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Abstract

Cancer treatment involves complex decision-making pro-
cesses. A better understanding of recurrence risk at diagnosis,
as well as prediction of treatment response (e.g., to choose the
most cost-effective treatment path in an informed manner) are
needed to produce the best possible outcomes at the patient level.
Prior work shows that the forward/backward (F/B) ratio calcu-
lated from Second Harmonic Generation (SHG) imagery can be
indicative of risk of recurrence if relevant tissue sub-regions are
selected. The choice of which sub-regions to image is currently
made by human experts, which is subjective and labor intensive.
In this paper, we investigate machine learning methods to auto-
matically identify tissue sub-regions that are most relevant to the
prediction of breast cancer recurrence. We formulate the task as
a multi-class classification problem and use support vector ma-
chine (SVM) classifiers as the inference engine. Given the limited
amount of data available, we focus on exploring the feature ex-
traction stage. To that end, we evaluate methods leveraging hand-
crafted features, deep features extracted from pre-trained models,
as well as features extracted via transfer learning. The results
show a steady trend of improvement on the classification accuracy
as the features become more data-driven and customized to the
task at hand. This is an indication that having larger amounts of
labeled data could be beneficial for improving automated methods
of classification. The best results achieved, using features learned
via transfer learning from ResNet-101, correspond to 85% accu-
racy in a 3-class problem and 94% accuracy in a binary classifi-
cation problem.

l. Introduction

Cancer treatment involves a series of complex decision-
making processes. For solid tumors, treatment guidelines have
evolved from surgical intervention alone, to surgical treatment
followed by adjuvant chemotherapy or just endocrine therapy for
early stage cancers with low risk of recurrence, to neoadjuvant
chemotherapy where chemotherapy is given before surgery for
cancers with a high risk of distant metastatic recurrence or to
shrink an otherwise inoperable tumor. A better understanding of
recurrence risk at diagnosis as well as prediction of treatment re-
sponse to choose the most cost-effective treatment strategy are
needed in order to produce the best possible treatment outcomes.
Consequently, methods predicting recurrence risk at diagnosis
with improved risk stratification for cancer patients are required
in order to better identify early treatment options for patients. In
[1], an optical diagnostic assay technology that leverages an in-
trinsic optical signature from collagen in standard diagnostic tis-
sue slides is discussed. The predictor is derived from the average
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pixel-intensity ratios of the forward (F) to backward (B) second
harmonic generation (SHG) light scatter images, denoted F/B ra-
tio. It was further shown in [2] that the prediction accuracy using
the SHG F/B ratio depends on the tissue sub-region(s) involved in
the computation. It is thus critical to determine the most relevant
sub-regions that are suitable to compute the F/B measurements,
where relevance is measured in terms of the accuracy of the de-
rived risk prediction models.

In this paper, we propose methods for automatically predict-
ing cancer recurrence from SHG imagery, as discussed conceptu-
ally in [1] and [2]. Fig. 1 illustrates a high-level view of the pro-
cess. Current practices involve a human expert selecting relevant
regions in the SHG images of tissue samples. The resulting for-
ward and backward image-pair is analyzed to yield a biomarker,
namely the averaged F/B ratio, computed as per the image analy-
sis process discussed in [1]. The F/B ratio is shown to be indica-
tive of the risk of recurrence, and is used to categorize patients into
high- or low-risk categories. The associated risk over time can be
estimated based on the Kaplan Meier Curve (KMC) [3] derived
from clinical studies such as those in [1]. There is ample room
for improvement across the multiple steps involved in the process.
For example, the image analysis stage requires pixel segmentation
highlighting collagen for accurate F/B ratio computation. This
step is currently done by manually selecting thresholds for the F
and B image-pairs. Advances in image processing and computer
vision in the field of image segmentation [4]-[7] can be leveraged
to automate this step. Another step that can be improved with
automation is the biomarker discovery and selection, which cur-
rently limits the granularity of the recurrence risk prediction (e.g.,
high vs. low or use of group KMC for individual risk estima-
tion). This constraint is the result of the limited availability of
patient data in clinical studies, as well as the low-dimensionality
of the F/B ratio feature. To improve on this aspect, research in
data-driven biomarker discovery based on learned image features
can potentially improve the richness of the descriptors, which in
turn would allow better prediction of individual recurrence risks.
As higher dimensional features are incorporated, recent advances
in deep survival analysis [8][9] may be well suited for predicting
individual risk.

In this paper, we focus on exploring steps towards automat-
ing the process of identifying relevant sub-regions, as discussed
in [2], via machine learning. This corresponds to the automation
of the first step of the process depicted in Fig. 1. The main mo-
tivation lies in our preliminary findings on the importance of se-
lecting image regions with greater diagnostic power. Additional
benefits that accompany the deployment of automated decision-
making processes, namely improved accuracy, repeatability and
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processing throughput, and decreased subjectivity, are also in-
tended byproducts. We expect the automation to be particularly
beneficial in this application, as it will enable the efficient acqui-
sition of more relevant samples, which should in turn improve the
prediction power of the process and close the loop on the SHG
imaging and diagnosis process.

The rest of this paper is organized as follows: Section II in-
troduces the problem that our proposed methodology intends to
solve and a brief discussion of prior work. Section III provides
quantitative and qualitative evaluation results and experimental
justification of the efficacy of the algorithm. Conclusion and fu-
ture work are presented in Section IV.

Il. Problem Statement and Related Work

In this section, we briefly describe the problem and discuss
some of the relevant prior work in the field. As discussed ear-
lier, being able to identify relevant regions of interest (ROIs), i.e.,
tissue sub-regions, in a sample is a critical step in medical diag-
nosis. This step is often performed manually by trained pathol-
ogists in a process that can be time-consuming and subjective.
In [10], researchers formulated the ROI identification process as
an unsupervised learning problem and solved it via phenotyping.
To that end, randomly selected ROIs were clustered into groups
corresponding to different phenotypes, and the effectiveness of
the resulting phenotypes was measured based on how well they
predicted patient outcomes. The benefits of this approach are:
(1) no labeling of relevant ROIs is needed since the selection is
done randomly; and (2) new discoveries of relevant phenotypes is
possible. The disadvantages are: (1) a large number of samples
with patient outcomes is needed; (2) the process does not directly
measure the effectiveness of the feature extraction and clustering
stages; and (3) the methodology may not be easily interpretable
as it is somewhat data-driven instead of heuristics-based. Due to
the limitation in the number of available samples and motivated
by the need for explainability and interpretability, we focus on in-
vestigating machine learning methods for localizing ROIs related
to tissue sub-regions already identified by human experts as the
most relevant to the prediction of breast cancer recurrence. By
doing so, our methods will yield regions that match the experts’
knowledge of relevance and are thus inherently explainable. Also,
since we aim at addressing an altogether simpler task, the data re-
quirements are more modest. From the perspective of image clas-
sification research, the best community practices involve the use
of end-to-end image classification frameworks via deep learning
architectures. This approach, however, is extremely data hungry.
In the context of this study, and due to the scarcity of labeled sam-
ples, we address the feature extraction and inference stages inde-
pendently. More specifically, we formulate the task as a multi-
class classification problem and use the support vector machine
(SVM) classifiers [11] as the inference engine, while performing
thorough exploration of the feature extraction stage. We choose
the linear kernel SVM as the common classifier in our study due
to its simplicity and proven track record. We systematically in-
vestigate two aspects of feature extraction: the degree of feature
learning (from hand-engineered to data-driven) and the extent of
fusion between the F and B image components. To understand
the impact of the degree of feature learning on classification ac-
curacy, we study three types of features with increasing levels of
learning: hand-crafted (e.g., HOG [12])), pre-trained deep fea-
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tures (e.g., AlexNet [13] and ResNet-101 [14] trained on Ima-
geNet [15]), and refined deep features through transfer learning
of a pre-trained network. This approach allows us to test the ef-
ficacy of features as a function of their relevance to the dataset at
hand, and to elicit conjectures about the hypothetical behavior of
a trained network with larger amounts of labeled data. Since there
are F and B image components available for each ROI, we also ex-
plore the classification performance using different combinations
thereof. That is, to understand the impact of fusion among F and
B image pairs on the classification accuracy, we study the effect
of using the F and B components separately, as well as a fused
version of both components towards feature extraction. Fusion
schemes implemented include early fusion by (1) feature concate-
nation of HOG and pre-trained deep features extracted from both
image components, and (2) use of pseudo RGB images result-
ing from stacking of the available components (e.g., [F|B|F]) as
inputs to a CNN. A brief description of the features explored is
included in Table 1. Through these studies, our objectives are to:

e understand whether there is observable performance im-
provement as the degree of feature learning increases, as
well as validate whether machine learning is feasible with
current limitation of data;

e understand the feasibility of automating sub-region selec-
tion with computer vision techniques and enable an efficient
SHG imaging platform where either the samples are densely
imaged and then selectively processed (e.g., as in [10]), or
where the image regions are first pre-scanned at low resolu-
tion and then selectively imaged with higher quality (i.e., a
closed-loop imaging platform);

e develop a more effective strategy for sub-region selection
involving combinations of the F and B SHG image compo-
nents.

Table 1. Brief description of features considered.

Group | Notation Bricf Descriprion
HOG(F) HOG extracted from F images
A |HOG(B) HOG extracted from B images
HOG(FB) Concat of HOG(F) & HOG(B)
AlexNet(F) Pre-trained AlexNet feature extracted from F images
B AlexNet(B) Pre-trained AlexNet feature extracted from B images
AlexNet(FB) C of AlexNet(F) & AlexNet(B)
AlexNet(F[B|F) Pre-trained AlexNet feature extracted from (F.B.F) pseudo-RGB images
ResNet(F) Pre-trained ResNet feature extracted from F images
c ResNet(B) Pre-trained ResNet feature extracted from B images
ResNet(FB) C of ResNet(F) & ResNet(B)
ResNet(FBF) Pre-trained ResNet feature extracted from (F.B.F) pscudo-RGB images
D |Refined ResNet(F) |Refined ResNet feature via transfer learning on F images

lll. Experiments and Results

The following sections describe the experimental framework
employed as we evaluate the feasibility of the proposed approach.
Due to the scarcity of patient samples, we conducted two types of
experiments, one quantitative and one aimed at testing the robust-
ness of the proposed approach.

Quantitative Study

The dataset for this experiment, DataSet#1, consists of tissue
samples from 96 estrogen receptor-positive (ER+) breast cancer
patients. Three tissue sub-regions, namely interface (stroma next
to cancer cell bulk regions), bulk (mostly cancer cells with some
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Figure 1. System flowchart for cancer recurrence prediction using SHG image analysis.

stroma), and far (far away from cancer cells including normal
breast tissue), are identified and imaged using SHG (see Fig. 2).
Whenever possible, all three sub-regions are selected and imaged
from each sample. In total, 795 F and B image pairs are available:
297 interface, 297 bulk, and 171 far. In [2], it was shown that
the relevance of the biomarkers to the prediction of breast cancer
recurrence and treatment response depends on the region of tis-
sue they are extracted from, with the most discriminative being
those features extracted from the interface, followed by tissue in
the bulk and lastly the far regions. With this in mind, our goal is
to differentiate the three sub-regions with high accuracy (i.e., in
the form of a 3-class classification formulation), or to discrimi-
nate the far regions from the interface and bulk regions (binary or
2-class classification problem).

(b)
Figure 2.  DataSet#1: Example F (left) and B (right) image pairs from
SHG imaging of the tissue of a patient from (a) interface, (b) bulk, and (c) far
regions. Images have been enhanced for illustration purposes.

Fig. 3 summarizes the results of the multi-class classifica-
tion task. We evaluated each of the methods listed in Table 1 a
total of 10 times using random training/test splits of 80%/20%;
the figure includes boxplots of the performance on the test set.
We performed experiments using different combinations of F and
B imagery. The label F (B) refers to using features extracted from
the F (B) image only. The label FB refers to the concatenation of
F and B derived features. The label F|BJF refers to features ex-
tracted from pseudo-RGB images constructed by stacking F, B, F
images into the Red, Green and Blue channels, respectively, of an
RGB image. We chose to duplicate the F plane since it showcases
better contrast than the B component. It can be seen that the best
results are achieved by the method with higher degree of learned
features, namely feature group D, with 85% accuracy in the 3-
class scenario and 94% accuracy in the binary classification task.
Two interesting observations can be drawn from the figure: (1)
using F imagery alone yields more accurate and robust classifica-
tion; and (2) the more relevant learning is involved in the feature
extraction (from left to right), the better results can be achieved.
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The first observation aligns with the fact that F images of our tis-
sue samples exhibit better contrast and thus have better signal to
noise ratio (SNR). When training data is limited, combining F
image with low SNR B image does not improve the performance.
However, we expect the result from F&B images would improve
over individual F or B images if large training data set is used.
The second observation is an indication that having more labeled
data in the future (so that a higher degree of feature learning can
be carried out) would be beneficial to the performance of the au-
tomated method. This would be part of future research.

Clasification aceuracy on est sets

T T T T

Figure 3. Results of multi-class classification using an SVM classifier oper-
ating on different features.

Robustness Study

In this experiment, we utilize a portion of the dataset in [1]
to validate our method from the perspective of generalizability
and robustness. This dataset, DataSet#2, consists of 344 human
breast tumor samples from 125 ER+ breast cancer patients. This
data comes from a collection at the Erasmus Medical Center (Rot-
terdam, Netherlands), primarily extracted from one breast cancer
genetic expression study [16]. Fig. 4 illustrates examples of SHG
F&B image pairs from three patients. Note that, since the regions
imaged in these samples were intentionally selected to cover the
tumor, we expect the center of the F&B images to be located in the
bulk region defined in the quantitative experiment. Depending on
the size of the tumor, the outer regions may cover some interface-
region as discussed earlier, but this is not guaranteed. Due to this
limitation, we only use the data to validate how well our methods
can classify bulk-region samples. Another limiting characteristic
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of these samples is that the samples are prepared and fixed on a
disk; as a result, only circular potion at the center of the images
is considered to be valid (i.e., corresponding to tissue rather than
background). Compared to DataSet#1 (see Figs. 2 and 4) where
images are relevant across the entire field of view, the distinct bor-
der and the outer background pixels can potentially cause issues
with traditional classification models. At the same time, the novel
data characteristics (that is, those not seen by the model during
training) allow us to validate the robustness of the models trained
on DataSet#1. To sum up, the F&B images in DataSet#2 are only
weakly labeled with mostly bulk-region tissue (partially contami-
nated by interface and background pixels) and have novel features
not necessarily seen by the model during training. With these is-
sues in mind, we only use this dataset to test the robustness of the
methods.

(@)

()
Figure 4. DataSet#2: Example F (left) and B (right) image pairs from SHG
imaging of human breast tumor samples from three patients. Images have

been enhanced for illustration purposes.

To further validate the models trained on DataSet#1, we ap-
ply the first and the last trained models listed in Table 1, namely
those based on HOG(F) and Refined ResNet(F), to classify sam-
ples in DataSet#2. The results are shown in Fig. 5 which sum-
marizes the results of applying the two aforementioned models to
the center 512 x 512-pixel portion and to the entire 1024 x 1024-
pixel images in DataSet#2. As discussed, we expect the center
portion to contain mostly bulk-region tissue (depending on the
size of the tumor) and to be largely devoid of the unwanted back-
ground pixels. Comparing Figs. 5 (a)(b) and (c)(d), it can be seen
that the classifier based on Refined ResNet(F) is much more ac-
curate at the task than the HOG(F) classifier. Since the bulk re-
gion can vary from sample to sample in this dataset due to tumor
size variation, a better indication of the model’s accuracy might
be the total accuracy of bulk+interface. Using this criterion, our
Refined ResNet(F) can achieve 90% accuracy for DataSet#2 in
the binary case (i.e., bulk or interface vs. far), which is on par
with the test accuracy for DataSet#1. This shows that Refined
ResNet(F) has better generalizability beyond the samples it saw
at training. Comparing Figs. 5a and 5b, it is apparent that Refined
ResNet(F) is very robust against the unobserved image character-
istics (distinct border and outer background pixels not present in
the training set). Lastly, comparing Figs. Sc and 5d, it can be con-
cluded that the performance of HOG(F), on the other hand, seems
to be affected by these disturbances. The results are not surprising
since HOG features are known to be susceptible to variations due
to translation, scaling, rotation, and changes in the background as
they focus mostly on local features. Deep features such as ResNet,
on the other hand, incorporate multi-scale (local and global), hi-
erarchical features and are more robust against a wider range of
factors of variability.

In summary, our experiments show that: (1) it is sufficient to
use only Forward images for tissue sub-region classification espe-
cially when the training data is limited; (2) with a small amount
of samples for transfer learning, Refined ResNet(F) is able to
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Figure 5. Classification results on DataSet#2 using Refined ResNet(F) on
(a) the center portion and (b) the entire image, and using HOG(F) on (c) the
center portion and (d) the entire image.

achieve high accuracy; and, (3) Refined ResNet(F) is more robust
and generalizes better than Hog(F). These results seem to indicate
that increasing the degree of feature learning would greatly bene-
fit the task of automatically localizing relevant tissue sub-regions
for breast cancer recurrence risk prediction.

IV. Conclusions and Future work

In this study, we investigated machine learning methods for
classifying sub-regions of tissue from SHG imagery. We focused
on the feature extraction stage and found quantitatively and qual-
itatively that the more closely related the feature extraction is to
the task at hand, the better is the classification accuracy. This
indicates that as a larger amount of labeled data become avail-
able, increased accuracy can be expected from the resulting tissue
sub-region classification algorithm, particularly if the algorithm
in question is deep in nature. Our ultimate goal is to develop a
system where tissue samples are first densely imaged for analy-
sis, an algorithm identifies regions of interest, and the most rele-
vant regions are selected for further analysis; we expect this in-
formed triaging will enable more accurate recurrence prediction.
The work presented herein is the first step towards that goal.
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