD(s,c)+λMOT ION ·R (1)

where DSAD is mean absolute error (distortion), and R is the rate.
A similar DSSE exists for mode decisions, using the sum-of-squared-
error functions, which requires the λSSE version of the Lagrangian
to be λMODE = (λSAD)

2.
The minimization of the cost is a goal of the RDO algo-

rithms and candidate searches, while taking care of burst/volatile
rate behavior, and the rate-constrained or QP-oriented quantiza-
tion further downstream. The current encoder versions derive
a well-performing Lagrangian λMODE , by frame, using QP and
frame-level information from a lookup table [7].

Prior to this, the value was simply related to quantization as
a negative slope of distortion-rate function, for a particular QP:

λMODE =−δD
δR

(2)

This was approximated in circa-2001 encoders (see [4], [8]) as
0.85×Q2, for a different set of quantization tools than those in use
today. Current encoder adaptive methods (see reference encoder
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documentation [5]) use a more fine grained adaptation, still QP-
derived and weighted:

λMODE = α ·Wk ·2(QP−12)/3.0 (3)

Here the adaptive factors α and Wk are further granular mea-
sures of adaptation, assuming a constant source distribution, and
that the relation holds for CUs in a frame overall. This granularity
is at the frame level.

We investigate in this work the addition of source informa-
tion and automated control of weighting by a control agent that
learns the modeling aproximation by trial, error and reward (Re-
infocement).

Methods and Algorithms
In this section we present our proposed contribution, which

is an application of several reinforcement learning ideas (explo-
ration and control) with adaptation to our problem setting.

Preliminaries
Reinforcement Learning, broadly speaking, involves processes

of optimizing the behavior of an agent/controller in an environ-
ment, through interaction with the environment. This is typically
formulated as being time-sequential state space, consisting of en-
vironment states x ∈ X , action space u ∈U , the notion of a policy
of action πθ : x 7→ u, to be learned, which controls the agent in an
optimal manner through reward-maximizing mechanism..

Unlike supervised learning scenarios, where correct labels
are known for respective state inputs, the process by which a con-
trol agent learns in the reinforcement setting is based on the in-
dications of cost, which is a quantitative sum of action rewards
(r1,r2, . . .) governed by some system of reward assignment related
to the feedback from the environment. This may be episodic, and
chosen with respect to the algorithm or environment.

Reward can be assigned in a greedy manner (immediate ob-
servation per step), or through multiple experience roll-outs (i.e.,
a history) culminating towards some final state, of the observe→
action→ reward, there may be a γ-discounted reward, or a sim-
ple average of per-timestep reward assigned per the full result of
the rollout episode.
A cost function for the policy can be written as:

J(πθ ) = Eτ [∑
i∈S

r(xi,ui)] (4)

The above Eq.(4) represents the expected sum of rewards, and is
to be maximized by the training procedure. This can be stated in
recursive Q-learning formulation, in terms of the current reward
and all rewards thereafter with the same policy:

Qπθ (xt ,ut) =E[r(xt ,ut)] +

E[max(Q(xnext ,unext))]
(5)

which is learned by updating network parameters θ through back-
propagation on reward signals. The updates to the policy are a
conditioning on the environment response to the outputs of the
network.

Policy Gradient methods (see [9], [10] are characterized as
actor-only methods, and are simpler in one aspect due to ability to

Q-action  
softmax

W1

W2

W3

Action Embedding

µ -value

Xt

64x64 Luma

L1 
ReLU

L2 
ReLU

Figure 2: Function Approximator NN for the learning procedure.
The relationships between source signal, current encoding level
state and action-result are captured by the stacked low dimen-
sional layers with full Regularized Linear connections.

converge on a real-valued policy through gradient descent/ascent,
so that an optimal cost (or maximal reward is found). The gradient
of this cost function is:

∇ϑ J =
∂J
∂π

∂π

∂ϑ
(6)

which is estimated per time-step update, so that the parameters
ϑ (e.g: neural network signal weights) can be updated via some
learning rate α:

ϑknext = ϑk +α∇ϑ Jk (7)

This overall approach very closely maps to our situation in
the control of video encoding parameters – in the current problem
setting, we have no optimal or known labels to train an agent with
in a supervised manner, because we do not (in this work) view the
reference implementation values for the RDO hyper-parameters
as ground truth labels. That is, supervised learning methods are
unnatural to the problem.

Instead, we aim to discover an approximation of the un-
known ideal for each portion of a given sequence, by modeling,
exploration, and overall reward assignment.

Reinforcement Learning for Encoder Control
A computationally efficient, pixel-value-based algorithm giv-

ing real-valued (continuous, non-discrete) function estimates is
desired. The main algorithms we are utilizing in this paper are
based on Continuous versions of Q-learning by Gu et al.[11],
which shares a neural network architecture and purpose with [12],
and a similar continuous control method, with backpropagation
updates to a neural net function approximator in [13]. This is
in turn based on earlier work on policy gradients for continuous-
valued actions in [14].

Our method is a combination of actor-only (policy gradient;
continuous value output) and Q-learning (discrete value predic-
tion for action choice), which yields desirable properties for an
encoder control agent that is to augment encoder decisions at run-
time.

This critic learns discrete responses of action categories per
input luminescence pattern, including none, to keep the same lambda
unchanged. Q-function critic outputs a selection of 3 possibilities
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(lower, higher and constant) for the λ weighting, given source sig-
nal and current picture reference level, and an exploration policy
of randomized action that is judged by bit-rate cost as reward.

Since it is difficult to arrive at precise, real-valued actions
(weights) with just the critic network, the Q-function is approxi-
mated by a neural net that is also shared by a similarly parame-
terized actor policy unit. The actor, or discrete policy gradient, is
guided by episodic reward signals to converge on values for the
lambda weighting for coding efficiency gain.

Other properties include robustness in the method as a whole;
stability in changing source signal environments, general conver-
gence and possible transfer-ability of learned policy behavior.

Our application to HEVC/H.265 involves two distinct proce-
dural stages: First, the modeling function is trained with roll-out
episodes of encoding that incorporate randomized exploration,
and train the function (neural net) parameters.

Recall the common formulation for Q-function above in Pre-
liminaries (Eq. 5). To indicate expectation of reward and state
from history rollout, we write this as:

Qπθ (ht ,ut) = Eht [r(xt ,ut) +

max(Q(hnext ,unext))] (8)

The exploration factor (during training) is a randomized variation
added to the Q-function action choice:

ut = µ
θ (xt)+ℵ (9)

So that the action is based on the parametrized (neural approxi-
mated) function of the input signal, plus noise. Training is done
by incorporating reward feedback as parameter updates upon tak-
ing this action (encoding the CTU) and taking further actions (en-
coding the slice). The procedure is presented below, in Training.

Adaptations
Some specifics in procedure arise from our encoding opti-

mization setting. One major point is that, unlike supervised learn-
ing methods, many techniques are excluded from the RL algo-
rithms (large networks, batch normalization, etc). Second, the no-
tion of state transition does not exist for our case. We rely purely
on reward observation that is devoid of resulting next-state, be-
cause the reward is directly obtained (continuous) and the next
image is inconsequential to the goal (we do not observe the re-
ward from the same state-space at the next time step).

In addition, there is no goal state. So, in the critic Q-function
formula, the policy πθ can be updated by a summation over Q(xt ,πθ (st ,ζt))
where ζt comes from the transition model: st+1 = f (st ,at) +
ζt . Our method simply measures reward values and discards this
term, the dynamics of which need not be learned.

The reward signal is based on the RD measured values for
the reference encoding of the same unit. The final reward for a
roll-out (a slice encoding, with all comprosed CTUs) is the im-
provement in bit-rate cost of that slice as a whole, with no dis-
counting factor for time. The reward per discrete time-step is the
same, but per CTU.

Training Algorithms
Our version of the deterministic Policy Gradient Procedure

for learning is summarized as follows:

Algorithm 1 Policy Gradient Exploration for RDO-Improvement

1: procedure TRAIN(Qθ )
2: Initialize randomized policy πθ

3: for slice-encoding trials SL1,SL2 do
4: for CTU1,CTU2, · · · ∈ SLICE do
5: Act (Encode) and store result . RD
6: update action-value network πθ

7: update Qθ per instant result
8: end for
9: Update both networks cumulatively

10: by rollout result
11: end for
12: return π,Q
13: end procedure

An estimate of bit-rate reduction per lambda parameter vari-
ation is the goal of our critic portion, through exploration and
parameter update. Upon training on one or more sequences, the
controller-actor is ready to be deployed in the process of encoding
the video sequence using the inferential output, without further
exploration. This is an off-line procedural design.

The process is “model–directed”, in that the inferred values
are weight-modified values for the Lagrangian λMODE , and as-
sociated λME , based on the initial empirical estimate in the HM
lookup-table of values. Therefore our method can be thought of as
an exploration and refinement, mapping input signals to proposed
shifts in the weighting values for different CTU settings.

Keeping in mind the ultimate target for the reward mecha-
nism is an encoder decision choice leading to either: 1) an im-
proved (reduced) bitrate cost estimate (without penalty) or 2) an
improved distortion level at the same bitrate cost level (i.e., with-
out penalty).

In practice, most decision change in the encoder will lead
to at least slight penalty in one side of the Lagrangian function,
depending on the source image structure. However, just as the
fixed values chosen by lookup-table in HM reference are consid-
ered empirically better in most scenarios on average (all possi-
ble sequences and input images), our source-adapted behavior can
sometimes lead to a significant jump in reward, in some blocks,
by crossing a minor decision threshold, as shown in the Results
section.

Algorithm 2 The weight update inference/filter function.

1: function MODIFYW(a)
2: D← INVOKE-CRITIC(QP)
3: if D = 0 then
4: return a . Built-in HM value
5: end if
6: return UPDATEW(a, D) . Policy network value
7: end function

Require: 0.5≤ a≤ 40.0

Encoding Results and Analysis
Results of experimentation with the HM14.5 reference en-

coder are presented below.
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Figure 3: (Final, learned) Lambda Weighting Factor variation in the first 100 frames of encoding. The variation was clipped (as in HM)
to provide stability in RD performance and prevent over-compensation in distortion penalties.

Figure 4: Rate-Distortion curves for several classes 4a and of test video sequence. The overall effect of the agent control of lambda is
evident at higher resolution frame samples.

(a) (b)

Our training design is based on the reference HM software
(see [7]) and its Python-wrapped data structures in [15], for easy
prototyping. The results we obtained during testing/execution
phase were almost identical in VideoLAN’s free implementation
of HEVC encoder software, which we adopted for part of the test-
ing due to being optimized for speed (and multiple times as fast).

The network architecture adapted from [11], [16] is shown in
Fig. 2. We used no convolutional layers (no filters needed), and
introduced actions embedded in the second hidden layer. Low-
dimensional hidden layers were both ReLU based, and fully con-
nected with 200 units.

Several test sequences (per JCT-VC guidelines[17]) were tested,
and show that a trained agent can provide significant improve-
ments to BD-bitrate performance as a whole, to the full sequence
encoding when run during testing. This holds true for different
types of video content, especially when SKIP modes are not pre-

dominantly benefited from.
When trained with a reward function that kept bitrate as a

goal while also providing positive reinforcement (at a lower re-
ward factor) to distortion reduction, the results were nearly iden-
tical in most sequences, but allowed a full improvement in both
PSNR-Y (Peak Signal to Noise Ratio, Luma-based) and bit-rate
(fully quantized/encoded sample size) simultaneously, raising the
rate-distortion curves in some frames. Note that this improvement
is parametrized on input and not a fixed choice per sequence.

The training-testing procedures were carried out using the
same sequences, with testing repeated for each QP level: QP ∈
{22,27,32,37}. Table 1 shows Bjorntegard-Delta average curve
differences for both rate and distortion.

The mode decisions in Fig. 5 below are visualized 1 to show
regions affected by the agent lambda choice. We find that in pre-

1We used the open-source GITL x265 Visualizer available in [18]
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Table 1: Average Rate-Distortion performance of our learned pol-
icy λ vs. the HM reference λ .

Seq. Name Fr. Encoded BD-PSNR-Y BD-R
(dB) (%)

Traffic 150 -0.078 -3.2
FourPeople 600 0.061 -4.1
BasketballDrill 300 -0.710 -2.1
Kimono 240 -0.090 -3.7
ParkScene 300 0.070 -4.2
Cactus 500 0.021 -6.5
Tennis 600 -0.015 -5.3
Vidyo4 600 -0.141 -2.5

Average N/A -0.311 3.95

Table 2: Testing sequences info.

Class Resolution Name Frame-rate

A 2560×1600 Traffic 30

B 1920×1080 Kimono 24
B 1920×1080 Cactus 50
B 1920×1080 ParkScene 24

C 832×480 BasketBallDrill 30

E 1280×720 FourPeople 60
E 1280×720 Vidyo4 60

liminary comparison, few of the CTUs in still or slow moving
regions are affected in terms of coding efficiency, because the
encoder is already intelligently applying a SKIP signal to those
blocks, which in place regardless of our modifications to the cost
function outcomes. Therefore, the slice regions benefitting the
most from the learned adaptive λπϑ , are the areas that are non-
skipped in the reference (i.e., motion estimation required), partic-
ularly in large CU modes (32-pixel).

Algorithmic Complexity
Here we present the asymptotic complexity of the algorithms

and the empirical observations, to better comprehend the practi-
cality of the results aside from their empirical coding efficiency
benefits. To better gauge how such an approach would work
with higher-classed video sequences (Level 5-6 resolutions and
above), scalable sequences, HEVC-3D extensions, 10 and 12 bit
sequences, 8K video and so forth. Computing power on mobile
devices is ever increasing, but a fair estimate of asymptotic per-
formance will show the applicability to more demanding video
encoding scenarios regardless of the rate of increase of hardware
performance.

The current two-step process of training before real-time ex-
ecution requires a linear increase in computation time that is de-
pendent on sequence length and picture sizes. Training happens
over rollouts comprising smaller episodes, where the rollouts are
slice-oriented (so in the 100-600 count range) and the CTU-based
obervation→ action cycle is replayed 5 times per episode. We
used the entire frame sequence for training, since simulations in
RL typically involve 104 to 107 iterations, depending on replay
memory, algorithm and environment. This means larger picture
resolutions underdo more training (e.g., 1080p containing more

CTUs than 420p).
Activation passes (action selection and policy value estima-

tion) are feed-forward and constant time per CTU decision. Over-
all, our full setup (with training phase) involved an encoding time
penalty equivalent to an additional run of the encoder with QP-
delta variation settings activated.

Related Work
Several works in both reinforcement learning (see [19]–[21])

and video coding optimization have arisen in recent years, build-
ing on the successes of basic machine intelligence architecture,
particularly deep convolutional and recurrent (memory-baed) neu-
ral nets, in visually-oriented tasks. Of relevance to our work, we
note the content-based QP adaptations in Intra-type coding[22],
which is incorporated in HEVC reference tools, specifically for
intra. Some recent work aiming at complexity reduction by intel-
ligent prediction in the encoder rate-distortion processes has also
been done in [23], and more intra-mode complexity reduction ef-
forts can be seen in [24], [25] and [26]. In [27], several architec-
tures including Long-Short-Term-Memory neural nets are utilized
within the encoder, again for complexity reduction by learning to
predict the CU division mode and structure.

Conclusions
Our work shows the ability of combined reinforcement agents

(Q-learning and policy gradient) to learn refinements of encoding
parameter control by input image patterns as state information.
This is a novel addition to MPEG-HEVC optimization, and the
first application of policy-learning agents (as opposed to direct
classification schemes) to video coder control.

Several improvements are possible in our process, particu-
larly a move to online learning, avoiding a two-step process that
was used in our initial work for clarity and verification of per-
formance. Also, we have not established the transfer of agent
capability by training on several sequences at a time – this is no-
tably important, in that it allows a ready-made function approxi-
mator NN to be produced. Are the agent’s performances on one
set of videos transferable with similar parameter weights to other
sequences? And how quickly can convergence occur on unseen
sequences? Finally, there is a possibility of including sequential
state information, via memory-keeping networks (LSTM), e.g.,
recurrent memory preserving systems in [12], [19]. This has di-
rect application to Low-delay profile settings in MPEG-HEVC
and similar codecs.
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(a) Traffic (2560 × 1600)

(b) Tennis (1080p)
Figure 5: CTU mode decision (block splitting) visualization for the Traffic and ParkScene frames in inter-mode coding. The reference
candidates in (b) are shown by the blue and red lines. Larger CUs within each CTU block can benefit from bitrate savings.
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